
Predicting the Performance of DNNs to Support
Efficient Resource Allocation

Sarah Shah
Electrical and Software Engineering

University of Calgary
Calgary, Canada

sarah.shah1@ucalgary.ca

Yasaman Amannejad
Mathematics and Computing

Mount Royal University
Calgary, Canada

yamannejad@mtroyal.ca

Diwakar Krishnamurthy
Electrical and Software Engineering

University of Calgary
Calgary, Canada

dkrishna@ucalgary.ca

Abstract—Numerous organizations are adopting sophisticated
Machine Learning (ML) algorithms for their operations. To
ensure the optimal performance of ML systems, organizations
require insights into the response time of such systems under
realistic user workloads. However, despite the widespread adop-
tion of ML models, research on predicting the response time of
a system serving an ML model under varying resources and
user workloads is limited. In this paper, we address this gap
by proposing a modeling approach to predict response times
of multiple well-known Deep Neural Networks (DNNs) under
simultaneously varying resource settings and user workloads.
We join a classifier and a regressor to identify the optimal
resource setting for meeting a DNN’s response time target, and
to predict the response time under the allocated resource setting.
Our technique enables performance modeling without the need
to collect extensive data during system operation, thus empow-
ering pre-deployment predictions. The results demonstrate that
our approach can generalize to unseen resource and workload
scenarios, guaranteeing accurate predictions of compliance with
response time targets 98.05% of the time and offering response
time predictions with a mean prediction error of 9.10%.

Index Terms—Machine Learning, Performance Modeling, In-
ference Time Prediction, Deep Neural Networks, TensorFlow
Serving.

I. INTRODUCTION

Organizations are increasingly leveraging ML for their
operations [1]. DNNs have particularly emerged as the core to
support complex tasks such as image recognition and Natural
Language Processing (NLP). ML serving systems support real-
time ML predictions by hosting ML models on servers and
providing an API for users to use models. TensorFlow Serv-
ing [2], developed by Google, is a popular serving platform.
It offers a user-friendly interface for ML developers to serve
and update models in real time, with the ability to switch
between different model versions seamlessly. It can also be
containerized using Docker [3].

Often, DNNs are deployed for making time-sensitive de-
cisions, e.g., object detection in self-driving vehicles and
online fraud detection, thus requiring systems hosting ML
models to offer inference results within desired response time
targets. However, this can become a challenge due to varying
inference workloads. Additionally, the serving platform’s op-
eration should be cost-effective. Thus, it is crucial to allocate
resources efficiently, for instance by using container resource

allocation mechanisms [4], [5], to obtain a desired response
time without over-provisioning. However, limited research has
been conducted on predicting the performance of ML serving
systems as a function of resources and workloads.

Currently, there is limited research for predictive insights on
how to configure a DNN serving system to meet response time
targets. ML research has made progress in optimizing response
time through techniques like model pruning, quantization, and
modifying model structure [6]. These approaches reduce the
model’s size, complexity, and inference time. However, in
many cases, pre-built models are used without the option
to rebuild them for improved performance. Many existing
studies primarily focus on characterizing response times of
DNNs but lack performance modeling for future serving
scenarios. Current research on performance prediction of ML
models [7]–[9] is limited in scope or has not yielded promising
results.

We distill several requirements for an effective performance
prediction technique. Given the high likelihood of DNN serv-
ing systems encountering diverse request rates and resource
configurations, it is crucial that the performance prediction
technique demonstrate generalizability by effectively predict-
ing for unseen situations. Moreover, organizations often have
multiple DNNs hosted on their servers to perform different
tasks. Thus, having a single performance prediction model for
all deployed DNNs being served at an organization can be
advantageous. It is also beneficial to not rely on collecting
performance metrics during request inference so that predic-
tions can be offered in advance to help proactively allocate
the right amount of resources to meet a response time target.
This also avoids any overhead introduced by metric collection
during inference. Lastly, apart from guaranteeing compliance
with response time targets, a performance prediction technique
must predict system response time to facilitate tasks such as
anomaly detection and task scheduling. None of the existing
techniques for DNN performance prediction embody all of
these requirements.

Focusing on the above requirements, we aim to fill the
existing gaps in the DNN performance prediction literature
by answering the following Research Questions (RQs):

• RQ1: How do DNN response times vary based on work-
loads and resources available to the serving platform?

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP



• RQ2: Which modeling techniques can help develop a per-
formance model that can facilitate compliance to response
time targets and predict response times in a generalizable
manner for performance monitoring and regulation?

• RQ3: Can a single unified performance model effectively
predict the performance of multiple DNN types?

We answer the above questions by making the following
contributions in this paper:

• We scrutinize the impact of resource and workload factors
on the response time of different DNNs (RQ1). We
note that DNN serving systems exhibit queuing behavior
which varies across different DNNs and workloads.

• We develop a novel hybrid ML-based performance pre-
diction approach for multiple well-known DNNs that
offers accurate performance insights generalizable to un-
seen scenarios (RQ2). Our approach comprises two steps:
a classification of whether a workload under a given
resource configuration will meet the DNN’s response time
target; and if so, a prediction for the response time for that
workload under the prescribed resource configuration.
Our classifier achieves an average accuracy of 98.05%
on 6 previously unseen test sets. This classifier is then
concatenated by a regressor that predicts response times
with an average prediction error of 9.10%, thus enabling
performance decisions and regulation.

• Results indicate that our unified modeling technique is
effective for diverse DNNs (RQ3) with varying tasks,
architectures, and resource requirements.

The rest of the paper is organized as follows. Section II
offers an overview of the existing relevant literature. Sec-
tion III describes the proposed process for developing the
performance model. Section IV describes the experimental
setup and evaluation metrics. Section V describes the results
of our analysis in detail. Lastly, Section VI summarizes our
contributions and possible future extensions.

II. RELATED WORK

Most research efforts in ML inference area are focused
on inference optimization [6], [10]–[13] and characterization
[14]–[16]. Previous studies [7], [9], [17] have reported that the
inference time of ML models can vary significantly according
to the allocated resources and workloads. This makes the
building of a model to predict the inference time of ML models
to be a complex task.

We first review literature on ML serving platforms. Gujarati
et al. [18] present Clockwork, an ML serving system with
predictable performance. Clockwork ensures only a single
request is executed at a time because simultaneous executions
can make the scheduler unpredictable. Thus, it limits the
workers to execute only one request at a time in order to
maintain the predictability of the framework, at the cost of
a small decrease in throughput. Zhang et al. [19] propose
MArk that aims to minimize serving costs while respecting
SLA limits by batching inference requests and serving them
on hardware accelerators for faster inference. The prediction

system predicts anticipated workloads. The authors point out
that they do not intend to offer an optimal prediction model,
but aim to demonstrate that workload prediction can help
save costs. In contrast, our work is focused on predicting the
inference time of ML models.

We next review the performance prediction of ML inference.
Li et al. [9] study DNN inference under SLA and cost
constraints and propose an automated deployment framework
by combining Bayesian Optimization and Deep Reinforcement
Learning. They report a decrease in inference time compared
to Google’s basic device placement. Their approach works
only for cloud-based ML deployment. Moreover, they only
model CPU and GPU units as resources, excluding other
resources such as memory. Cai et al. [8] use a repository
of model variants and their performance measurements to
automatically select minimal GPU resources required to meet
an SLA during ML inference under a given workload. In
their evaluations, they show that they meet SLAs in 94.5%
of instances with a maximum prediction error of 17% for
inference time predictions. Their study is catered specifically
to GPU deployment and focuses only on image classification
models. Fu et al. [7] study the possibility of developing a
unified predictive solution for the latency of 13 non-ML and
ML applications. They employ 6 ML models as black boxes
for the performance prediction of the 13 applications under
varying input sizes, amounts of worker nodes, and types of
worker nodes. The paper reports that accurately predicting
the behavior across diverse applications was a challenge with
prediction errors reaching as high as 128.6%. Consequently,
the paper concludes that developing a single performance
prediction model for multiple applications is a challenge.

From the discussions above, we note that there is a gap
in the literature for generalized accurate prediction models
for DNN inference. We need these performance models to
make the necessary allocation of resources for inference time
targets to be met under diverse request rates. While the studies
mentioned above do attempt to provide predictive models for
DNNs, they are either unable to reach prediction errors low
enough to be pragmatically used, or are centered around a
particular type of resource or ML task.

III. METHODOLOGY

We undertake a systematic investigation of the performance
of different DNNs. We study their inference times with respect
to 5 predetermined external parameters which are anticipated
to influence DNNs’ performance in real-world scenarios.
These parameters are known prior to serving a DNN and
before any inference requests are made. These include the
DNN being served (DNN Name), the processors allocated to
the container serving the DNN (Processors), the memory
allotted to the container (Memory), the number of payloads
in the inference request(s) (Payload Instance), and the rate
at which those requests are sent (Rate). Rate signifies the
number of requests sent to the DNN server per second, hence
dictating the number of concurrent requests handled by the
DNN at a given time. Payload Instance refers to the data sent

2023 19th International Conference on Network and Service Management (CNSM)



within a request for inference. Rate and Payload Instance and
describe the workload sent to the server, whereas Memory
and Processors describe the resources used to serve that
workload.

We aim to develop a performance model that represents the
response time of DNNs by employing diverse ML algorithms.
Specifically, we employ ML algorithms to capture the response
times of ML models served on TensorFlow Serving. However,
considering the limitations in accuracy found in previous
approaches [7] that treat ML as a black-box for performance
modeling, we adopt a systematic and incremental approach to
develop our ML-based performance model, with the goal to
predict performance such that response time targets may be
met while guaranteeing effective performance monitoring and
regulation.

Organizations typically require response time information to
ensure compliance with stakeholder and user-specified dead-
lines. Therefore, our primary goal is to model the likelihood of
meeting a predefined response time target instead of directly
predicting the response time. By framing the problem as a
classification task, we determine whether a specific workload
will satisfy a predefined response time threshold given a
particular resource configuration.

Fig. 1. Decision process using the proposed hybrid model

While predictions for compliance with response time targets
could be enough to deploy a model on a serving platform
with just the right amount of resources, accurate response time
predictions are still crucial for monitoring and improving the
system’s performance. Therefore, we propose a hybrid model-
ing technique where we concatenate a classification-based SLA
compliance prediction model with a regression-based response
time prediction model, as depicted in Figure 1. The classifier
determines whether a specific DNN will complete a request
within the response time target specified by a predefined SLA,
given a particular workload and resource configuration. If
determined that the response time target will be met, the
regression model predicts the expected response time for the
DNN to handle the workload under the classifier-prescribed
resource configuration. While the SLA-compliance prediction
assists in appropriate resource allocation to ensure adherence
to the response time targets, the response time predictions aid
in making a variety of important run-time decisions, such as
task scheduling to ensure SLA compliance for all tasks within
the system, early identification, relocation, and cancellation of
tasks with abnormally high response times, and response time
target adjustments. Empirically, we noticed this two-pronged
hybrid approach to be more accurate than directly predicting
response times.

We train 8 different ML algorithms described in Sec-
tion IV-C and fine-tune the algorithm that is most effective for
modeling our data. Our objective is to create a performance
model capable of providing predictions for resource-workload
scenarios that have not been previously encountered (RQ2).
In real-world deployment environments, resource allocation is
often determined by incoming workloads and the defined re-
sponse time targets for each DNN inference. It is possible that
the DNN has not previously experienced certain workloads
as well as the resource settings used to serve those work-
loads. Therefore, as a final step of building our performance
model, we evaluate the proposed hybrid ML-based solution
through 6 rounds of generalizability testing. We utilize 6 test
datasets comprising combinations of Memory, Processors,
and Payload Instance that have not been encountered by the
performance model during training or validation. The selection
of the 6 test sets strategically introduces randomization into
our testing scenarios, while also ensuring the inclusion of a
diverse range of combinations for each variable. Additionally,
each test set encompasses data across all rates, allowing us
to extensively evaluate the model’s generalizability in various
parts of the input feature space. We qualify our performance
prediction model by reporting the evaluation metrics defined
in Section IV-C for the classifier and regressor outputs.

IV. EXPERIMENT SETUP

A. Experiment Testbed

We have collected all our data by hosting TensorFlow
Serving containers on a local server. The server is running
with Ubuntu 22.04. It is equipped with 12 Intel(R) Xeon(R)
CPU E5-2609 v3 processors running at 1.9 GHz and 66 GB
of memory. We use TensorFlow Serving version 2.8.2 with
Docker version 20.10.18 on this server to collect all our data.
We use another machine that is connected to our server through
an Ethernet link to set up our load generator. This machine
also works with Ubuntu 22.04. It is equipped with 24 Intel(R)
Xeon(R) CPU E5645 processors running at 2.4 GHz and 66
GB of available memory. We use httperf [20] version 0.9.1 as
our load generator to send requests at customized rates to the
server machine and collect the average response time for each
experiment.

B. Data Collection

We emulate a realistic ML deployment scenario by varying
workloads and resources simultaneously and switching ser-
vices, i.e., DNNs, to collect response time data for different
DNNs. We run 3 DNNs, namely DistilBERT, BERT, and a
Convolutional Neural Network (CNN) model for classifying
images from the MNIST dataset [21]. The last model is
referred to as MNIST-CNN in this paper. The former two
models are NLP models that classify text sentimentally, while
MNIST-CNN classifies images. Each model is very different
from the others in architecture, computation time, resource
utilization, and input format.

Each data collection session runs for at least 1 minute,
during which a DNN is served in a TensorFlow Serving

2023 19th International Conference on Network and Service Management (CNSM)



container which is allocated a specific amount of processors
and memory, and receives requests containing a specified
quantity of payload instances at a specified rate from the load
generator. The requests are sent at a specific rate with an
exponential distribution of inter-arrival times. While we use
the exponential distribution in our study, a distribution that
reflects historical trends could be used by practitioners to train
the predictive model in production scenarios. To collect our
dataset, the processors are varied at three levels: low, medium,
and high, which correspond to a quarter of the overall capacity
(3 processors), half of the overall capacity (6 processors), and
full capacity (12 processors), respectively. Similarly, memory
is also varied at the same three levels i.e., low (11 GB),
medium (22 GB), and high (44 GB). We vary the payload
by adding 1, 2, or 3 data instances in the requests sent to
the server, which we also refer to by the three levels of low,
medium, and high, respectively. The default scenario in the
experiments consists of requests with one payload instance
served using the high memory and processor allocation. The
rate varies from 1-100 requests per second for the NLP
DNNs, but for the MNIST-CNN, it varies between 1 − 500
requests per second because of its relatively low computational
requirements. These rate ranges help gather experimental data
at a variety of workloads and stress levels.

For classifying whether the DNN response time data will
meet SLA stipulated response time targets under various
workloads and resource settings, we define 5 targets of 0.5,
1, 10, 20, and 30 seconds. While 30 seconds might be a very
high target, these response time targets were chosen to have
a fair distribution of data samples that meet or exceed each
target, since our dataset consists of many samples with very
high response times observed under heavy workloads. For each
target, we transform our dataset to include a new label column
that contains 0 or 1 to indicate if or not the response time
exceeds that target. On average, for the 5 response time targets
across all 6 unseen test sets, we observe the response time
targets being met in nearly 69% of the instances.

C. Evaluation Metrics and Primary Algorithms for Modeling

During the modeling process, we explore 8 ML algorithms
for predicting DNN response time. These include Support Vec-
tor Machines, Random Forests, Decision Trees, Elastic, and
Ridge Regressors, Adaboost, Gradient Boosting, and Extreme
Gradient Boosting. All of the above ML algorithms were used
to develop, tune, and evaluate response time prediction models
using Python 3.10.12 in Google Colaboratory. We use an 80-
20 split between training and test data for each model and
explore experimentation of its hyperparameters to complete
the preliminary evaluation of the suitability of each algorithm
for our data. After the initial evaluation of these models on
the collected data, we notice that Random Forest and Decision
Tree Regressors are suitable algorithms for the data. Therefore,
in Section V, we utilize Random Forest and Decision Tree
Regression algorithms, fine-tuning them to achieve optimal
prediction outcomes. Furthermore, for the classification task,

we also solely concentrate on employing the Decision Tree
and Random Forest classifiers.

For evaluating our classification task, we report two primary
metrics, accuracy and f-score, which are standard for evaluat-
ing ML classification and ensure correctness and unbiasedness.
We aim to ensure high accuracy and f-score. For evaluating
the regression task, we use the Mean Absolute Percentage
Error (MAPE) metric. MAPE calculates the average relative
error between the measured response time and the predicted
response time across all 6 test cases.

V. RESULTS

A. Impact of Experimental Features

We begin by closely studying the impact of each experi-
mental feature on the 3 DNNs. Our goal is to discover the
individual contribution of each feature and gain a comprehen-
sive understanding of the relationships between these features.

1) Impact of Rate: The primary objective of our antici-
pated performance model is to predict the performance of a
realistic deployment setup for DNNs that is subject to varying
workloads throughout the day. We investigate the impact of
the request rate as a key feature. Intuitively, a higher rate
of incoming requests leads to longer response times due to
increased queuing for server resources. From Figure 2, the
response time for each DNN increases non-linearly with the
request rate. Higher workloads can even cause the response
time to decrease, as observed for DistilBERT in Figure 2(a).
This occurs because the system becomes overloaded, causing
many requests to be dropped. This acts as an admission control
mechanism thereby decreasing the average response time, as
demonstrated in Figure 2(a and b). All DNNs generally exhibit

(a) Response time vs. workload rate

(b) Request serving errors vs. workload rate

Fig. 2. Response times and error rates with varying workload

a similar pattern in the response time curve with increasing
request rates, which suggests the potential for developing
a unified performance model for multiple DNNs. However,
there are significant variations in the response time of each

2023 19th International Conference on Network and Service Management (CNSM)



DNN under similar workloads and resource settings due to
differences in resource consumption for individual requests.
For example, at a rate of 1 request per second, MNIST-CNN
has an average response time of 3.3 ms, while DistilBERT has
an average response time of 106.7 ms under default feature
values. Figure 2 demonstrates that by the time DistilBERT’s
response time starts to decrease due to system overload,
MNIST-CNN’s response time has not yet begun to escalate
due to its significantly lower computational requirements.
Furthermore, the default request size for MNIST-CNN is 5.4
kB, whereas the default request size for DistilBERT is 733
bytes. This indicates that the computational complexity of a
model plays a more substantial role in determining its response
time than the size of the input processed.

2) Impact of Processors: We now shift focus to the influ-
ence of the processors allocated to the TensorFlow Serving
container on the response times of the hosted DNNs. Figure 3
presents the response times for different processor allocations,
at rates of 10, 50, and 90 requests per second, respectively,
with fixed memory and payload. As expected, increasing the
number of processors assigned to the container leads to a
reduction in response time. However, similar to our findings
regarding the request rate, a linear increase in the processors
does not result in a proportional decrease in response time.
Moreover, the factor by which the response time is affected
by the number of processors is not consistent across different
rates. For example, at a rate of 10 requests per second, increas-
ing the compute resources from 6 to 12 processors causes
DistilBERT to decrease its response time by approximately
40% (from 250 to 150 ms). However, at a higher rate of 50
requests per second, the decrease in response time between 6
and 12 processors is only 20%, and at an even higher workload
rate of 90 requests per second, response time only decreases
by 15%.

Moreover, we observe that at a rate of 10 requests per
second, when processors are doubled all three DNNs exhibit
distinct slopes for response time decline, i.e., they decrease
their response time by different factors. A similar observation
holds for rates of 50 and 90 requests per second, where the
higher workload amplifies the differences in behavior among
the DNNs, thus demonstrating the complexity of the DNNs’
responses to simultaneous changes in resources and workloads.

3) Impact of Memory: Memory allocation has a much
smaller effect on response time compared to processors. This
can be due to the fact that our experiments allocated a substan-
tial amount of memory to the TensorFlow Serving container,
with a maximum of 44 GB available. Even with a significant
reduction in allocated memory, a considerable amount of
memory is still available to the container. However, increasing
the amount of memory does contribute to reducing the average
response time, with the reduction becoming more pronounced
under higher workloads. Additionally, DNNs exhibit distinct
responses to changes in memory, and the disparities in re-
sponse times among DNNs become more pronounced at higher
workloads.

(a) 10 requests/second

(b) 50 requests/second

(c) 90 requests/second

Fig. 3. Response times of DNNs across processors at a fixed rate and memory

4) Impact of Payload Instance: We now examine the fi-
nal variable in this study, which is the number of payload
instances. Intuitively, as the number of payload instances in
a request increases, the processing time per request will also
increase, leading to longer response times. This is confirmed
by Figure 4, which depicts the response time of BERT for 1,
2, and 3 payload instances at a rate of 10 requests per second.
In Figure 4(a), the memory allocated to the serving container
is fixed at medium allocation (22 GB), while in Figure 4(b),
the number of processors is fixed at medium allocation of
available processors (6). Once again, we observe that varying
the number of processors has a more pronounced effect on
the response time compared to varying memory. Additionally,
we note that the change in response time is not directly
proportional to the change in payload instances. Furthermore,
the disparity in response times across different processor or
memory values amplifies as the number of payload instances
increases.

In summary, our analysis reveals the following key insights:

• While all DNNs demonstrate an increase in response time
with growing workloads and decreasing resources, each
DNN follows a unique trajectory, which is not directly
proportional to workload increase or resource decrease.

• High workloads and resource constraints can lead to
dropped requests, resulting in a deceptive decrease in the

2023 19th International Conference on Network and Service Management (CNSM)



(a) Memory fixed to half capacity

(b) Processors fixed to half capacity

Fig. 4. Response times of BERT across payload instances at fixed rate

response time curve at higher loads.
• All observations highlight the presence of a queuing

mechanism caused by resource limitations and workload
stress, leading to non-linear response time curves.

In light of these findings, it is clear that simple models are
inadequate for capturing the behavior of different DNNs under
varying resource-workload conditions.

B. Response Time Prediction

To perform the modeling tasks outlined in Section III, the
classifier and regressor models are trained using identical
datasets and evaluated using test samples that comprise 6
new previously unseen combinations of Memory, Payload
Instance, and Processors. These test sets are carefully chosen
to cover a wide spectrum of levels (low, medium, and high)
for each of the three variables, and test combinations of
these variables not encountered by either the classifier or the
regressor during the training or validation phases.

Based on the aforementioned testing approach, the classifier
exhibits an average accuracy of 98.05% across all 5 response
time targets defined in Section IV-B. This high accuracy
implies that one can confidently allocate appropriate resources
using this classifier to ensure meeting response time targets
based on the anticipated workload. Additionally, the classifier
achieves an f-score of 97.59%, indicating that it is not benefit-
ing from potential skews in training data. The results obtained
on the 6 distinct test sets exhibit minimal variance, as depicted
in Table I, demonstrating the consistent accuracy of the model
across various resource-workload configurations.

After obtaining a resource allocation prescription from
the classifier for an incoming workload, we can obtain a
corresponding response time prediction through the regressor

TABLE I
RESULTS OF GENERALIZED REGRESSOR AND CLASSIFIER

(AC=ACCURACY, FS=F-SCORE)

Test
Sets

Average Accuracy Per
Response Time Target (%) Avg

AC
(%)

Avg
FS
(%)0.5 s 1 s 10 s 20 s 30 s

T1 97.72 97.72 100 97.72 100 98.63 98.23
T2 100 100 97.72 97.72 100 99.09 98.42
T3 96.23 96.23 96.23 96.23 100 96.98 96.43
T4 95.45 97.72 95.45 95.45 95.45 95.90 95.52
T5 100 100 97.72 95.45 97.72 98.18 97.92
T6 100 100 100 100 97.72 99.54 99.01

TABLE II
RESPONSE TIME PREDICTION ERRORS

Test
Sets

MAPE Per Response Time Target (%) Average
MAPE
(%)

Target
0.5 s

Target
1 s

Target
10 s

Target
20 s

Target
30 s

T1 6.48 6.49 6.49 6.49 6.23 6.44
T2 4.84 3.99 5.76 6.37 6.03 5.40
T3 9.78 20.30 17.46 22.02 26.86 19.28
T4 8.96 8.65 8.65 8.65 10.31 9.04
T5 6.97 6.65 7.95 8.03 7.74 7.47
T6 6.80 6.60 6.87 7.29 7.28 6.96
Avg. 7.31 8.78 8.86 9.81 10.74 9.10

concatenated to the classifier with a MAPE of 9.10% across all
considered response time targets during the experimentation.
Table II shows the MAPE values observed on the 6 test sets
against the 5 response time targets. Upon further analysis of
the results obtained across the test sets, we are unable to track
any particular pattern for certain resource configurations or
workloads that result in higher prediction errors for all DNNs.
However, we do note that generally, higher prediction errors
result when the response time of a DNN is unusually high,
and consequently, considerably unpredictable.

We also observe a correlation between the response time
targets and the prediction errors observed against them. No-
tably, the MAPE exhibits a gradual increase as the response
time target rises. This can be attributed to the fact that setting
higher response time targets entails a greater likelihood of data
samples with prolonged response times to be predicted by the
classifier to meet the response time target, thereby increasing
the high response time data samples used for response time
prediction. Given the inherent difficulty in modeling higher
response times for each DNN, the prediction error escalates
for higher response time targets. These error trends can guide
us in setting an upper limit for the response time target for each
DNN task. For instance, if we aim for the prediction technique
to maintain MAPE within 10% given the observations noted
in Figure 5, it is imperative to set the response time target
for each DNN below 30 seconds (or even below 20 seconds
to allow a margin of error) and limit the incoming workloads
such that SLA violations could be minimized.

Analyzing the individual classifier and regressor models
used in the hybrid technique, we note that they adhere to
similar patterns of feature importance. DNN Name and Rate

2023 19th International Conference on Network and Service Management (CNSM)



are the most critical factors that help decide the response time.
The classifier assigns the greater significance to Rate compared
to DNN Name. The remaining three features play a relatively
minor role in the decision-making process, with Processors
being the most influential, followed by Payload Instance and
then Memory. Similarly, the regressor model follows a close
pattern, albeit with the DNN Name being the most crucial
feature, followed by Rate. This difference can be accounted
for by the difference in the objectives of the classifier and
the regressor. The response time of an individual request is
primarily characterized by the DNN itself, while the workload
rate influences the overall response time curve, as described in
Section V-A. Therefore, by incorporating Rate as the principal
feature, closely accompanied by DNN Name, the classifier can
facilitate the approximate binary determination of meeting the
response time target effectively. However, the regressor aims
to precisely model the response time in each scenario and thus
chooses DNN Name as its primary feature for decision-making.

Fig. 5. MAPE observed for all included response time targets

VI. CONCLUSION

In this paper, we propose a unified hybrid ML-based per-
formance model capable of providing predictions of response
time target compliance and response time values for various
types of DNNs operating under dynamically changing resource
and workload conditions. Our proposed performance model
utilizes features that are known prior to a DNN inference, elim-
inating the need for collecting metrics during request infer-
ence. We demonstrate the generalizability of our performance
model to unseen workloads and resource configurations.

In future work, we aim to extend our model to offer
predictions for new DNN models and hardware platforms, thus
enabling predictions for inference requests related to unseen
DNNs served on new hardware setups. These predictions
are crucial when deploying new DNNs or DNN versions or
when introducing new platforms for DNN deployment where
extensive performance data is initially unavailable. We also
plan to incorporate the influence of co-hosted DNNs within
the same serving container on the observed response times for
those DNNs.

REFERENCES

[1] “The Top 10 Tech Trends In 2023 Everyone Must Be Ready
For.” https://www.forbes.com/sites/bernardmarr/2022/11/21/the-top-10-
tech-trends-in-2023-everyone-must-be-ready-for/.

[2] “Serving Models.” https://www.tensorflow.org/tfx/guide/serving/.
[3] “Use containers to Build, Share and Run your applications .”

https://www.docker.com/resources/what-container/.
[4] X. Guan, X. Wan, B.-Y. Choi, S. Song, and J. Zhu, “Application oriented

dynamic resource allocation for data centers using docker containers,”
IEEE Communications Letters, vol. 21, no. 3, pp. 504–507, 2017.

[5] “Runtime options with Memory, CPUs, and GPUs.”
https://docs.docker.com/config/containers/resourceconstraints/.

[6] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer quanti-
zation for deep learning inference: Principles and empirical evaluation,”
arXiv preprint arXiv:2004.09602, 2020.

[7] S. Fu, S. Gupta, R. Mittal, and S. Ratnasamy, “On the use of ml for
blackbox system performance prediction,” in NSDI, 2021.

[8] B. Cai, Q. Guo, and X. Dong, “Autoinfer: A self-driving management for
resource efficient, slo-aware machine learning inference in gpu clusters,”
IEEE Internet of Things Journal, 2022.

[9] Y. Li, Z. Han, Q. Zhang, Z. Li, and H. Tan, “Automating cloud
deployment for deep learning inference of real-time online services,” in
IEEE INFOCOM 2020-IEEE Conference on Computer Communications,
pp. 1668–1677, IEEE, 2020.

[10] Z. Li, E. Wallace, S. Shen, K. Lin, K. Keutzer, D. Klein, and J. Gonzalez,
“Train big, then compress: Rethinking model size for efficient training
and inference of transformers,” in International Conference on machine
learning, pp. 5958–5968, PMLR, 2020.

[11] D. Khudia, J. Huang, P. Basu, S. Deng, H. Liu, J. Park, and M. Smelyan-
skiy, “Fbgemm: Enabling high-performance low-precision deep learning
inference,” arXiv preprint arXiv:2101.05615, 2021.

[12] Y. Li, D. Zeng, L. Gu, Q. Chen, S. Guo, A. Zomaya, and M. Guo,
“Lasagna: Accelerating secure deep learning inference in sgx-enabled
edge cloud,” in Proceedings of the ACM Symposium on Cloud Comput-
ing, pp. 533–545, 2021.

[13] S. Choi, S. Lee, Y. Kim, J. Park, Y. Kwon, and J. Huh, “Multi-model
machine learning inference serving with gpu spatial partitioning,” arXiv
preprint arXiv:2109.01611, 2021.

[14] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, et al., “Mlperf
inference benchmark,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pp. 446–459, IEEE, 2020.

[15] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, and
C.-J. Wu, “The vision behind mlperf: Understanding ai inference per-
formance,” IEEE Micro, vol. 41, no. 3, pp. 10–18, 2021.

[16] P. Ross and A. Luckow, “Edgeinsight: Characterizing and modeling the
performance of machine learning inference on the edge and cloud,” in
2019 IEEE International Conference on Big Data (Big Data), pp. 1897–
1906, IEEE, 2019.

[17] J. Hanhirova, T. Kämäräinen, S. Seppälä, M. Siekkinen, V. Hirvisalo, and
A. Ylä-Jääski, “Latency and throughput characterization of convolutional
neural networks for mobile computer vision,” in Proceedings of the 9th
ACM Multimedia Systems Conference, pp. 204–215, 2018.

[18] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vigfusson,
and J. Mace, “Serving dnns like clockwork: Performance predictability
from the bottom up,” arXiv preprint arXiv:2006.02464, 2020.

[19] C. Zhang, M. Yu, W. Wang, and F. Yan, “Enabling cost-effective,
slo-aware machine learning inference serving on public cloud,” IEEE
Transactions on Cloud Computing, vol. 10, no. 3, pp. 1765–1779, 2020.

[20] D. Mosberger and T. Jin, “httperf—a tool for measuring web server
performance,” ACM SIGMETRICS Performance Evaluation Review,
vol. 26, no. 3, pp. 31–37, 1998.

[21] “MNIST Dataset.” https://www.kaggle.com/datasets/hojjatk/mnist-
dataset .

2023 19th International Conference on Network and Service Management (CNSM)


