
BGPEval: Automating Large-Scale Testbed Creation
Nils Rodday∗†, Gabi Dreo Rodosek∗

∗Research Institute CODE, Universität der Bundeswehr München,
†University of Twente

Abstract—BGP has been known to be vulnerable to hijacking
and path manipulation attacks for many years. Several solutions
have been proposed to secure either the origin, the path, or
both. A known issue for new ideas is their evaluation. Simulation
environments are easy to use but can only mimic real-world
deployments to a certain extent. In this work, we propose
BGPEval. A framework that is capable of creating large-scale
testbeds based on the KVM hypervisor and Docker container
technology that mimics the interconnection of ASes according
to a provided AS graph. We use several layers of abstraction
to spawn and inter-connect as many as 55,000 containers. Our
work takes significant effort away from an evaluator, who can
now focus on the implementation rather than the creation of
testbeds for the evaluation.

Index Terms—Topology generator, BGP, RPKI, Security

I. INTRODUCTION

The Border Gateway Protocol (BGP) has been known to be
vulnerable to hijacking and path manipulation attacks for many
years [1], [2]. Many security solutions have been proposed.
Some focus on origin validation [3], others on path valida-
tion [4]–[9], and some very recently on path plausibility [10],
[11]. Newly proposed algorithms are sometimes purely theo-
retical, sometimes evaluated in simulation testbeds [12], and
in some instances implemented in Open Source routers [10].
In order to provide a framework to test innovative algorithms,
the National Institute of Standards and Technology (NIST)
developed the BGP-Secure Routing Extension (SRx) software
suite, which allows a fairly easy integration of new security
algorithms [13]. Once the algorithm is implemented, the
framework allows for native deployment on the host or the
instantiation of a containerized environment in which it is
possible to connect multiple routers. However, the creation of
testbeds is limited to a predefined configuration file, which has
to be manually created and can only be executed on a single
host, limiting the testbed’s size. Our work extends the currently
available NIST BGP-SRx software suite with the capability of
spawning large-scale testbeds in a swarm on multiple hosts in
a fully automated manner mimicking a provided input graph.
The input graph used for our tests resembles the inter-domain
routing infrastructure. We create a directed input graph from
publicly available BGP collector data [14], [15] and enrich the
graph with the CAIDA Autonomous System (AS) relationship
dataset (as-rel2) [16].
Generalization. Our primary goal in proposing this frame-
work is to ease the pain of creating testbeds to evaluate BGP
security solutions. However, since the framework relies on

a container-based solution, further application areas can be
found within the networking domain and beyond where our
topology generator can be helpful, e.g., evaluation of intrusion
detection systems or firewalls. As long as the evaluator is able
to provide a container that encapsulates the software that needs
evaluation or testing, our framework could be adopted to serve
different purposes. Organizations are constantly looking for
staging environments to test new additions to their network
before the new software is rolled out. Existing tools can create
a graph that represents the networking status of an enterprise
network [17], [18]. These tools listen to existing network traf-
fic from multiple vantage points and can visualize the network
topology. Based on such a graph, our BGPEval framework can
easily create a testbed that mimics the network topology of
the real network using the same production software within
the deployed containers. It allows for integrating additional
components safely before rolling them out in a production
environment.

Contributions. In this work, we propose a framework called
BGPEval for automated testbed creation. In detail, we make
the following contributions:

1) We propose an engine that accepts a directed graph as
input and generates router configuration files to resemble
the topology in a complex testbed with software routers.

2) We create an input graph from publicly available BGP
collectors and enrich that data with the CAIDA AS re-
lationship dataset to obtain a directed graph representing
the inter-domain routing infrastructure.

3) We fully automate the creation of large-scale testbeds
over multiple layers of abstraction, e.g., hardware servers,
hypervisors, and containerized solutions. We show the
possibility to scale the testbed with our current infras-
tructure to up to 55,000 containers.

4) We validate our proposal by deploying two independent
BGP routing daemons: Quagga and GoBGP. Both dae-
mons are capable of connecting to the NIST BGP-SRx
software suite to run BGP security algorithms.

5) We publicly release all source code and documentation
of our framework1.

The remainder of this paper is structured as follows: Sec-
tion II provides background information on topology gen-
eration and simulation frameworks. Section III presents our

1https://github.com/nrodday/CNSM-23

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP

1. Obtain BGP
collector dumps

4. Generate BGP
daemon configuration

files

3. Create
directed graph

2. Classify links
 with CAIDA AS

 relationship dataset

C
u

st
o

m
er

 →
 P

ro
vi

d
er

P
ee

r

→

 P
ee

r

1.2.3.0/24 123 456 789

7.8.9.0/24 555 666 222

6.6.6.0/16 987 654 321

BGP

5. Create network
topology

Figure 1. BGPEval methodology. We obtain BGP collector data and enrich the data with CAIDA AS relationship information to obtain a directed graph.
Afterwards, we generate BGP router configuration files and create the testbed via multiple layers of abstraction.

methodology and shows how BGPEval works, while Sec-
tion IV introduces the NIST BGP-SRx software suite. We
create a proof-of-concept in Section V and show how the
topology generator can be helpful in practice. Limitations are
discussed in Section VI while Section VII summarizes our
findings.

II. BACKGROUND

Methods to perform evaluations of algorithms in network
environments have been discussed for many years. The most
prominent simulation frameworks in use today are NS-3 [19],
Omnett++ [20], and GNS3 [21]. On a theoretical level, the
execution of an algorithm within a simulation environment to
validate its correct working might seem adequate. On a more
practical level, running code in production will always cause
a multitude of errors or interconnectivity issues that could not
be tested within the simulation environment. Also, source code
typically needs to be ported into the simulation environment.
The programming language might not match the one the sim-
ulation environment requires, and reimplementation is neces-
sary. MiniNet [22] is a platform that enables network algorithm
evaluations primarily for SDN-based technologies. Automated
network configuration has been proposed for MiniNet [23] and
GNS3 [24]. Our BGPEval framework differs from simulation
or emulation environments in that it allows for the execution
of the same binaries that will be executed later on within the
production environment. Moreover, BGPEvals’ focus lies on
the automated creation of the topology of the testbed itself,
something that still has to be done manually in all previously
mentioned frameworks.

III. METHODOLOGY

To create our large-scale testbeds, we propose the following
strategy. Figure 1 illustrates the workflow.
Input graph. First, our topology generator expects a directed
graph as an input parameter. This graph is read as a serialized
Python object and instantiated in memory. We use the Python
library NetworkX [25] to create the graph. Our generator is
designed to resemble the input graph as provided. Therefore,

an evaluator is able to create with very few lines of code
complex topologies that our framework accepts as input.

Since we want to instantiate the inter-domain routing infras-
tructure on an AS level, we use public BGP collector data from
RIPE RIS [15] and Routeviews [14]. We obtain a collector
dump for June 1, 2023, from 00:00:00 until 23:59:59. The
resulting file contains 678 GB of data. We create a graph from
the relationships between ASes inferred from the AS PATH
attribute of each announcement contained within. Afterwards,
we apply the CAIDA AS relationship dataset (as-rel2) [16] to
label edges between nodes. Edges that could not be labeled and
isolated nodes are removed from the graph. The final directed
graph consists of 74,110 nodes. Classifying them into tiers,
according to [26], we obtain 105 tier one, 11,237 tier two,
and 62,768 tier three nodes.

It is essential to highlight that we create a graph that is
abstracted from the inter-domain routing infrastructure, but any
other graph as input would be accepted and the topology built
accordingly.

Configuration file generation. Second, BGPEval creates
the configuration files for either Quagga or GoBGP daemon
instances. Since their syntax differs, the respective output can
be chosen with a switch. Our framework reads the input
graph and translates the contained relationship information
(customer-to-provider and peer-to-peer relationships) to BGP
daemon readable format. Therefore, the amount of created
configuration files matches the amount of ASes contained
within the graph. Each file contains the instructions for the
BGP daemon to connect with its peers.

In addition to the required information about peers, we
implement the Gao-Rexford model [27] to imitate the proper
propagation of BGP updates. We discuss the limitations of our
approach in Section VI.

Testbed creation. Third, we instantiate the testbed. This
process spans multiple layers of abstraction. Depending on the
size of the input graph, more or less resources are required to
support the testbed. Our setup works with a single or multiple
hardware nodes. This might be particularly helpful in scenarios
where many nodes are available, but each only provides a few

2

2023 19th International Conference on Network and Service Management (CNSM)

Hardware
Layer

Hypervisor
Layer

Container
Layer

V
er

ti
ca

l S
ca

lin
g

Horizontal Scaling

Open vSwitch
Overlay Network

Docker Overlay Network

M W W W W W

W W W W

W W W W W W

W W W W

W W W W W W

W W W W

Server Server Server

Figure 2. BGPEval architecture. We observe three layers. Servers at the
hardware layer, VMs at the hypervisor layer, and containers at the container
layer. The hypervisor layer has a single manager instance and many worker
instances. Servers and VMs communicate via an Open vSwitch Layer 2
overlay network, while containers are interconnected via a Docker overlay
network. Each container requires a static IP address to generate router
configuration files.

resources. We had to create a testbed with multiple layers,
as each Docker container instantiates a network interface on
the host. The Operating System (OS) running on the server
and within a VM becomes unresponsive if more than ∼800
of such containers are spawned. Therefore, we encapsulated
450 Docker containers into a VM. Each server is capable of
hosting multiple VMs.

We show our architecture in Figure 2. At the bottom layer,
we use either a single or multiple servers for horizontal scaling.
These servers are interconnected via a data link layer overlay
network. To keep it simple, we only require an SSH connection
from one server to the other. Each server creates an Open
vSwitch bridge and a tunnel interface for each adjacent server.
The traffic of the tunnel interface for the adjacent server
is routed via the SSH connection. We enable the Spanning
Tree Protocol (STP) to avoid forwarding loops if more than
three servers are interconnected. With such a simple setup, all
servers are capable of exchanging traffic.

The middle layer consists of VMs hosted by a KVM
hypervisor on each server. Each VM connects to the Open
vSwitch bridge with its dedicated interface. Therefore, each
VM can access the Internet via its regular interface and access
the data link layer overlay network via the bridged interface.
As a result, a VM hosted on one server can send traffic to any
other VM hosted on any other server participating in our setup.
Each interface connecting to the bridge needs an IP address
assigned to exchange traffic. We implement this by hosting a
DHCP server on a manager VM on the first server (marked
in red in Figure 2). All other VMs are workers that send out
DHCP requests. Depending on the resources available on each
server, we spawn and interconnect more or less VMs with each
other.

The top layer contains Docker containers. This final layer
contains the actual BGP experiment testbed. We use Docker
Swarm [28] to implement our testbed. The manager VM
hosts the swarm manager. All other worker VMs cloned on
each server contain a start-up script that joins them into the
swarm. When all VMs are spawned, we can observe the same
amount of VMs as Docker worker nodes within the Docker
manager node. It is, therefore, fairly simple to prune and

respawn our entire testbed by simply destroying the VMs
and reinitiating the VM cloning process. The Docker image
is deployed in a registry service. This service is available
to all worker nodes. Containers using that image can be
instantiated on any worker node. Each container is deployed
as a Docker service. The configuration files for each AS
are deployed as Docker configs. We use the swarm manager
to distribute the Docker configs to all nodes that spawn a
container requiring a specific configuration file. In order to
interconnect the containers, we use another overlay network.
We spawn each container with a dedicated network interface
connected to the overlay network in addition to the default
interface. However, Docker cannot assign static IP addresses
to containers deployed within a swarm. This is a crucial
requirement as we need to interconnect BGP routers within
the containers and, therefore, need to know the IP address
of the BGP peer already at the creation of the configuration
files. To work around this issue, we automated the following
procedure: First, we use SSH to log into each Docker node
and disconnect the overlay interface from the overlay network.
Second, we assign the predefined IP address for this container,
and third, we restart the interface. The Docker manager is
unaware of the change as it happens on the OS level within the
container and not via the management interface. This becomes
only a problem if a container crashes and Docker automatically
respawns the container with its old address. However, when
Docker containers crash, the computational limit has been
reached in any case, and we do not exceed such limits to
provide a stable testbed.

Within each container, we wait for two minutes until the
IP address change for the overlay interface took place and
start the NIST BGP-SRx server. Afterwards, we start the BGP
daemon, which connects to the local BGP-SRx server instance
and all BGP peers.

Finally, a fully functional BGP testbed is running that
interconnects according to the provided input graph. The
evaluator can now manually log into certain ASes to alter
announcements (or automate such use cases) and observe the
propagation of the announcements. Moreover, BGP security
algorithms implemented in the BGP daemon and the BGP-
SRx server can be thoroughly tested.

IV. NIST BGP-SRX SOFTWARE SUITE

Throughout our work, we heavily use the NIST BGP-Secure
Routing Extension software suite [13]. It ships with multi-
ple components: BGP-SRx server, Quagga routing daemon,
Resource Public Key Infrastructure (RPKI) test harness, and
BGPSecIO generator.
BGP-SRx server. The functionality of security algorithms is
not implemented on routing daemons but instead encapsulated
in the BGP-SRx server. This change in philosophy contrasts
the Request for Comments (RFCs) that detail the execution of
e.g., BGPSec operations on the router itself [4]. On the one
hand, it provides more flexibility as complexity is outsourced
to the BGP-SRx server, and processing on the router is
not delayed; on the other hand, such change requires the

3

2023 19th International Conference on Network and Service Management (CNSM)

BGP-SRx server as an additional component for processing
and increases management complexity. The current BGP-
SRx server implements RPKI (RFC 6811), Border Gateway
Protocol Security (BGPsec) (RFC 8205), and Autonomous
System Provider Authorization (ASPA) (Draft Version 1).
Quagga. The routing daemon has been extended to implement
an SRx-Proxy API, which forwards validation requests of
received BGP updates to the BGP-SRx server. The current
Quagga software is capable of requesting validation for RPKI,
BGPsec, and ASPA.
RPKI test harness. It functions as a Relying Party (RP)
software instance and allows the evaluator to create RPKI or
ASPA objects via a simple Command Line Interface (CLI).
It does not implement the RPKI delegation, signing, and
publication procedures but directly exports the Validated ROA
Payload (VRP) to the BGP-SRx server, therefore reducing
complexity.
BGPSecIO generator. It is a handy tool built on the exaBGP
routing daemon, a Python-based routing implementation. The
generator allows to script a sequence of announcements that
the BGPSecIO generator sends towards a specific BGP peer.
It is, therefore, possible to craft arbitrary announcements,
including hijacks, manipulated path segments, route leaks, etc.

V. PROOF OF CONCEPT

In order to test the correct workings of our BGPEval frame-
work, we create two container images that are each deployed
in a testbed, see Figure 3. The first image contains Quagga
as a routing daemon; the second image features goBGP. We
use the inter-domain infrastructure graph as an input to create
the underlying topology as described in Section III. Each
container image also runs a BGP-SRx server instance to which
the routing daemon is locally connected. We use Zebra [29]
to install routes the routing daemon receives into the Route
Information Base (RIB). Once a route has been installed, we
can send data plane packets to verify whether an address
range is actually reachable. We limit the number of BGP-SRx
instances connecting to a single RPKI test harness instance to
10,000. Hence, we need multiple RPKI test harness instances
to support a large testbed. These are deployed as additional
containers and distributed throughout the worker nodes to
avoid overwhelming a single node with too many connection
requests.

BGP-SRx server

BGP daemon
(Quagga/goBGP)

Zebra

ASx

Install

Validation
Connect
to BGP
peers

Connect
to RPKI

test
harness

route

Figure 3. Container components.

Our physical infrastructure spans three servers:
1) 56 Cores @2.1 Ghz, 768 GB RAM
2) 128 Cores @2.45 Ghz, 2,048 GB RAM
3) 128 Cores @2.45 Ghz, 1,024 GB RAM
Our results show that we could create a testbed as large as

55,000 ASes for the Quagga image and 45,000 ASes for the
goBGP image. Since we spawn containers linearly throughout
all VMs to avoid overwhelming a single host, creating one
testbed requires roughly two hours.

VI. LIMITATIONS

Scaling limit. Unfortunately, we could not scale the testbed
to up to 74,110 containers as we experienced heavily in-
creased latencies shortly after reaching the mentioned testbed
sizes that led to connection renegotiations and, therefore, a
collapse of the testbed. We suspect the management engine
of Docker is saturated at some point that comes with the
immense amount of network connections that need to be
tracked and supported throughout the build of the topology.
We have already increased several OS and application layer
limits [30] to support larger networks. Moreover, we replaced
the default networks with much larger /8 networks to support
that many containers. However, we suspect that forwarding
network packets from one container to the other becomes
unsustainable at some point, considering that every packet has
to cross multiple layers of abstraction. Hence, we observe huge
latencies (>1sec) during scaling operations when going above
the determined limits. CPU utilization and RAM usage do not
seem to be a problem, as plenty of computational power and
memory are unused when the problem occurs.

Nonetheless, scaling up to 55,000 containers is a significant
advancement, as previous research and industry contributions
were limited to ∼ 10,000 containers within a single testbed.
Gao-Rexford. In Section 1, we implemented the Gao-
Rexford model [27] for proper routing within the testbed.
A plain Gao-Rexford implementation is much simpler than
private router configurations based on confidential agreements,
e.g., provider A is preferred for prefix B since the profit would
be higher. However, such simplification is indispensable as
private router configurations are impossible to obtain for each
AS. By implementing the Gao-Rexford model, we abstract
fine-grained policies and assume proper routing behavior for
all participants, which is not always true. As a result, if e.g., a
route leak scenario needs to be tested within the testbed, the
configuration of the leaking AS would require alteration.
AS-level abstraction. We consider an entire AS with many
eBGP speakers a single entity with a common policy. In
reality, that is very rarely the case, but it is a necessary
abstraction to make testbed creation feasible. More detail for
intra-AS topology would significantly increase the complexity
of the testbed and, therefore, require an even higher number of
supported containers. Moreover, intra-AS topology is hidden
from the outside world and considered a business secret by
the provider; hence, it is hard to infer. Yet, the limitation
is essential to consider when trying to deploy scenarios with

4

2023 19th International Conference on Network and Service Management (CNSM)

partial adoption of security algorithms within a particular AS,
e.g., RPKI filtering would be enabled on one eBGP speaker,
but not on another, see [31].
RPKI test harness. We are required to create multiple
instances to distribute the load to avoid overloading a single
RPKI test harness instance. This is a drawback when different
deployment scenarios are tested since the status of RPKI,
ASPA, and AS-Cones objects needs to be precisely the same
for all RPKI test harness instances. Otherwise, different ASes
would obtain other objects, and a consistent evaluation would
not be possible.

VII. CONCLUSION

In this work, we proposed the BGPEval framework. It is
based on the NIST BGP-SRx software suite that allows for
easy integration of experimental routing security algorithms
and deploys large-scale testbeds based on a directed input
graph. We generate the directed input graph from public BGP
collectors and label the data with the CAIDA AS relationship
dataset. Our framework generates router configuration files
that represent the interconnection according to the provided
graph and ensures a stable testbed creation over multiple layers
of abstraction. We can scale the testbed to a size of 55,000
containers. The framework reduces the effort of an evaluator
to create a test infrastructure significantly and allows for the
quick generation of multiple different scenarios.

ACKNOWLEDGMENT

We thank the anonymous reviewers and Julius Her-
melink for their constructive feedback. Moreover, we thank
Oliver Borchert and the NIST Internet Technologies Research
Group [32] members for their time for discussion.

REFERENCES

[1] S. Cho, R. Fontugne, K. Cho, A. Dainotti, and P. Gill, “BGP hijacking
classification,” in 2019 Network Traffic Measurement and Analysis
Conference (TMA). IEEE, 2019, pp. 25–32.

[2] K. Butler, T. R. Farley, P. McDaniel, and J. Rexford, “A Survey of BGP
Security Issues and Solutions,” Proceedings of the IEEE, vol. 98, no. 1,
pp. 100–122, 2009.

[3] M. Lepinski and S. Kent, “An Infrastructure to Support Secure
Internet Routing,” RFC 6480, Feb. 2012. [Online]. Available:
https://rfc-editor.org/rfc/rfc6480.txt

[4] M. Lepinski and K. Sriram, “BGPsec Protocol Specification,” RFC 8205,
Sep. 2017. [Online]. Available: https://rfc-editor.org/rfc/rfc8205.txt

[5] R. White, “Architecture and deployment considerations for
secure origin bgp (sobgp),” IETF Secretariat, Internet-Draft,
June 2006. [Online]. Available: https://www.ietf.org/archive/id/
draft-white-sobgp-architecture-02.txt

[6] S. Kent, C. Lynn, and K. Seo, “Secure Border Gateway Protocol (S-
BGP),” IEEE Journal on Selected areas in Communications, vol. 18,
no. 4, pp. 582–592, 2000.

[7] T. Wan, E. Kranakis, and P. C. van Oorschot, “Pretty Secure BGP, ps-
BGP.” in Network and Distributed System Security Symposium (NDSS).
Citeseer, 2005.

[8] P. v. Oorschot, T. Wan, and E. Kranakis, “On Interdomain Routing
Security and Pretty Secure BGP (psBGP),” ACM Transactions on
Information and System Security (TISSEC), vol. 10, no. 3, pp. 11–es,
2007.

[9] J. Karlin, S. Forrest, and J. Rexford, “Pretty Good BGP: Improving
BGP by Cautiously Adopting Routes,” in Proceedings of the 2006 IEEE
International Conference on Network Protocols. IEEE, 2006, pp. 290–
299.

[10] A. Azimov, E. Bogomazov, R. Bush, K. Patel, J. Snijders, and
K. Sriram, “BGP AS PATH Verification Based on Autonomous System
Provider Authorization (ASPA) Objects,” Internet Engineering Task
Force, Internet-Draft draft-ietf-sidrops-aspa-verification-16, Aug. 2023,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-ietf-sidrops-aspa-verification/16/

[11] J. Snijders, stucchi lists@glevia.com, and M. Aelmans, “RPKI
Autonomous Systems Cones: A Profile To Define Sets of Autonomous
Systems Numbers To Facilitate BGP Filtering,” Internet Engineering
Task Force, Internet-Draft draft-ietf-grow-rpki-as-cones-02, Apr. 2020,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
html/draft-ietf-grow-rpki-as-cones-02

[12] A. Cohen, Y. Gilad, A. Herzberg, and M. Schapira, “Jumpstarting BGP
Security with Path-End Validation,” in Proceedings of the 2016 ACM
SIGCOMM Conference, 2016, pp. 342–355.

[13] O. Borchert, K. Lee, K. Sriram, D. Montgomery, P. Gleichmann, and
M. Adalier, “BGP Secure Routing Extension (BGP-SRx): Reference
Implementation and Test Tools for Emerging BGP Security Standards,”
National Institute of Standards and Technology, Tech. Rep., 2021.

[14] RouteViews Project, “University of Oregon RouteViews Project,” http:
//www.routeviews.org, 2013, [Online; accessed 16-Juli-2020].

[15] RIPE NCC, “RIPE Routing Information Service (RIS),” https://www.
ripe.net/analyse/internet-measurements/routing-information-service-ris,
2020, [Online; accessed 16-October-2020].

[16] CAIDA, “The CAIDA AS Relationships Dataset, 20221001,” 2022. [On-
line]. Available: https://www.caida.org/catalog/datasets/as-relationships/

[17] “Netdisco.” [Online]. Available: http://netdisco.org/
[18] “Nessus.” [Online]. Available: http://www.nessus.org/
[19] G. F. Riley and T. R. Henderson, “The ns-3 Network Simulator,” in

Modeling and tools for network simulation. Springer, 2010, pp. 15–34.
[20] A. Varga, “OMNeT++,” in Modeling and tools for network simulation.

Springer, 2010, pp. 35–59.
[21] J. C. Neumann, The Book of GNS3: Build Virtual Network Labs using

Cisco, Juniper, and more. No Starch Press, 2015.
[22] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid

Prototyping for Software-Defined Networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, 2010, pp. 1–6.

[23] N. Rodday, R. van Baaren, L. Hendriks, R. van Rijswijk-Deij, A. Pras,
and G. Dreo, “Evaluating rpki rov identification methodologies in
automatically generated mininet topologies,” in Proceedings of the 16th
International Conference on emerging Networking EXperiments and
Technologies, 2020, pp. 530–531.

[24] R. Emiliano and M. Antunes, “Automatic Network Configuration in
Virtualized Environment using GNS3,” in 2015 10th International
Conference on Computer Science & Education (ICCSE). IEEE, 2015,
pp. 25–30.

[25] A. Hagberg, P. Swart, and D. S Chult, “Exploring Network Structure,
Dynamics, and Function using NetworkX,” 1 2008. [Online]. Available:
https://www.osti.gov/biblio/960616

[26] N. Rodday, L. Kaltenbach, I. Cunha, R. Bush, E. Katz-Bassett, G. D.
Rodosek, T. C. Schmidt, and M. Wählisch, “On the Deployment of
Default Routes in Inter-domain Routing,” in Proceedings of the ACM
SIGCOMM 2021 Workshop on Technologies, Applications, and Uses of
a Responsible Internet, 2021, pp. 14–20.

[27] L. Gao and J. Rexford, “Stable Internet Routing Without Global Coor-
dination,” in Proceedings of the 2000 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, 2000,
pp. 307–317.

[28] F. Soppelsa and C. Kaewkasi, Native Docker Clustering with Swarm.
Packt Publishing Ltd, 2016.

[29] K. Ishiguro, “Gnu Zebra,” 2002. [Online]. Available: https://www.gnu.
org/software/zebra/

[30] T. Petric, “Running 1,000 Containers in Docker
Swarm,” 2017. [Online]. Available: https://www.cloudbees.com/blog/
running-1000-containers-in-docker-swarm

[31] N. Rodday, Í. Cunha, R. Bush, E. Katz-Bassett, G. D. Rodosek, T. C.
Schmidt, and M. Wählisch, “Revisiting RPKI Route Origin Validation on
the Data Plane,” in Proc. of Network Traffic Measurement and Analysis
Conference (TMA), IFIP, 2021.

[32] National Institute of Standards and Technology (NIST), “Internet Tech-
nologies Research Group,” 2023. [Online]. Available: https://www.nist.
gov/ctl/wireless-networks-division/internet-technologies-research-group

5

2023 19th International Conference on Network and Service Management (CNSM)

