
Deep Reinforcement Learning based Command
Control System for Automating Fault Diagnosis

Hiroshi Yamauchi
Research Institute of Advanced Technology

SoftBank Corp.
hiroshi.yamauchi@g.softbank.co.jp

Tatsuaki Kimura
Faculty of Science and Engineering

Doshisha University
kimura@mail.doshisha.ac.jp

Abstract—Due to the recent growth of network services of
telecommunication carriers, their communication networks have
become increasingly large and complex, and their network
operations have also become complicated. For this problem, fault
diagnosis and anomaly detection using log data of network de-
vices (e.g., router syslog) have been extensively studied. However,
there has been little research on automating the fault diagnosis
of failures that are reported by users and whose causes do not
appear in logs. In this paper, we propose a deep reinforcement
learning (DRL)-based command control system for automating
fault diagnosis of communication services. The proposed system
first runs a sequence of device commands (e.g., show interfaces)
for fault diagnosis on network devices, and estimates the fault-
type based on the output of the commands using a supervised
classifier. The sequence of device commands executed on network
devices is optimized by DRL to identify the fault type with the
least number of device commands. We evaluate the proposed
system using real data obtained from a commercial service
network and demonstrate its accuracy and effectiveness.

Index Terms—Deep reinforcement learning, network operation
automation, fault diagnosis

I. INTRODUCTION

In recent years, with the rapid expansion of information
and communication technologies and services aimed Beyond
5G/6G, the networks of telecommunication carriers are be-
coming significantly more complex. Ultra-high-speed wire-
less transmission technologies, realized by Beyond5G/6G and
edge computing technology, combined with powered by high-
performance computing, enable the construction of a data-
driven social environment where virtual and physical spaces,
such as digital twins. Further discussions are accelerating
toward the effective utilization and progress of information
and communication technology.

The demands for telecom carriers as a lifeline are becom-
ing increasingly significant. Concurrently, due to the diverse
service development and network expansion, the network
becomes large-scale and complex, which makes the network
operation tasks, such as fault detection and fault diagno-
sis, significantly more complicated. Meanwhile, in the realm
of network interoperability between enterprises, there is a
demand for the realization of scalable and highly reliable
operation technologies.

Due to the development of foundational technologies such
as network virtualization, microservices, and artificial in-
telligence operations (AIOps), network operation tasks that

have been performed on individual network devices are now
possible to be managed, through centralized controller. This
allows for the exploration of automating network operations
that have been done manually and the flexible interoperability
of network operations using external public interfaces between
enterprises.

Therefore, there has been active research into technolo-
gies for fault diagnosis and anomaly detection using logs
of network management systems (NMSs) [1] [2]．Addition-
ally, methods to automate fault diagnosis tasks based on
information from fault diagnosis history are being actively
studied. Various efforts have been undertaken, such as feature
extraction based on syntax discrimination in templates and
parameters from syslog [3] [4] [5], and realizing machine
learning processing while cross-referencing the supervision
information from other systems, such as the trouble-ticket
system [6].

However, there are no active methods that aim to automate
fault diagnosis tasks, i.e., identifying the root cause of a
fault by logging into network devices and executing device
commands (e.g., show interfaces) to obtain the detailed status
of network devices and checking their health. Particularly for
faults that cannot be detected by logs, such as Syslog, and are
instead identified through user reports, these fault diagnoses
can involve complex procedures and substantial management
resources, leading to prolonged periods of malfunction. There-
fore, automation of this process is crucial.

In this study, we propose a deep reinforcement learning
(DRL) [7] based command control system for automating fault
diagnosis tasks in network operation. The proposed system au-
tomatically identifies the type of failure reported by a customer
by executing a minimal series of device commands. When a
customer reports the unavailability of a network service, the
proposed system first automatically executes a series of device
commands on the network devices that comprise the network
service. By converting the output of the device commands to
a feature vector, the proposed system then estimates the fault
type using a supervised classifier. DRL optimizes the sequence
of device commands executed on network devices to identify
the fault type with the least number of device commands.
We evaluate the accuracy of the fault type estimation and the
effectiveness of the optimal device command sequence using
real data obtained from an actual commercial network.

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP



Fig. 1. Trouble-shooting workflow of service failure

Fig. 2. Confirmation rules using device commands in each network

II. TYPICAL FAULT DIAGNOSIS PROCESS IN TELECOM
CARRIER NETWORKS

We describe a typical procedure for fault diagnosis in
a network operated by a telecom carrier. Fig.1 depicts the
overview of this procedure. First, when a user detects a
communication service failure, they report it to the customer
support office with the service ID assigned to each user’s
location as the key. The network operator determines the net-
work devices constituting communication service and remotely
logs into each device. Then, the network operators execute a
set of device commands to obtain the detailed status of the
network devices. Typically, network operators have manually
constructed confirmation rules for device commands to quickly
check the health of network devices from the complicated
outputs of the device commands. For example, the output of

Fig. 3. Automatic device command control system

the show interface command shows whether the interface is up
or down, and the output of the ping command shows whether
the ping rate has exceeded a threshold value. By combining the
results of checking the output of device commands with expert
knowledge, the network operator can manually identify the
root cause of the fault. Then, they arrange workers for failure
recovery or instruct on-site recovery work and confirmation of
normality between the terminals used by the worker using the
failure diagnosis system.

Fig.2 shows examples of information related to fault diag-
nosis tasks that can be checked by executing device commands
on various network devices and using confirmation rules. Note
that the executed device commands for failure diagnosis vary
by device and failure type because the information obtained
from their output also varies by device command. Therefore,
in order to perform fault diagnosis, a suitable set of device
commands needs to be selected and executed. Because there
are a large number of device commands for each device and
their outputs are complex text messages, failure diagnosis is
a complicated task dependent on the expert knowledge of
network operators.

III. PROPOSED SYSTEM

In this section, we explain the proposed deep reinforcement
learning-based command control system for automating fault
diagnosis.

A. Overview

The overview of the proposed system is depicted in Fig.3.
When receiving a report from a user that a communication
service is not available, the proposed system first retrieves the
detailed information of the network devices that constitute the
unavailable services (e.g., IP address, interface information,
configuration). The command control unit then logs into
each device and executes a set of device commands that
are suggested by the learning model unit for checking the
details status of devices. The outputs of the device commands
are aggregated and converted into a feature vector by the
pre-processing unit and stored in the database unit. Stored
data is updated by regularly labeling the feature vector data
for unknown patterns related to failure events. Then, the
proposed system estimates the fault type of the feature vector
using a supervised classifier. The optimal sequences of device

2023 19th International Conference on Network and Service Management (CNSM)



commands for each failure type can successfully identify the
fault type with the minimum number of device commands
based on DRL.

B. Fault Type Estimation by Supervised Classifier

In this section, we describe the fault-type estimation method
based on a supervised classifier. First, we explain how to
construct the feature vector used for fault-type estimation. It
automatically executes a series of commands for each device
where a fault is reported. The proposed system automatically
matches each pre-defined confirmation rule (see Sec. II) to the
output of each device command and classifies each output as
0 (normal) or 1 (abnormal). The proposed system combines
these confirmation results of device commands obtained from
all network devices related to the failed network service. As
the types of device commands executed for each network
device vary and each user has different network devices, the
dimension of the feature vector is the total number of device
commands for all network devices to unify the dimensions of
the feature vector for different users. Using the feature vectors
of labeled service fault diagnosis datasets as training data, we
perform supervised machine learning to estimate the fault type
of each feature vector.

C. DRL-based optimal device command sequence generation

In the proposed system, the sequence of device commands
that are executed on network devices is optimized by DRL to
minimize the number of executed commands. Reinforcement
learning [8] is a method of machine learning that observes the
current state of a certain environment and decides what actions
should be taken to maximize the cumulative reward obtained.
DRL is an effective approach for large-scale complex state-
action spaces with deep neural networks. The trained model
is then sequentially fed with state vectors to obtain an optimal
sequence of actions. The value network Q is given by,

Q(st, at) = rt + γT (st+1, at+1) (1)

where st and at denote state and action at time slot t. The
value network Q is obtained from the sum of the immediate
reward r and the product of the delayed reward estimated by
the target function T discount factor γ.

Following the pseudo-code of DRL shown in Fig.4, an agent
executes appropriate commands and advances learning while
updating the state for all fault cases as episodes repeatedly
for iteration time. We prepare the token as a state vector s
with the total number of commands as its dimension, action
a, and reward r combined with the count of state history.
In this experiment, an immediate reward of 100 was given
when a command judgment abnormality was detected. While
caching tokens up to the buffer size of replay memory D
and performing random sampling c, the delayed reward is
estimated based on the selected token using the target-network
T with weight θ′. Additionally, the weight θ of the value-
network Q is updated based on the updated state s, action a,
and reward r optimizing by using stochastic gradient descent

Algorithm 1 DQN-based device command sequence genera-
tion

1: Initialize replay memory D.
2: Initialize value-network Q with random weight θ.
3: Initialize target-network T with random weight θ′.
4: Initialize action set A with zero.
5: for iteration=1, 2, . . . , N do
6: for episode=1, 2, . . . , M do
7: if ϵ < random number between 0 and 1 then
8: select a random action at from A
9: else

10: select argmaxQ(st, at, θ)
11: end if
12: Execute action at and observe immediate reward rt

and next state st+1.
13: Store transition (st, at, rt, st+1) in D.
14: Select randomly samples c(sj , aj , rj , sj+1) from D.
15: Update A for at
16: Update weights according to Eq.(2)
17: end for
18: T := Q.
19: end for

Fig. 4. Pseudo-code of DQN-based device command sequence gen-
eration

with respect to the network parameter to minimize the loss
function L(θ) as follows:

L(θ) = [rt + γmax
at+1

T (st+1, at+1; θ
′)−Q(st, at; θ)]

2 (2)

Action policy follows the ϵ-greedy policy with probabilities
ϵ that decay as the steps progress. In this study, we update
the value network Q at each command execution step, but the
target network T is updated only after each fault case has been
fully explored.

IV. EXPERIMENTS

In this section, we present the evaluation results of the
failure type estimation function using a supervised classifier
and the optimal device command sequence using DRL.

A. Dataset

For the evaluation experiment, we use real data obtained
from a commercial service network composed of three core
networks and one area access network, as shown in Fig.5.
The data includes trouble ticket information for each fault
that includes the detailed fault diagnosis process accumulated
in the fault diagnosis system of this network for the past 6
months. Each log was extracted and labeled by comparing it
with the fault reporting ticket. A 121-dimensional feature vec-
tor was constructed to represent the types of device commands
related to the service accommodation devices that compose

2023 19th International Conference on Network and Service Management (CNSM)



Fig. 5. Service network configuration

Fig. 6. Service Fault Diagnosis Dataset

TABLE I
FAILURE TYPE

ID Failure Type Number of Data
1 Error detection at edge router 28
2 Optical power failure at terminal on user site 35
3 LAN interface failure at terminal on user site 53
4 Optical signal degradation on subscriber segment 15
5 WAN interface failure at terminal on user site 59
6 Configuration error at equipment on station 13
7 Interface error on central relay section 49
8 Packet error on central relay section 33
9 Device error at equipment on station 13

each network. However, each component of the feature vector
represents a normal result as 0 and an abnormal result as 1 in
the confirmation result of the device command. Of the 5,200
feature vectors obtained, there were 300 unique feature vector
patterns, so the 300 fault events corresponding to this feature
vector were used as input data in the evaluation experiment.

Fig.6 shows the visualization results of the feature vectors
corresponding to the final 300 fault events obtained. The
horizontal axis represents the type of device command, the
vertical axis corresponds to each fault event, and each point
in the graph represents a case where the confirmation result

TABLE II
ACCURACY OF FAILURE TYPE ESTIMATION

Model A B C D E2E
Multi-layer perceptron 40.4 10.0 10.4 80.3 82.4
Perceptron 37.5 10.0 11.0 70.2 74.0
Support vector machine 32.4 30.0 0.0 78.0 79.3
Random forest 40.8 20.0 12.5 80.4 81.3
Logistic regression 34.4 18.7 0.0 80.9 81.0
CART 40.6 12.5 0.0 71.9 77.7
XGBoost 43.8 6.3 0.0 81.8 82.3

of the device command was determined to be abnormal. The
color shows the failure type label. From the figure, it can be
seen that there are specific device commands involved in many
fault events and that device commands from multiple networks
are involved simultaneously, depending on the fault event.
Next, Table I shows the failure type labels of communication
services defined in advance for the network configuration to
be evaluated. Each element of the table shows the label ID, the
failure type, and the number of failure events corresponding
to each failure type. For each extracted failure event and the
corresponding feature vector, the defined label ID was assigned
to construct a labeled failure event dataset.

B. Evaluation of Failure Type Estimation

We conducted an evaluation experiment for fault-type es-
timation using a labeled fault event dataset and seven types
of machine-learning models. In this evaluation experiment,
we used seven types of machine-learning models: multi-layer
perceptron [9], support vector machine, perceptron, logistic
regression, random forest, CART, and XGBoost [10]. The
fault-type estimation accuracy was calculated as the proportion
of the total fault events that correctly estimated the fault-
type labels. The estimation accuracy evaluation was conducted
using cross-validation with a split number of 8 for each
machine-learning model. Furthermore, in the parameter set-
tings for the multi-layer perceptron, the number of nodes in the
intermediate layers was set to 800, 800, and 800 for a three-
layer structure, and the activation function used was ReLU
(Rectified Linear Unit).

Table II shows the evaluation results for fault-type es-
timation in each machine-learning model. The evaluation
was conducted for the feature vectors corresponding to each
network (core A, core B, core C, area access D) and to
the end-to-end (E2E) configuration. The following discusses
the experimental results. In terms of fault-type estimation
accuracy using machine learning models in the end-to-end
configuration, the multi-layer perceptron and XGBoost showed
high estimation accuracy. The estimation results for end-to-end
(E2E) were better than the estimation results for individual
network features. This showed that high estimation accuracy
can be obtained as a fault diagnosis system by characterizing
the states of each device that accommodates communication
services across multiple networks when extracting feature
vectors from each fault event.

2023 19th International Conference on Network and Service Management (CNSM)



Fig. 7. Transition of Q-value

C. Evaluation of optimal device command sequence

Next, we evaluate the exploration of device command
sequence generation based on DRL. Fig. 7 shows the eval-
uation results for the Q-value transition of DRL. The Q-value
increases for each training episode, allowing us to observe
the progress of learning. Fig. 8 shows the comparison results
of the exploration score of command sequence generation
methods using DRL, Q-learning as baseline method, and
random selection. Random selection is conducted by executing
each step by randomly selecting all commands in such a way
that they do not repeat. Each curve represents the distribution
of the exploration score that was performed 1000 times
for each method, and the good characteristics have a large
distribution at smaller values. The exploration score denotes
the convergence efficiency to the correct class and is obtained
by dividing the number of steps taken to converge to the final
class after executing the final command by the total number of
commands to normalize. For each step of sequential command
execution, the estimation is conducted using the learned model
of fault-type estimation created above.

As a result of the experiment, the exploration performance
of the DRL model was found to be significantly superior.
The learning ability to consider a large past state-action space
compared to Q-learning contributes to remarkable performance
improvement.

V. CONCLUSION

In this study, we proposed a system that utilizes deep
reinforcement learning to automate device command control
related to the diagnosis of communication service failures. We
built a dataset for the training data using failure diagnosis logs
in commercial service networks and conducted experimental
evaluations of the failure type estimation function through the
supervised classifier, confirming the superiority of estimation
accuracy with multi-layer perceptron and XGBoost. Further-
more, for the optimal search function to diagnose service

Fig. 8. Efficiency of optimal command control

failures using commands, we evaluated the acquisition of
optimal command sequences, confirming the superiority of
deep reinforcement learning.

In the future, we will investigate more performance im-
provements related to learning efficiency and performance
enhancement using multi-agent learning and quantum machine
learning algorithms on a larger dataset.

REFERENCES

[1] T. Qiu, Z. Ge, D. Pei, J. Wang, and J. Xu, “What happened in my
network: Mining network events from router syslogs,”in Proc. of IMC.
ACM, 2010, pp. 472–484.

[2] C. R. Kalmanek, I. Ge, S. Lee, C. Lund, D. Pei, J. Seidel, J. E. Merwe,
J. Yates, “Darkstar: Using exploratory data mining to raise the bar on
network reliability and performance,” in Proc. DRCN, October 2009,
pp. 1-10.

[3] W. Meng, Y. Liu, S. Zhang, F. Zaiter, Y. Zhang, Y. Huang, Z. Yu,
Y. Zhang, L. Song, M. Zhang, and D. Pei, “Logclass: Anomalous log
identification and classification with partial labels,”IEEE Trans. Netw.
Service Manag., vol. 18, no. 2, pp. 1870–1884, 2021.

[4] S. Huang, Y. Liu, C. Fung, R. He, Y. Zhao, H. Yang, and Z. Luan,
“HitAnomaly: Hierarchical transformers for anomaly detection in system
log,”IEEE Trans. Netw. Serv. Manag., vol. 17, no. 4, pp. 2064–2076,
2020.

[5] T. Kimura, K. Ishibashi, T. Mori, H. Sawada, T. Toyono, K. Nishimatsu,
A. Watanabe, A. Shimoda, and K. Shiomoto, “Spatio-temporal factor-
ization of log data for understanding network events,”in Proc. of IEEE
INFOCOM, 2014, pp. 610–618.

[6] T. Kimura, A. Watanabe, T. Toyono, and K. Ishibashi, “Proactive failure
detection learning generation patterns of large-scale network logs,”
IEICE Transactions on Communications, Vol. E102.B (2019), No. 2,
pp. 306-316，2018.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Pe-
tersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, D. Hassabis, “Human-level control through deep
reinforcement learning,” Nature, 518, pp. 529–533，2015.

[8] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, A
Bradford Book, 1998．

[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, vol. 1: Foundations,
Cambridge: MIT Press，1986, pp. 318-362.

[10] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system”,
in Proc. KDD，August 2016, pp. 785–794.

2023 19th International Conference on Network and Service Management (CNSM)


