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Abstract—Software-defined Networking (SDN) and Program-
ming Protocol-Independent Packet Processors (P4) introduced
data processing within the network data plane. To offer multiple
tenants to deploy individual code in programmable switches
and network devices, code updates must ensure proper ten-
ant isolation and minimal negative cross-tenant impact during
code updates. Thus, this paper presents a code deployment
pipeline, primarily implements an orchestrator allowing network
device discovery, code verification, compilation and low impact
deployment on multi-tenant programmable switches. Critical
time windows and their durations for the code update are
evaluated using hardware switches (Intel Tofino). Performance
impacts of code updates on tenants using these switches are
evaluated and discussed based on bandwidth tests considering
different code deployment options. The architecture proposes a
framework to enable seamless updates with minimal to no service
interruptions, e.g., using gradual code updates of redundant links
between programmable switches in data centers, internet service
providers, and mobile networks used by various customers as
tenants. Besides P4, common Kubernetes and continuous delivery
solutions were used for the presented implementation that is
offered as Open Source for further adaption and development.

Index Terms—Network Functions, Container, Multi-tenancy,
Network Programmability, Hardware-accelerated Virtualization

I. INTRODUCTION

Recent progress in the area of Software-defined Networking
(SDN) and Programmable Data Plane (PDP), esp. using Pro-
gramming Protocol-Independent Packet Processors (P4) as an
advanced SDN approach also supports programmable switches
that run code of multiple tenants to individually process their
packets. Such features enable these users to benefit from
network automation and programmability techniques lever-
aging in-network processing and computing, e.g., enabling
fine-grained traffic engineering, network attack detection and
mitigation or data preprocessing, e.g., for machine learning,
directly in the data plane (as, e.g., described in [1]). Examples
for multi-tenant approaches for P4-based switches as well
as the associated control plane were given in [2] [3] [4].
However, as tenant code directly runs in and influences the
data plane, multi-tenant PDP code updates need to ensure
the least possible negative impacts for other tenants’ packets
(packet loss, link/path outage) during code changes. This is es-
pecially relevant during a short downtime inherently stemming
from the data plane code swap and hence being particularly
critical. In this paper an approach to evaluate and reduce this
negative impact of code updates in multi-tenant PDP switches
is presented using a developed orchestration architecture and

pipeline, based on Continuous Integration / Continuous De-
livery (CI/CD) concepts for the deployment of PDP tenant
code fragments. The presented Orchestrator for Multi-tenant
PDP Code Updates (OMuProCU) introduces a novel lifecycle
management of tenant code for accelerated Containerized
Network Functions (CNFs) within the data plane ranging from
deployment, over updates up to decommissioning, mitigating
their negative impact on other users (i.e., packet loss, latency,
bitrate). While [2] introduced the overall concept including
Network Operating System (NOS) and control plane, the focus
in this paper lies on a robust in-network deployment process
with a low impact. Effectiveness of the proposed architecture
is evaluated using network bandwidth and latency tests while
rolling out PDP tenant code updates. An equal cost multi-
pathing (ECMP) testbed using Intel Tofino based PDP hard-
ware is leveraged to measure the impact of multi-tenant code
updates. The developed orchestration pipeline code is provided
as an open-source repository1 together with evaluation data
and steps used in this paper. The orchestrator can be used
to implement multi-tenant programmable networks (e.g., in
5G/6G) with minimal negative impact and without critical
downtime windows linked to the programmability.
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Fig. 1: In-Network Code Update Timeline

Figure 1 shows the process of gradual code roll out using
the implemented orchestration on a 2-way ECMP path. While
the overall duration of the code update on the entire ECMP
path combination (Global View) in this example takes twice
as long compared to updating a single programmable switch
(c.f., PSx), outages during the critical time window to swap the
PDP code are prevented and only pose a degraded performance
period. Remaining sections of the paper present and discuss
the orchestration pipeline and deployment step strategies for
multi-tenant code updates. The next section, presents related
work and distinguishing features of our contribution. The
paper concludes with an evaluation of the network perfor-
mance for multiple tenants using the proposed orchestrator
also discussing beneficial use-cases.

1https://github.com/tiritor/OMuProCU
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II. RELATED WORK

Deep programmability is a topic that holds the potential
to change network design approaches. According to [1], new
methods to design new system approaches should be devel-
oped, and a network be thought of as a large, programmable
and decentralized system. The authors express that this can
be important for example in 5G infrastructures. In [5], use
cases for PDP with P4 in a 5G edge computing scenario
are discussed and an architecture similar to the one that
is used in this publication is presented. The paper demon-
strates the benefit of the architecture by deploying virtualized
switches running on bare metal or in Docker containers with
and without P4 acceleration. In [6], a framework to offload
network functions in 5G Cloud Computing environments is
presented. Furthermore, the implementation of offloading PDP
functions as part of accelerated virtual network functions in
a multi-tenant cloud infrastructure is proposed in [7]. To get
multi-tenancy in the control plane of P4 environments, [3]
enhanced the existing P4Runtime and proposed a control plane
architecture to be usable in four international P4 Experimen-
tal Networks (i-P4EN). Furthermore, the continuation in [4]
proposes an architecture to use in-network multi-tenancy in a
P4 switch environment which was tested and evaluated using
in software as well as on a Tofino-based hardware switch.
They introduced a role ID to isolate different tenants in the in-
network layer. However, in contrast to this paper, they focused
on the implementation without considering an optimal in-
network code update strategy. A proposal to optimally place
accelerated service function chains (SFC) written in P4 in a
topology with the utilization of programmable entities like
CPU, NPU, FPGA or programmable ASICs is presented by
[8]. Orchestration of serverless applications in edge computing
environments using network programmability is proposed by
[9]. AWS Greengrass is used to build an IoT cloud and edge
computing environment. Also, different approaches utilize the
flexibility of a PDP to offload parts of multi-tenant network
functions into the data plane. In [10], an architecture for com-
munication between containers in a Kubernetes environment is
proposed. This approach only works for the container network
infrastructure (CNI) framework flannel by using VXLAN.
While all related work described in this section also focused on
accelerated CNF in multi-tenant environments, previous papers
did not contain an approach to orchestrate and deploy these
accelerated CNFs on PDP switches. This paper presents such
an approach and also ensures a low impact on current traffic
during code updates.

III. COMBINING CONTROLLED ORCHESTRATION OF
ACCELERATED CNF WITH LOW IMPACT

Accelerated data processing and in-network computing
in virtualized network infrastructures (e.g., CNFs) and their
isolation in a multi-tenant form pose a dilemma, since giving
tenants direct access to hardware inherently reduces isolation.
To circumvent this issue and reach an appropriate tenant
isolation while still offering acceleration, tenant control and
separation has to be implemented in the data plane (P4

switch) as well as the control plane (NOS). Isolation in NOS
and in-network layer already received some research, however
existing publications did not consider an orchestration of
accelerated multi-tenant CNFs yet. Consequently, existing
architectures cannot swap code without downtimes. To
achieve a controlled orchestration of accelerated CNF for the
deployment, a manifest called Tenant Description Code (TDC)
was introduced in the previous work [2]. This is split into
three different parts: Tenant Container Description, Tenant
Isolation Logic and In-Network Code. The Tenant Container
Description (TCD) contains the Kubernetes deployment
description for the CNF deployment in the NOS and the
acceleration type to be used, while Tenant Isolation Logic
(TIL) consists of the export rules and the runtime rules
that should be applied after the deployment. Export rules
represent a list of VNIs being used by a tenant for this TDC.
The In-Network Code (INC) includes the custom accelerated
function which should be embedded in the previously defined
accelerator template code called Tenant INC Framework (TIF).

To reach this goal, the proposed OMuProCU must meet
the following requirements. On the one hand, the deployment
process needs to be as resilient as possible by running all
non-critical tasks before the critical task. On the other hand,
it needs to ensure that the TDCs submitted by the tenants
are valid and can be deployed safely without affecting
other tenants, especially in the in-network layer, where the
NOS can be controlled by using more sophisticated multi-
tenant containerization constraints, such as quotas. Also, the
commissioning process must be done in an optimal time
window depending on the underlying network infrastructure.
In addition, the preprocessing tasks of the in-network layer
are processed in the NOS and should also not have a large
impact on the critical part of the deployment process.

IV. SCHEDULING OF HARDWARE-ACCELERATED CNF

The requirements described in Section III are addressed by
our OMuProCU. For this, the architecture of [2] is improved
and adapted to use the TNA Architecture instead of the
software-switch BMv2. Also, the improved architecture covers
multiple purposes, and is not limited to a single use case as in
[2]. The microservice architecture in the orchestrator itself is
kept to have single purpose components interacting with each
other. Though the OMuProCU evaluation in this paper cur-
rently manages and orchestrates only one PS, the orchestrator
can use multiple switches within network infrastructures.
To gain a more secure and validated deployment of offloaded
code parts of multiple tenants without a large negative impact
on the overall latency or on live packet processing, a proper de-
ployment process is needed. Therefore, the presented deploy-
ment process follows common CI/CD paradigms proposing a
pipeline concept with a reliable rollout mechanism. In general,
the order of the deployment steps is important since the
critical part must be kept as short as possible while all other,
dependent, non-critical steps must be processed before this
critical time window. Consequently, the tenant code change
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operations (create/update/remove OTFs) must be performed as
fast as possible, keeping the downtime window to a minimum.
On the other hand, this makes the process rather static and
offers a big time improvement, as the critical part is already
isolated in the presented implementation, as can be seen in the
structure of the deployment pipeline described in Section IV-B.

A. Validation of TDC manifests

The main issue which should be validated in this approach
is to prevent security issues when using common accelerator
chips in programmable hardware for multi-tenant use cases
like access to not allowed areas, e.g., tables/registers of other
tenants. In the TCD part, the Kubernetes deployment descrip-
tion is mainly validated. Also, the usage of the correct and
allowed associated hardware is verified. TIL is validated and
checked for access validation to other tenants’ resources or
functions to ensure isolation. Especially, rules must be checked
such that they are considered for the corresponding accelerated
tenant function, e.g., the rules meant to be deployed in the
OTF must be matched to the corresponding table while the
data export rules must point to the correct corresponding
tenant CNF. Similar to the TIL check, the INC must be
checked for the same access violation criteria. Furthermore,
the code must be checked for table or register accesses which
are implemented in other OTFs. Also, include and extern
statements must be checked for access violations and access
to other OTFs in general needs to be limited.
B. Deployment Process of TDC manifests

The proposed orchestrator is based on previous work pre-
sented in [2] and offers a more detailed architecture as well
as an improved algorithm for the deployment process. Also, it
is adapted to use TNA as hardware-based acceleration archi-
tecture and implements a proper validation. In this adaption
process, the previous introduced TIF structure is generalized to
cover different use cases instead of a single one. As described
before, the update process must be optimized to ensure that
all steps are successfully done before the critical part begins.
The proposed pipeline model is visualized in Figure 2.
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Preprocessing
TIF Code
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TIF Code
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Fig. 2: OMuProCU Orchestrator Pipeline Steps

At the beginning of the OMuProCU pipeline, a TDC
manifest is submitted by a client. As next step, the validation
of this submitted manifest will be processed as described in
Section IV-A. If the validation was successful, the deployment
of the submitted manifest is scheduled for the next main-
tenance time window. Otherwise, the submission is denied,
and an error message sent back to the change initiator. The
size of the schedule time window is a configuration aspect
and depends on the deployment process duration and the used

infrastructure. More conservative networks would only allow
scheduling in big time windows while agile infrastructures
could deploy scheduled deployments in shorter intervals. Once
this time window is reached, the deployment is triggered. If
the orchestrator is in the deployment state, the submission
of new deployments is locked. Respectively, any incoming
submission will be denied. Also, no runtime rule updates for
any deployed manifest are possible in the deployment process.
First, the tenant CNF part in the NOS will be updated. After
the successful deployment in the NOS deployment, the in-
network update part is processed, which starts with a prepro-
cessing of the TDCs by embedding the in-network code of the
manifest into the TIF template for the specified accelerator
and compiling the code for the accelerators afterwards. The
compiled TIF code is subsequently applied to each accelerator.
As last step of this part, post-processing steps like hardware
initialization and application of pre-existing and newly added,
removed or updated runtime rules are executed. Final step
before entering the health check loop for deployed TDCs is
to monitor the performance of the applied TIF to measure the
impact of the new TIF against the previous one. This was
implemented to explicitly prevent the new code of the tenant
from causing significant performance degradation on all other
tenants compared to the old version.
As highlighted in Figure 2, the most critical steps are the in-
network update steps, because they cannot be done in parallel
to other deployment steps and can cause a failure state instead
of a degraded one if one of these step fails by an incorrect
INC.

C. Implementation Details

The proposed framework is mainly developed in Python,
while microservice components are split into modules. Com-
monly used modules like the orchestrator client and the
validation are packaged in separate modules to provide an
interface to the experiment scripts in the testbed needed for
the evaluation. gRPC is used for the communication between
components of the orchestrator and the Tofino chip. More
precisely, the communication with the Tofino chip is carried
out using the BarefootRuntime-API of the Open-Tofino frame-
work released by Barefoot Networks/Intel [11]. The presented
TIF is implemented in P4 and extended by using the Tofino
framework. The testbed consists of two hosts and four APS
BF2556X-1T switches connected to the hosts via 10 Gbit/s
interfaces. Each host has 4 CPU cores, 4 GB RAM and uses a
Mellanox 10 Gbit/s network card for the network connection
between each host and the PS. The testbed setup is shown
in Figure 3. To ensure a multi-tenant network environment in
the testbed, VXLAN point-to-point connections are established
between the hosts.

V. EVALUATION

For all following experiments, the same testbed is used as
described before and the evaluation is done on one switch
in the testbed while the other switches are programmed as
repeater to ensure minimal interference of the code swap on
the connected links in the presented setup in Section IV-C.
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Fig. 3: OMuProCU Testbed Architecture

A. Code Swap Impact Evaluation

To be able to discuss the significance of this problem, a
simple P4 program implementing a repeater between two
links is deployed 10 times in a row over a time interval of
15 seconds. The BF-Runtime interface provides two different
modes to update the PDP code: fast-reconfig and hitless.
fast-reconfig keeps the time window for code swap smaller,
but packets transmitted in this window are definitely lost.
hitless mode tries to keep the packet loss as low as possible,
but takes more time to perform the actual code change. [11]
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Fig. 4: Bandwidth measurement for available device modes

The bandwidth test traffic is performed using the common
iPerf3. As transport protocols, TCP and UDP are used. Run-
ning normal bandwidth tests between the hosts achieves about
9.33 Gbit/s utilization in our testbed. Since the framework
should be used in multi-tenant environments, VXLAN is uti-
lized as it is typically used as layer 2 isolation in common data
center and cloud infrastructures. Implementing VXLAN in the
testbed however causes a significantly lower mean bitrate with
peaks at ca. 6.543 Gbit/s, due to additional load on the hosts
caused by the tunneling encapsulation. The cause of this is the
VXLAN kernel module implementation of the Linux kernel
used at the host endpoints since there is no offloading available
and the CPU must handle the encapsulation and decapsulation
process. VXLAN could also be handled on edge switches, but
the evaluation primarily focuses experienced downtime and
relative service degradation instead of bandwidth. Figure 4
shows the result of this experiment.

For both modes and transport protocols, the bandwidth
drops if the code update is in progress and therefore confirms,
that the programmable switch will be in a degraded state dur-
ing code update. On the other hand hitless offers a significantly
better bitrate recovery after the code update as seen in Figure 4.
Also, the spike in this mode is not as deep as in fast-reconfig
mode. So, the time window for the code update is critical and
must be kept as short as possible in all cases. Throughput for
UDP needs to be specified as it obviously does not include
flow and congestion control. Though iPerf3 can be tuned to
offer higher bandwidths for UDP using bursts, a bitrate of
100 Mbit/s was chosen to circumvent iPerf3’s UDP bandwidth
capping and as only the relative impact of the code update on
the throughput is evaluated and discussed.

B. Time Measurement of the Orchestrator

The deployment process can be time-consuming as all
steps which are described in Figure 2 must be executed. The
evaluation uses fast-reconfig mode, but results are similar in
hitless mode, though it takes slightly longer, as shown in
Section V-C. According to our tests, the deployment dura-
tion took in mean 45.01 seconds including scheduling time.
Therefore, to classify the critical time window size in relation
to other steps of the deployment process for the implemented
framework, the duration for each step is measured. Some steps
are not relevant and vary based on the hardware the developed
orchestrator runs on, e.g., the compilation time depends on the
used accelerator and its compilation framework. As another
example: The scheduled time depends on the network struc-
ture and its configuration, which means that critical network
infrastructures have bigger scheduling intervals as non-critical
network infrastructure parts. In our testbed, the schedule time
window was set to 10 seconds. Also, the compilation duration
for the TIF took in mean 36.886 seconds on our hardware.
Figure 5 shows the duration plots for different influenceable
and relevant steps of the orchestrator in relation to the critical
TIF update step in both modes. Since the results for both
transport protocols were similar in both modes, the results
for TCP are shown and explained as an example.
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Fig. 5: Time measurement for influenceable OMuProCU steps

The critical time window is the TIF update time. This
includes the hardware initialization of after the update pro-
ceeded. The biggest time period of all steps is the critical
time window of in mean 1.524 seconds in our tests which is
significantly longer than the other steps which can and must
be processed before. From this follows that the TIF update is
the most time-consuming part in the in-network deployment
process and highlights the importance of a good schedul-
ing and processing algorithm. Otherwise, if for example the
preprocessing was not carried out correctly, additional code
updates are necessary to revert the change again imposing the
impact of additional critical TIF update durations.

C. Time Measurement of TIF Deployment

As described in Section V-B, the duration of the code swap
and chip initialization consumes the most time compared to
all other influenceable and self-implemented steps. This step
should simultaneously be the one to be kept as short as
possible to get the shortest downtime interval. As Tofino chips
are common standard for programmable switch hardware,
designing a new architecture for better code update mechanism
to solve this problem is beyond the scope of this paper. On the
contrary, we intentionally developed an architecture that tries
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to limit the negative impact of multi-tenant code updates on
this commonly available reference architecture and hardware.
Thus, we evaluated and analyzed the possibilities to optimize
the code update using Open-Tofino as follows. Similar to the
evaluation in Section V-A, the duration of this step for the
developed TIF without any custom tenant function is measured
by performing 10 subsequent code swaps in a row for each
device initialization mode and transport protocol. The mean
of aggregated duration of these code swaps are presented in
Table I. Since both used transport protocols provide similar
results, the results for TCP are shown.

device init mode protocol code swap initialization total
fast-reconfig TCP 1.305000 0.066500 1.371500

hitless TCP 1.580700 0.066000 1.646700
TABLE I: Time measurement of TIF code updates (in secs)

If using fast-reconfig mode, the swap performs faster than
using the hitless mode for both protocols. The reason for
that stems from the hitless mode trying a hitless code update
which results in a longer duration. However, this result was
surprising, since there should be no performance drop at all.
Nonetheless, it is plausible, as at some point in time packets
going through the updated P4 pipeline in the Tofino-based
switch are impacted by the update. Though, if the code update
is performed in hitless mode, the bandwidth loss and its
recovery perform better. The reason for this effect is that
hitless mode is more cautious while replacing code fragments.

VI. DISCUSSION

As seen in Section V-A, the used hardware switch causes
packet loss while commissioning provided code regardless of
the method used to swap the code. Also, the largest duration
of all influenceable orchestrator steps is caused by the TIF
Update process. The PDP code update mode hitless can reduce
the commissioning time discussed in Section V-C, but this
mode cannot compensate for most packet loss as observ-
able in Section V-A. This highlights the importance to find
and build a proper solution for deploying accelerated CNFs
with as little negative impact as possible on the data plane
processing which was tackled by implementing OMuProCU
as proposed in this paper. By introducing the OMuProCU
pipeline, scheduling is improved because all steps that can
fail and trigger a rollback with another PDP code swap are
carried out beforehand. The deployment process is optimized
to keep the critical time window as small as possible. Using
the standard Tofino pipeline, there is no space for further
optimization regarding the duration of these steps. Even if the
deployment was successful, the performance of the framework
should be monitored to check for performance issues in the
new provided tenant code and keep the possibility to trigger
a rollback to the previous provided code if necessary.
Furthermore, the timing to trigger the deployment of the
submitted and scheduled manifests is done in OMuProCU
by using a schedule time interval. As described before, this
strongly depends on the used network infrastructure (cf. more
agile or more conservative network architecture design). This
can be further improved by using trigger thresholds, e.g., if the

bitrate is under a specific threshold and hence the network load
is not critical. The threshold can again be defined based on the
network infrastructure. Currently, the OMuProCU covers only
the control plane of one PS. Each switch in the infrastructure
would run its own OMuProCU and there is no connection
between them at the moment. However, the orchestrator can be
extended to cover multiple programmable switches or network
devices in an entire infrastructure. This would highlight the
benefit of the provided and evaluated implementation for
example in a service or cloud provider. In such environments
typically multiple tenants use the same network, e.g., being
resellers or overlay providers offering value-added services.
Using the orchestrator, these customers of the provider can
individually place parts of their services and applications in
the data plane without interfering with each other.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the framework OMuProCU,
which ensures a lifecycle management of accelerated CNFs in
the data plane from deploying over updating to decommission-
ing with low impact on the used network infrastructure. Also,
we demonstrated the impact of the code update process which
occurs using state-of-the-art hardware and its importance in
the deployment process of accelerated CNF. As next steps,
the OMuProCU will be extended to run in a distributed global
control plane over several switches to get a global view
using update mechanism for an entire infrastructure. Also, the
orchestration of tenant functions on specific acceleration hard-
ware across network infrastructures managed by the frame-
work will be implemented. Moreover, we currently consider
the evaluation of new isolation techniques for the CNF like
containerless techniques (WebAssembly) and microVMs.
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