
BGP Control Plane Overhead in Fat-Trees: An
Analytical Approach

Leonardo Alberro
Instituto de Computación, Facultad de Ingenierı́a

Universidad de la República
Montevideo, Uruguay
lalberro@fing.edu.uy

Eduardo Grampin
Instituto de Computación, Facultad de Ingenierı́a

Universidad de la República
Montevideo, Uruguay
grampin@fing.edu.uy

Abstract—State-of-the-art Data Center Networks (DCNs)
adopt fat-tree topologies based on the original Clos networks
due to their non-blocking and constant bisection bandwidth
characteristics. Massive Scale Data Center networks comprise
thousands of switches, and demand deploying a routing protocol
to build Equal Cost Multi-Path connectivity among end nodes.
Routing protocol overhead is one of the foremost important
parameters to consider in DCN design. Existing approaches
to measuring this overhead are based on large emulations or
simulations that capture the packets exchanged under certain
scenarios and then process them to obtain this measurement.
This requires a lot of development effort and may not always
be possible at large scales. In this work, using an analytical
approach, we analyze the control plane overhead for BGP in
the data center. Our proposal manages to measure the overhead
injected by BGP in failure and recovery scenarios without the
need to develop and deploy large emulations or simulations.
The main idea is to use an analytical methodology to obtain
mathematical formulas from the expected behavior of BGP. The
results show that it is possible to adequately model the load
injected by BGP under a set of failure and recovery scenarios.
The validation was performed in a simulated environment over
the ns-3 simulator.

Index Terms—BGP, fat-tree, control plane overhead

I. INTRODUCTION

Cloud Computing is heavily based on Massive Scale Data
Centers (MSDC), which account for hundreds of thousands
of physical servers, running myriads of applications over
virtualized infrastructure. Such massive amounts of computing
instances need a large-scale connectivity infrastructure, often
referred to as Data Center Networks (DCNs), which have
evolved from typical three-tier hierarchies towards fat-tree-
based connectivity fabrics comprising thousands of commu-
nication nodes.

Due to the scale of such infrastructures, modern DCNs are
Layer 3 multi-path connectivity fabrics, where the choice of
routing protocols is a central design problem. There are two
families of approaches to managing routing in these infras-
tructures: centralized, using some variant of Software Defined
Networking (SDN), or distributed, using routing protocols.
Managing network routing at large scales in MSDC networks
is a significant challenge. For this reason, the industry has
opted for distributed protocols, adapted to minimize conver-
gence times in case of failures. In this sense, Border Gateway

Protocol (BGP) [1] with specific data center extensions has
proven to provide scalability and reliability, together with
operational efficiency in real-world working environments [2],
exhibiting a better performance than alternative proposals such
as Link-State IS-IS with flooding reduction [3], and Routing
in Fat Trees (RIFT) [4], as measured in our previous work
over an emulated environment [5] for large-scale topologies.

Some desirable characteristics of routing protocols are fast
convergence and low control plane traffic overhead. The
design guides for BGP in the data center, favor fast con-
vergence, but the question concerning protocol “chattiness”
remains. Control plane analysis is usually accomplished by
formal methods or experimentation using large emulations or
simulations. Those extensive emulations or simulations cap-
ture packet exchanges in specific scenarios and subsequently
analyze them to obtain the desired measurement. However,
that approach demands substantial development efforts and
may not always be feasible for large-scale deployments. In
this work, we use an analytical approach to study the BGP
control plane overhead, and we compare it with experiments
carried out over the ns-3 simulation environment [6]. This
analytical approach was introduced in [7], seeking to validate
the software port of the Free Range Routing (FRR) protocol
suite to the ns-3 network simulator. A comprehensive analysis
of network failures in data centers is presented in [8]. This
inspired us to consider that the most stressful events for
routing protocols in operational networks are the failure and
recovery of network elements.

Considering BGP, its reaction to events is the emission
of Update messages (either withdrawals or advertisements of
routing prefixes); therefore, counting Updates is needed to
measure protocol overhead. In this regard, the main contri-
butions of the present work are i) a methodology for counting
Updates and ii) the analysis of protocol overhead under a
complete set of use cases, which comprises Leaf, Spine, and
Core failure and recovery, validated in realistic scenarios up
to 1125 nodes over the ns-3 simulator.

The rest of the article is structured as follows: Section II
presents the main aspects of routing in large-scale data centers.
Then, in Section III, we present the analysis and results of
BGP’s behavior under a set of use cases. These results are
validated and discussed in Section IV. Finally, in Section V,

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP



both the main conclusions and future work are presented.

II. ROUTING IN LARGE-SCALE DATA CENTERS

State-of-the-art DCNs are fat-tree fabrics running a rout-
ing protocol that builds multi-path connectivity support for
application traffic in the data center. This section will briefly
analyze fat-tree characteristics and the BGP routing protocol
in this context.

A. Fat-tree topology
A fat-tree data center topology is a special case of a Clos

non-blocking network [9], with constant bisection bandwidth
between every pair of leaves (data center servers). The fat-
tree topology idea was originally proposed for supercomput-
ing [10] and was adapted for data center networks [11]. A
fat-tree topology can be characterized in terms of the number
of Points of Delivery (PoD)s [12]; a PoD is a section of
the topology where the leaves are connected. The topology
consists of k PoDs with two layers of switches, Leaf and
Spine, densely connected to a third layer, the Core switches
(also known as Top of Fabric - ToF switches). Each Core
switch is connected to every one of the k PoDs. Therefore,
in a k PoD fat-tree topology, there are k switches (each with
k ports) in each PoD arranged in two layers of k/2 switches.
The lower layer is for Leaf switches and the upper layer is
for Spine switches. Each Leaf is connected to k/2 Spines
(and vice versa). Notice that there are k/2 Leaf switches in
each of the k PoDs, adding a total of k2/2 Leaf switches
in the topology. This same reasoning can be applied to the
Spine switches, obtaining the same result. Finally, there are
(k/2)2 Core switches. Adding the numbers of each level of
the topology, it can be seen that the total number of switches
is k2 + (k/2)2 = 5/4k2. The summary of the topological
information is shown in Table I. A fat-tree topology with
k = 4 is shown in Figure 1.

TABLE I
FAT-TREE TOPOLOGY SUMMARY [12]

Number of PoDs = k
Core Switches (k/2)2

Spine Switches k2/2
Leaf Switches k2/2
Total Switches 5k2/4

Number of Links k3/2

Fig. 1. Fat-tree topology with k = 4.

B. BGP in the data center

BGP is the routing protocol of choice for large-scale data
centers, among other reasons, for scalability, controlled control
plane flooding, and, most importantly, stable and mature
implementations. This specific use of BGP is specified in [13],
where the operational experience in designing and operating
large-scale data centers using BGP as the only routing protocol
is reported, together with specific extensions for this particular
domain.

For example, in inter-domain routing, the emphasis is
often placed on stability rather than immediate notification of
changes. Therefore, BGP speakers typically hold off sending
notifications about changes for a while; take, for instance, the
enormous amount of research on route dampening and BGP
timer settings, particularly the Minimum Route Advertisement
Interval (MRAI). In contrast, in large data center networks,
operators want routing updates to be sent as fast as possible.
Regarding best path selection, whereas in the inter-domain
routing, BGP speakers build a single best path when a prefix
is learned from many different Autonomous Systems (ASes),
in the data center networks, multiple path selection is needed
to take advantage of fat-tree bandwidth aggregation.

Thus, the specific configuration of BGP for the data center
covers the following aspects:

• External BGP (eBGP) is preferred over Internal BGP
(iBGP). Although in a data center, the entire network
management is under a single administrative domain (and
the use of iBGP seems natural), eBGP is preferred since it
is simpler to understand, deploy, and configure, especially
for multi-path support.

• Only private ASN should be used. The use of public
ASNs could, for example, cause ambiguity in tools that
attempt to decode the ASNs into meaningful names.

• The 4-byte ASN address space [14] is preferred. In large-
scale data centers, it is necessary to have support for more
than 1024 ASes (provided by the original 2-byte ASN).

• A practical guideline for ASN assignment should be
followed. While it may seem logical to assign a unique
ASN to each router, this approach can introduce the
path-hunting problem. This problem is a variation of
the count-to-infinity issue encountered in distance vec-
tor protocols [15]. In the path-hunting problem, routers
continuously exchange routing information and update
their path costs based on the received information. This
process can create a loop where routers keep searching
for better paths, resulting in excessive network traffic and
instability. To avoid this problem, the practical guideline
for ASN assignment in a fat-tree topology is the fol-
lowing: (1) Each Leaf node is assigned a distinct ASN;
(2) Spines in the same PoD have the same ASN that is
different for each PoD; (3) All ToFs share the same ASN.

• The BGP decision process must only consider the
AS PATH.

• It is worth considering relaxing the strict requirement
in BGP that ASNs within the AS PATH must match ex-

2023 19th International Conference on Network and Service Management (CNSM)



actly. To support Equal Cost Multi-Path (ECMP) routing,
it is beneficial to consider a group of routes for a specific
destination as equal when they share the same AS PATH
length.

Using these configuration guidelines, the fat-tree fabric
effectively gets in place multi-path routing information in
every FIB; this can be easily checked by solving the k shortest
path routing problem for the topology, using, for example, a
variant of the Dijkstra’s algorithm [16], and comparing with
the forwarding entries installed on every node by BGP after
convergence.

III. BGP UPDATES: ANALYSIS AND RESULTS

This Section describes the methodology we propose to
analyze the behavior of BGP in fat-tree data center topologies
that allows us to quantify control plane overhead for a set of
use cases. The analysis is strongly based on fat-tree regularity
and the well-known behavior of BGP, which permits the count
of the expected number of BGP Update messages injected
into the network after the occurrence of certain events. Notice
that the relevant control plane messages injected by BGP into
the network as a consequence of an event are BGP Updates.
Other types of BGP messages, exchanged independently of
the events (e.g., Keep-alive), are not considered.

Typical data center failures [8] can be used to measure BGP
reaction, while recovery tests measure how BGP reacts when
the network is back to normal operation. In this work, we
consider the following use cases:

• Node Failure: This use case is used to count the number
of Updates that BGP exchanges after failures. Such fail-
ures can occur in any type of switch within the network
topology, including Leaf, Spine, or Core switches.

• Node Recovery: This test case aims to tally the count
of Updates exchanged among the switches following the
replacement of the faulty switch with a new one. This
case also considers Leaf, Spine, or Core nodes.

Packet counting is achieved by analyzing the behavior of
BGP after the failure and recovery of a Leaf, Spine, or Core
node, expecting to obtain an analytical expression for each
case. Taking into account that the whole fat-tree topology
can be described by only one parameter (k), the analytical
expression should only depend on that k.

Before going into the use cases, let us remark that counting
Updates shall take into account a couple of well-known
characteristics of BGP. First, BGP is a path vector protocol
that suffers from the path-hunting problem (i.e., announces
partially wrong information under a failure). Second, BGP
lacks split horizon; indeed, when a BGP speaker receives an
Update from a peer and the new route is installed as the
best path after running the BGP decision process, this BGP
speaker “reflects” the Update towards the sender, which in turn
discards this announcement since it contains its own ASN, and
therefore shall be discarded by the loop avoidance mechanism.

Having clarified these aspects, we proceed to consider the
use cases. Without losing generality, the analysis assumes that
each leaf node announces a unique network prefix.

A. Failure of a Leaf node

When a Leaf node fails, the effect at the routing level
is that one prefix in the topology is no longer reachable.
Furthermore, the links adjacent to the failed node will no
longer be available for the exchange of BGP packets. Con-
sidering a chronological analysis of how prefix disaggregation
occurs, we should start by noting that the announcements are
initiated by the Spine adjacent to the fallen Leaf, which, in
the absence of BGP Keepalives messages from it, will assume
that the Leaf, and therefore, the prefix reachable through
it, is no longer available. In terms of the count of packets
exchanged after the failure, this implies that each node in the
topology would receive and send through all its interfaces
(due to the “reflection” of the Update) a Withdraw containing
the prefix that is no longer reachable, resulting in two BGP
Updates packets traveling on every link of the topology. The
total number of links before the failure corresponds to the
expression k3/2 (see Table I). Each Leaf is connected to k/2
Spines, so these links will not be considered after failure,
leaving a total of k3/2 − k/2 links. Thus, the number of
packets exchanged after the failure can be represented by the
expression 2× (k3/2− k/2) or equivalently:

k3 − k (1)

B. Recovery of a Leaf node

From a global point of view, when a Leaf recovers from
a failure it must learn the routes to the prefixes of the entire
topology, and, in addition, all the other nodes in the topology
must relearn the routes to the new prefix (remember that each
Leaf announces a different prefix). To precisely count the
number of Update packets exchanged in this scenario, we can
divide the topology links into two types: the links adjacent to
the recovered node and the rest.

• Links adjacent to the Leaf: When the Leaf node recovers
from the failure, it sends an Update to its k/2 neigh-
bors (Spines of its PoD) announcing its prefix. In turn,
these k/2 Spines recognize the prefix as new, and also
announce it to all of its neighbors: k/2 Leaves to the
South and k/2 Core to the North. In particular, if we
only consider links adjacent to the recovered Leaf, this
costs k/2 × 2 = k packets. On the other hand, the k/2
neighbors of the recovered Leaf must announce all the
prefixes they know to it, that is, k2/2−1. Finally, the Leaf
will recognize these prefixes as new and will announce
them to all of its neighbors (the k/2 Spines). This adds
(k2/2 − 1) × 2 × k/2 packets to the above cost, for a
total of (k

2

2 − 1)× k + k packets, so far.
• Rest of links: in the rest of the links in the topology, only

two packets per link are necessary, that is, each node in
the topology will receive and announce the new reachable
prefix, for all its links. One way to express this amount,
as a function of k, is by subtracting from the total number
of links adjacent to the recovered node and multiplying
this by the number of packets exchanged on each link.
This leaves us with the expression (k

3

2 − k
2 )×2 = k3−k.

2023 19th International Conference on Network and Service Management (CNSM)



Adding the previous expressions, the polynomial that char-
acterizes the packet overhead for this use case is:

3k3

2
− k (2)

C. Failure of a Spine node

Due to the location of the Spines in the topology (middle
level of the fat tree), it is possible to divide the problem
of counting packets after the failure into two sub-problems:
inside and outside the PoD of the failure.

Inside the PoD of the failure, each Leaf needs connectivity
information for the k2/2 prefixes of the topology; while
k2/2 − 1 prefixes are “external”, the remaining prefix is
directly connected to it. When the failure occurs, in this
PoD, k/2 Leaf nodes are aware of the failure (connected
to the fallen Spine). The BGP processes in each of these
Leaf switches will recompute the routes and detect that a
potential next hop is missing for each known prefix, indicating
that the routes have been updated. Consequently, for each
known prefix, they will send an Update with the routes that
were updated. In this sense, k/2 Leaf nodes send k2/2 − 1
packets (the total number of prefixes in the topology that have
lost a next hop) through their k/2 − 1 links. Then, the total
number of Update packets in the PoD of the failure is equal
to k/2× (k/2− 1)× (k2/2− 1).

Outside of the PoD where the failure occurred, the first to
notice the fallen Spine are the Cores that were directly con-
nected to it (k/2). Due to the characteristics of the topology,
these Cores have exactly one link with each PoD. For this
reason, after the failure, each of these Cores will no longer
have reachability to the prefixes of the PoD of the failure, and
therefore, they must send a Withdraw to all their neighbors
for the prefixes of such PoD (k/2 prefixes to k − 1 Spines).

Subsequently, when each Spine receives the mentioned
Withdraw, it will notice that reachability has been lost to
the announced prefixes, and it will send the corresponding
Withdraw through all its interfaces: to the North towards
k/2 Cores and to the South to k/2 Leaves of its PoD.
The Cores that receive this will be the same ones that sent
the Withdraw since each Spine is connected to (k/2) Cores
of the same plane. Consequently, they will not update any
route and therefore will not send any more packets. On the
other hand, the k/2 Leaf nodes will receive the Withdraw
from the mentioned Spine, they will recalculate their routes
and detect that the prefixes received in the Withdraw are no
longer reachable through one of their next hops. Then, for
each of these k/2 prefixes, they will send an Update to all
their neighbors (k/2 Spines). The Spines that receive these
messages will detect their ASN in the AS-PATH of the routes,
and therefore, they will not take any action. This is due to the
specific ASN numbering, planned to mitigate the effect of the
path-hunting.

Adding the above expressions, the polynomial:

k4

4
− 3k3

8
+

5k2

4
− k (3)

quantifies the injected Updates after the failure of a Spine.

D. Recovery of a Spine node

When the fallen Spine (let’s call it SR) recovers, it receives
from its neighbors the announcements of the routes they know.
The k/2 Leaves connected to it announce the prefixes they
know (i.e., k2/2), and on the other hand, the k/2 Cores
announce the routes they know (to all prefixes except for the
k/2 of the fallen PoD since they lost reachability during the
failure). Let’s consider these contributions:

1) Advertisements from the Leaves: SR receives these ad-
vertisements and discards the routes in which its ASN is
present in the AS-PATH (all except the prefixes directly
connected to its Leaves). Then, it updates its routes
and advertises the k/2 new routes learned on all its
interfaces: north to the k/2 Cores and south to the k/2
Leaves. This opens two analysis paths: what happens
inside the PoD when the Leaves receive the announce-
ments and what happens when these announcements
reach the Cores connected to SR.
a) Inside the PoD: The leaves connected to SR receive
the announcements of the PoD prefixes. These Leaves
update the routes to the other k/2 − 1 prefixes of the
PoD (since a new next hop is added, that is, a new
route) and announce them through all their interfaces to
the k/2 Spines of the PoD. The Spines receive these
announcements and discard them since they are in the
AS-PATH of the routes.
b) From the Cores connected to SR: After receiving the
announcements from SR, each Core updates the routes
towards those prefixes and announces them through
all its interfaces, particularly towards the other k − 1
Spines connected to each Core. These Spines receive
the new k/2 routes and announce them through all their
interfaces (again towards the Cores and their Leaves).
The Leaves that receive these Updates recalculate the
routes for the k/2 prefixes and advertise them on all
their interfaces, that is, back to the Spine that sent them
and to the rest of the Spines that are connected to other
Cores (from other planes in the topology). The Spines
receive this, and since they are on the AS-PATH they
take no action.

2) Announcements from the Cores: SR recalculates the
routes to all the prefixes except those below it (since
their ASN is in the AS-PATH of the advertisements),
that is, k2/2 − k/2, and announces them on all its
interfaces, that is, back to the k/2 Cores and its k/2
Leaves. When these nodes receive the announcements,
they do nothing, since their ASN is in their AS-PATH.

To accomplish the packet count, we consider this analysis
divided into groups of links with the same behavior:

1) Fault PoD:
• SR-Leaves(L) links: k2/2 (L → SR) + k/2 (SR →

L) + k/2 − 1 (L → SR) + k2/2 − k/2 (SR → L)
+ k2/2 − k/2 (L → SR) = 3k2/2 − 1 packets per

2023 19th International Conference on Network and Service Management (CNSM)



link. There are k/2 links of this type, accumulating
a total of (k/2) × (3k2/2 − 1) = 3k3/4 − k/2
packets.

• Leaf-other-Spine links: only the packets that leave
L in the previous point shall be considered, adding a
total of (k/2−1)+(k2/2−k/2) = k2/2−1 packets.
There are (k/2 − 1) × (k/2) (links per Leaf ×
number of Leaves) links of this type, accumulating
a total of (k/2−1)(k/2)(k2/2−1) = k4/8−k3/4−
k2/4 + k/2 packets.

2) SR-Core(C) links: k/2 (S → C) + k2/2−k/2 (C → S)
+ k/2 (C → S) + k2/2− k/2 (S → C) = k2 packets.
There are k/2 links of this type, accumulating a total
of (k2)(k/2) = k3/2 packets.

3) Links of the Core (C) connected to SR with the rest
of its Spines: k/2 (C → S) + k/2 (S → C) = k
packets. There are k−1 links of this type in k/2 Cores,
accumulating a total of (k − 1)(k/2)k = k3/2 − k2/2
packets.

4) Links of the Spines (S) of the previous case with their
Leaves (L): k/2 (S → L) + k/2 (L → S) = k. There
are k/2 links of this type per k−1 PoDs, accumulating
a total of k × (k/2)× (k − 1) = k3/2− k2/2 packets.

5) Links of the Leaves of the previous case with the rest of
the Spines (S): k/2 (L → S). There are k/2−1 links of
this type in k/2 Leaves into k − 1 PoDs, accumulating
a total of = k4/8− 3k3/8 + k2/4 packets.

Putting everything together and simplifying we get (4),
which quantifies the number of Updates injected into the
topology after the recovery of a single Spine node:

k4

4
+

13k3

8
− k2 (4)

E. Failure of a Core node
In this topology, each Core node is connected once to each

PoD, i.e., it has k links with k Spines from different PoDs.
When a Core node goes up or down, the k Spines connected
to it will be aware of the event.

When a Core node fails, each of the Spines connected to
it now has k/2 − 1 North links (to other Cores) and k/2
South links to their PoD’s Leaves. In this context, at the BGP
level, each one of these Spines updates the routes of all the
prefixes that were reached through the fallen Core, i.e., all
the prefixes of the fabric except those of its PoD. This is due
to the fact that the fallen Core was a possible next-hop for
each of these prefixes. Consequently, after recalculating the
routes, these Spines send an Update for each updated prefix
(k2/2−k/2 = the total number of prefixes minus the prefixes
in their PoD) for all their interfaces. These announcements are
received at North by the Cores, who are in the AS-PATH of
the routes received and do not take any action; and at South
by the Leaves, who do not take any action either, since the
announcements received do not trigger any update of their
routes.

In this sense, the k Spines connected to the fallen Core
update and announce k2/2 − k/2 routes to their k − 1

neighbors, accumulating a total of k(k − 1)(k2/2 − k/2)
packets. Then, the polynomial:

k4

2
− k3 +

k2

2
(5)

quantifies the number of Updates injected into the topology
by this event.

F. Recovery of a Core node

When the Core recovers from the failure, it will re-establish
connections with the corresponding k Spines. These Spines,
after establishing the corresponding BGP sessions, announce
all the prefixes they know (k2/2). Then, the Core learns these
routes and advertises them across all of its interfaces (back to
the Spines). The k Spines that receive these announcements
update the routes for which they detect a new path, that is,
the routes to the prefixes of the rest of the PoDs (k2/2 −
k/2), and announce them to all its neighbors: to the north
towards k/2 Cores and to the south towards the k/2 Leaf
of its PoD. The k/2 Core that receives the announcements
will not perform any action since they are in the AS-PATH
of the route. In the same way, the k/2 Leaves that receive
the announcements will not perform any action either, since
they already have the paths for the prefixes received through
the Spine that sends them the announcements in their routes.
Therefore, if we add the expressions described above, we have
k × (k2/2) × 2 + k × k × (k2/2 − k/2) packets. Then, the
polynomial:

k4

2
+

k3

2
(6)

quantifies the number of Updates injected into the topology
by this event.

We close the Section with a summary of the analytical
expressions that quantify the messages exchanged in the fat
tree in reaction to the different events considered, as shown
in Table II below.

TABLE II
SUMMARY OF THE FUNCTIONS OF k THAT QUANTIFY THE AMOUNT OF

CONTROL PLANE OVERHEAD INJECTED BY BGP AFTER THE FAILURE OR
RECOVERY EVENTS.

Use case Function f(k)
Leaf Failure k3 − k

Leaf Recovery 3k3

2
− k

Spine Failure k4

4
− 3k3

8
+ 5k2

4
− k

Spine Recovery k4

4
+ 13k3

8
− k2

Core Failure k4

2
− k3 + k2

2

Core Recovery k4

2
+ k3

2

IV. VALIDATION AND DISCUSSION

Ideally, a fair validation of the theoretical results should
be made against a formally correct implementation of BGP;
instead, our validation was carried out running a specific BGP
implementation (FRR) under the ns-3 simulator, because, in
the first place, it is readily available, and secondly, FRR

2023 19th International Conference on Network and Service Management (CNSM)



has important industrial support, and therefore, using this
implementation may be considered representative for a real-
world scenario. Nevertheless, working code always has bugs,
and specifically, a routing protocol implementation is prone to
race conditions that may cause the transmission of spurious
messages. This approach has been taken in our previous
work [7], where a thorough description of the simulation
framework can be found.

The validation framework permits the creation of fat-tree
topologies as a function of the k parameter, announcing a
unique prefix per Leaf, as in our theoretical analysis, permit-
ting the capture of every control packet exchanged during a
given experiment. Once completed, it is possible to count the
interesting messages, BGP Updates in our case, to compare
with the theoretical results.

TABLE III
SUBTRACTION BETWEEN EXPERIMENTAL AND EXPECTED RESULTS FOR

EACH EVALUATED k. THE EXPECTED RESULTS ARE THE EVALUATION IN k
OF (2), (4) AND (6).

k Leaf Recovery Spine Recovery Core Recovery
4 4 8 8
8 8 16 16
12 12 24 24
16 16 32 32
20 20 40 40
24 24 48 48
28 28 56 56
30 30 60 60

Regarding failure use cases, “Leaf Failure” has already been
considered in [7], while the experimental results obtained for
the cases of “Core Failure” and “Spine Failure” exactly verify
the analytical expression for each of these cases. Thus, if you
replace the value of k in formula (5) with the value associated
with your fat-tree configuration, you will obtain the number
of Updates injected into the network by BGP after the “Core
Failure” event. Furthermore, the resulting quantity is identical
to what would be obtained by developing and deploying a
simulation of the fat tree topology.

Regarding recovery use cases, some differences were found.
Table III shows the difference between the experimental and
the theoretical results for each use case. The first column
contains the value of k, while the rest includes the subtraction
of the result of evaluating the formula and the experimental
results, for the corresponding k. Please note that differences
are slight but visibly regular with respect to k. For the case
of “Leaf recovery”, the difference is exactly k, while for the
cases of “Spine recovery” and “Core recovery”, the difference
is 2k.

Considering the regularity of the differences, we explored
in more depth the packets exchanged in the simulations. In all
three cases, we found that the recovered nodes send an empty
Update (i.e., without prefixes) to all their neighbors, which
reflects it back to the recovered node. Then, if we count the
extra Updates, we find that in the case of the recovery of
a Spine or Core node (both have k links), there are 2 × k

packets, while in the case of the Leaf node (which has k/2
links exchanging Updates), there are 2 × k/2 = k packets.
These results verify the differences shown in Table III.

Therefore, we can state that the difference found is due
to the BGP implementation behavior in the experimental
environment. This confirms that the theoretical analysis is
correct and valuable since it serves as a lower bound to
quantify the control plane overhead.

We could ask ourselves, what is more expensive, a failure
or a recovery? Although the orders of the polynomials in
Section III give us a hint, it is worth analyzing the issue in
detail.

Figure 2 shows the comparison between the cost of a
failure and recovery for each level of the topology. In all
three scenarios, recovery is more expensive than node failure.
Note that the figures show the trend up to k = 30, where
the topology contains 1125 network nodes (a representative
number for a massive scale data center). It is important to
note that although the equations for the case of failure and
recovery by level are of the same order, the difference may
be relevant at the scale of a massive data center. The extra
cost of recovery may inspire network managers to plan switch
replacement to mitigate the impact carefully.

An alternative view of the results is to consider failure
and recovery cases separately for all levels of the topology.
Figure 3 shows the results for failure cases, which reaffirms
the intuition that events at higher levels in the fat tree require
more messaging for BGP to re-converge.

Overall, the convergence of BGP in the inter-domain scope
has been researched for many years, using both formal and
practical approaches. It has been an important issue in the data
center scope, and most representative results are condensed in
RFC 7938 as practical configuration guidelines [13]. However,
there are few efforts to measure the BGP control plane in
scale, and, as far as we know, the current article presents
the first complete set of failure/recovery use cases theoretical
analysis with experimental validation.

V. CONCLUSION AND FUTURE WORK

In this paper, an analytical methodology to count BGP Up-
dates has been presented and validated for representative data
center networks in a simulation environment. This methodol-
ogy can be used as a planning tool to evaluate the control
plane overhead for real-world deployments. Furthermore, the
formulae developed in this work can be easily adapted to
operational environments where each Leaf node announces
more than one prefix. Then, using the appropriate k to a
given reality, the network planner can obtain the amount
of overhead that BGP would inject into the network under
failure and recovery events. The same methodology can be
applied to other protocols, such as RIFT, obtaining the injected
overhead without the need for any infrastructure deployment;
this case is particularly interesting since RIFT is under active
development.

Our work is based on multi-plane fat-tree networks, which
can be described by the unique parameter k, which is both

2023 19th International Conference on Network and Service Management (CNSM)



K

B
G

P
 U

pd
at

es

0 

100,000 

200,000 

300,000 

400,000 

500,000 

5 10 15 20 25 30

Failure Recovery

(a) Core failure and recovery.

K

B
G

P
 U

pd
at

es

0 

50,000 

100,000 

150,000 

200,000 

250,000 

5 10 15 20 25 30

Failure Recovery

(b) Spine failure and recovery.

K

B
G

P
 U

pd
at

es

0 

10,000 

20,000 

30,000 

40,000 

50,000 

5 10 15 20 25 30

Failure Recovery

(c) Leaf failure and recovery.

Fig. 2. Comparison of expected packets injected into the Fabric after a node failure and recovery.

K

B
G

P
 U

pd
at

es

0 

100,000 

200,000 

300,000 

400,000 

5 10 15 20 25 30

Core Spine Leaf

Fig. 3. Expected number of BGP Updates injected into the network after a
Spine, Leaf, and Core node failed for different fat-tree configurations.

the number of PoDs and the fan out of each topology
switch. A general representation of fat-tree topologies has
been introduced in [4], where the topology is described with
extra parameters; a generalization of the current work may
be attempted to have a general map of BGP control plane
overhead for a complete set of fat-tree configurations. Another
possible future work is to measure convergence time as an
alternative to the Update count presented here. On the other
hand, modifications to BGP may be envisioned to reduce
convergence time, incorporating, for example, a split-horizon
capability. Nevertheless, modifying running (industrial) soft-
ware is not a simple (nor desirable) task, and this particular
modification would possibly demand more memory and CPU
resources for network nodes.

Moreover, we can quantify the overhead traffic “in the
void”, but for that task, we are not considering in the present
work two critical parameters: namely i) the payload traffic
(i.e., the traffic exchanged by applications), and ii) the fre-
quency of network failures events. Considering these aspects
is a line of future work that would help better quantify control
plane overhead.

REFERENCES

[1] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (bgp-4),”
Internet Requests for Comments, RFC Editor, RFC 4271, January
2006. [Online]. Available: http://www.rfc-editor.org/rfc/rfc4271.txt

[2] A. Abhashkumar, K. Subramanian, A. Andreyev, H. Kim, N. K. Salem,
J. Yang, P. Lapukhov, A. Akella, and H. Zeng, “Running BGP in data
centers at scale,” in 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21). USENIX Association, Apr.
2021, pp. 65–81.

[3] R. White, S. Hegde, and T. Przygienda, “IS-IS Optimal Distributed
Flooding for Dense Topologies,” Internet Engineering Task Force,
Internet-Draft draft-ietf-lsr-distoptflood-01, Jan. 2023, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-
lsr-distoptflood/01/

[4] T. Przygienda, A. Sharma, P. Thubert, B. Rijsman, D. Afanasiev, and
J. Head, “RIFT: Routing in Fat Trees,” Internet Engineering Task
Force, Internet-Draft draft-ietf-rift-rift-17, Mar. 2023, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-rift-rift/17/

[5] T. Caiazzi, M. Scazzariello, L. Alberro, L. Ariemma, A. Castro,
E. Grampin, and G. D. Battista, “Sibyl: a framework for evaluating the
implementation of routing protocols in fat-trees,” in NOMS 2022-2022
IEEE/IFIP Network Operations and Management Symposium, 2022, pp.
1–7.

[6] G. F. Riley and T. R. Henderson, The ns-3 Network Simulator. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 15–34.

[7] L. Alberro, F. Velázquez, S. Azpiroz, E. Grampin, and M. Richart,
“Experimenting with routing protocols in the data center: An ns-3
simulation approach,” Future Internet, vol. 14, no. 10, 2022.

[8] P. Gill, N. Jain, and N. Nagappan, “Understanding Network Failures in
Data Centers: Measurement, Analysis, and Implications,” in Proceed-
ings of the ACM SIGCOMM 2011 Conference, ser. SIGCOMM ’11.
New York, NY, USA: Association for Computing Machinery, 2011, p.
350–361.

[9] C. Clos, “A study of non-blocking switching networks,” The Bell System
Technical Journal, vol. 32, no. 2, pp. 406–424, March 1953.

[10] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient
supercomputing,” IEEE Transactions on Computers, vol. C-34, no. 10,
pp. 892–901, Oct 1985.

[11] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” in Proceedings of the ACM SIG-
COMM 2008 Conference on Data Communication, ser. SIGCOMM ’08.
New York, NY, USA: ACM, 2008, pp. 63–74.

[12] D. Medhi and K. Ramasamy, Network Routing, Second Edition: Algo-
rithms, Protocols, and Architectures, 2nd ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2017.

[13] P. Lapukhov, A. Premji, and J. Mitchell, “Use of bgp for routing in
large-scale data centers,” Internet Requests for Comments, RFC Editor,
RFC 7938, August 2016.

[14] Q. Vohra and E. Chen, “Bgp support for four-octet as number space,”
Internet Requests for Comments, RFC Editor, RFC 4893, May 2007.

[15] R. Oliveira, B. Zhang, D. Pei, and L. Zhang, “Quantifying path
exploration in the internet,” IEEE/ACM Transactions on Networking,
vol. 17, no. 2, pp. 445–458, 2009.

[16] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol. 1, no. 1, p. 269–271, dec 1959.

2023 19th International Conference on Network and Service Management (CNSM)


