
Coupling QoS Co-Simulation with Online Adaptive
Arrival Forecasting

Yichong Chen
Department of Computing
Imperial College London

London, United Kingdom
yichong.chen119@imperial.ac.uk

Manuel Roveri
DEIB

Politecnico di Milano
Milano, Italy

manuel.roveri@polimi.it

Shreshth Tuli
Happening Technology Ltd.

London
United Kingdom

shreshth.tuli@happening.xyz

Giuliano Casale
Department of Computing
Imperial College London

London, United Kingdom
g.casale@imperial.ac.uk

Abstract—Coupled simulation, also known as co-simulation,
has been proposed to provide more information to a task sched-
uler by simulating at runtime the Quality of Service (QoS) arising
from a scheduling action. To do so, co-simulation algorithms
run the simulation assuming a static set of arrival time series,
restricting the diversity of the traffic scenarios. To ensure the
co-simulator can provide valuable and representative results, we
present an online adaptive arrival forecasting framework that
contains a change-point detection module and a probabilistic
transformer model to couple co-simulators with arrival series
forecasting. The framework can also update the prediction model
to adapt to dynamic environments. Our experiments show that
our online adaptive forecasting framework has lower forecasting
errors than established prediction models, such as autoregressive
processes, and lower on real-world traces the co-simulator
prediction error by up to 27% on average response time and
39% on average service-level agreement (SLA) violation.

Index Terms—fog computing, time series forecasting, change
point detection, co-simulation

I. INTRODUCTION

Fog computing is a recently proposed paradigm that com-
bines the benefits of Edge and Cloud Computing. Compared to
the latter, Fog computing places latency-sensitive applications
on edge devices to reduce latency and protect user privacy.
Meanwhile, resource-consuming applications are deployed on
the Cloud to reduce the cost of consuming servers and
hardware. Reliability and performance of a fog node are
restricted by its compute capacity, storage, and battery, raising
the need for effective resource allocation and task scheduling.
Many studies propose various scheduling strategies, such as
heuristic, artificial intelligence/machine learning (AI/ML) and
deep learning (DL) based algorithms, to optimize Quality-of-
Service (QoS), defined as the level of performance, availability
and reliability provided by the hosts [1]. Most of these
studies assume that the topology, arrival process, bandwidth,
etc., remain unchanged. However, these assumptions may be
violated in a real-world system. For example, the topology of
a Fog system can be changed by loading or offloading hosts,
or concept drift exists in the arrival process of a real-world
application.

Co-simulation, which simulates the response of a complex
system to real-time changes, has been used as a digital-twin of
a Fog system to help scheduling algorithms gain knowledge
of the system and boost the scheduler to achieve better QoS

[2], [3]. Existing works have examined the benefits of co-
simulation in a static setting where the parameters of the arrival
processes do not vary over time. However, the static setting
of the parameters of the arrival process cannot mimic concept
drifts in a real-world system which impedes the co-simulator
from providing valuable estimations. The goal of this paper is
to endow a mechanism to update the arrival traces with which
the co-simulator is parameterized so that the co-simulator can
well represent the present system.

To ensure that the co-simulator provides a better estimation
of QoS parameters, we dynamically generate an arrival series,
represented as a time series of counts for each job type, as
the input trace to the co-simulator using a probabilistic trans-
former. Furthermore, we present an online adaptive frame-
work to adapt the arrival generation model to the dynamic
environment. The adaptive framework uses a change point
detection module to monitor the arrival series online and fine-
tune the transformer model after change points are detected in
the arrival series.

We propose, in particular, a hierarchical change detection
structure based on the theory developed in [4] as the detection
module. We find that the existing hierarchical framework can
only detect changes on the mean, which is also named location
shift, in a time series. However, real-world arrival traces, such
as Alibaba trace [5], not only contain location shifts but also
changes in the variability, which is also called scale shifts.
In order to complement the loss of scale shift detection, we
present an extended data-depth plus CUSUM (DD+-CUSUM)
algorithm to detect both increase and decrease change in scale
and form the hierarchical change point detection algorithm
(HCPD). Experiments on real-world datasets from an Alibaba
cluster indicate that our HCPD forecasting framework can
ensure the co-simulator gives more accurate simulation results
than with offline artificial parameterization.

In particular, our experiments show that HCPD can detect
and estimate change points with lower detection delay and
lower mean absolute error (MAE) on change point estimation
compared to the Bayesian online change point detection.
Further, the probabilistic transformer forecasting model can
provide valuable arrival series prediction to the co-simulator
to estimate QoS result with lower MAE compared to other
time series forecasting methods. Moreover, the online adaptive

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP

framework can further boost the transformer model to give
predictions that have lower MAE on the QoS estimation
running on the co-simulator compared to the model without
the online adaptive framework.

In summary, the key contributions of this paper are:
• We define a DD+-CUSUM algorithm to detect both

increase and decrease change in scale and present a non-
parametric online change point detection algorithm to
detect location and scale shift and estimate the change
point.

• We design a probabilistic transformer model to forecast
the arrival series with only one forward step needed.

• We present an online adaptive arrival forecasting frame-
work in order to provide valuable arrival series prediction
for the co-simulator to achieve better QoS estimation
under real-world scenarios.

This paper is structured as follows. We begin by discussing
related work in Section II. We defined the adaptive prediction
problem in Section III and, in Section IV, we provide a brief
explanation of the techniques used in the proposed model.
The proposed online adaptive arrival series prediction model
is presented in Section V in detail. Experiment settings and
results are presented in Section VI to show the performance
of the proposed model, and we conclude in Section VII.

II. RELATED WORK

A. Co-simulation & Scheduling

The resource allocation and task scheduling problem aims
to identify optimal task-node pairs that satisfy constraints,
such as fulfilling an SLA, and optimizes the considered QoS
parameters, such as response time. However, [6] illustrates that
finding the optimal scheduling policy for a set of tasks even
in basic scheduling problems is normally NP-hard. Rather
than seeking the globally optimal scheduling, most studies
employ heuristics search to find near-optimal solutions that
meet constraints and ensure high QoS. For example, [7], [8]
present task scheduling algorithms to minimize the operational
costs of the system, such as the energy consumption and
devices usage fee, without violating SLA.

AI/ML methods have also been applied to resource allo-
cation and task scheduling in fog computing. Several works
apply deep reinforcement learning (RL) to adapt to stochastic
workloads in fog computing [9], [10]. The policy gradient-
based algorithm in [9] takes the environment state, which
consists of tasks and hosts parameters and history assignment
of task-node pairs, as the input of the model. It predicts the
rewards of each scheduling policy and selects the optimal
scheduling decision. However, these RL models tend to be
slow to adapt to real-world application scenarios [2].

Co-simulation is also used in modelling distributed systems
[2], [3]. These prior works select the optimal scheduling
decision using a simulation model that predicts QoS by
simulating a decision execution. For example, [2] proposes
a co-simulation framework, named COSCO, which provides a
dynamic interactive environment for AI models to optimize

QoS. Moreover, the proposed DL model GOBI* takes the
simulation result to boost the prediction, making a better
performance than the model without using the simulation
result. Follow-up works, such as [3], illustrate an extension
to the approach to increase the robustness of decisions.

B. Change Detection Test & Change Point Detection

Change detection tests (CDT) are applied to determine a
time series as containing abrupt changes to one or more
properties, such as the mean, variance or correlation. The
cumulative sum (CUSUM) has been widely used as an on-
line change detection algorithm [11]. Traditionally, CUSUM
assumes that the distribution family of the time series and the
parameters of the distribution are known as a prior. However,
this assumption does not always hold in practice. [12] therefore
presents a distribution-free CUSUM control chart for change
detection. However, it can only detect changes that happen
in the location parameters of the distribution. [13] introduces
a data-depth (DD) CUSUM control chart to detect the scale
change. However, this algorithm only detects the change when
the scale increases.

Change point detection (CPD) is more challenging com-
pared to change detection since it aims both at detecting
and locating the occurrence of a change in a finite sequence
of data. [14] detects a change point by separating the time
series into two sub-series and finding the split point with
the maximum difference. Instead of using statistical tests,
[15] applies kernel function, which projects the features to
infinite dimension space, to measure the difference between
two sub-series. [16] introduces the Bayesian online change
point detection (BOCPD) to identify the changes in an online
fashion. However, this method requires assumptions on the
distribution family of the time series.

C. AI/ML-Based Time Series Forecasting

Forecasting has been widely applied in resource manage-
ment and scheduling [1]. Autoregressive integrated moving
average (ARIMA) is a traditional statistical model that has
been widely used in time series forecasting [17]. It assumes a
linear correlation between the past and present observations at
different time lags and it is also able to capture trends in non-
stationary time series. However, real-world time series might
not always be captured effectively by the recursive form for
the time series data assumed by autoregressive processes.

DL models are also used in time series analysis. The
recurrent neural network (RNN) structures, such as vanilla
RNN, long short term memory (LSTM) and gated recurrent
unit (GRU) [18], are commonly used in time series prediction.
They recurrently process the time series in order to capture
correlation features. DeepAR [19] uses RNN structure to
model probabilistic features of the series and predict parame-
ters of the distribution. Although RNN models are effective in
modelling the time series data, the RNN structures are slow to
train, and their performance of forecasting decreasing in the
length of input data increases.

2023 19th International Conference on Network and Service Management (CNSM)

Fig. 1: A dynamic Fog system with an adaptive digital-twin
co-simulator

The transformer model [20] is another popular structure
in time series forecasting. The attention mechanism in trans-
formers captures the correlation between each time instance.
Moreover, a transformer is faster to train compared to RNN
models. Some transformer models, such as LongFormer [21],
SparseTransformer [22], and TransformerXL [23], are de-
signed for long sequence forecasting. However, the standard
transformer models are slow during the inference procedure
because they predict one future instance at a time and take
the newly predicted value to make the next prediction.

III. PROBLEM FORMULATION

We consider a dynamic Fog system that contains a digital-
twin co-simulator, which is used to estimate the QoS of the
system, as shown in Figure 1. The Fog system receives tasks
from a gateway that collects tasks and sends them to the
broker. The scheduling decisions are made by the broker
based on the QoS estimates from the co-simulator. The tasks
are executed on the assigned hosts, and the actual QoS is
computed.

The distribution of the arrival process can change over time.
We wish to design a framework that predicts the number of
arrivals in L step ahead with the last t0 observation of arrivals
and adapt the prediction model when concept drift occurs on
the distribution of the arrivals. The prediction and adaptation
mechanism form our proposed framework.

We define the number of arrivals at time t as xt =
(x1

t , . . . , x
d
t) ∈ Z∗d, where xi

t is the number of class ith tasks
at time t and d is the number of types of jobs. Therefore, we
try to predict the future arrival series Xt0+1:t0+L = {xt, t =
t0 + 1, t0 + 2, . . . , t0 +L} denoting as prediction series, with
the latest observations series X0:t0 = {xt, t = 0, 1, . . . t0}
denoting as condition series.

Instead of predicting the exact value of the prediction
series, which is usually difficult to achieve for counting
data, we model the distribution of the prediction series
P (Xt0+1:t0+L|h) with h as the parameters of the distribution.
We predict h with a neural network fθ from the condition
series X0:t0 so that h = fθ(X0:t0), where θ refers to the
parameters in the neural network.

Therefore, the goal of our time series forecasting is to find
θ that maximizes the likelihood of the prediction series given
the condition series. The maximizing problem is formulated
as

max
θ

N∏
i=0

P (Xi
t0+1:t0+L|fθ(Xi

0:t0)), (1)

where N is the number of training series and i is the ith
sample.

The prediction model is trained on a history arrival trace.
However, the model may fail to give accurate predictions
when the distribution of the arrivals is shifted. Therefore,
we introduce a change point detection mechanism in the
framework to detect changes in the arrival series. When a
change is detected, the prediction model is fine-tuned using
the most recent arrivals.

Considering an arrival series X1:T with length T , we
assume that it is possible to separate the time series into two
non-overlapping partitions such that the distribution of each
partition is different. The time instances that divide the time
series is the change point. Under this scenario, the change
point detection problem can be formulated as follow:

xt ∼

{
Φ0 t < T ∗

Φ1 t ≥ T ∗ (2)

where Φ0 is the distribution of the arrivals before the change
occurs, Φ1 is the distribution after the location or scale shift,
and T ∗ is the change point we want to identify.

IV. BACKGROUND

A. Hierarchical Change Detection Test

CUSUM-type change detection algorithms are effective and
have been long used in online change detection [11]. The
standard CUSUM-type algorithm cumulatively sums the log-
likelihood ratio at each time point. The paradigm detects
changes when the cumulative sum exceeds the preset control
limits. However, these CUSUM-type change detection algo-
rithms cannot estimate the exact change point in the series.

Hypothesis tests can be used to estimate the location of
the change point and are named change point methods. These
change point methods split the time series into two sub-series
and compute the statistical test value of the difference between
the sub-series. Hypothesis testing is performed on the splitting
using the maximum statistical test value. The splitting point is
estimated as the change point if the hypothesis test rejects the
null hypothesis. However, these methods cannot be applied in
online detection because performing the hypothesis test in an
online setting increases the probability of making false positive
detection, known as sequential testing issues [24].

To address this, we propose a hierarchical change detection
test (HCDT) framework proposed in [4] combines CUSUM
change detection algorithms and hypothesis change point
methods. HCDT monitors the time series with the CUSUM al-
gorithm. If the new coming data trigger the CUSUM detection,
HCDT performs a hypothesis test with the hypothesis change
point method to validate the detection. The HCDT framework

2023 19th International Conference on Network and Service Management (CNSM)

does not perform the hypothesis test in every step, which
prevents sequential testing issues. Meanwhile, validating the
CUSUM detection with the hypothesis change point method
can further reduce the false positive detection. In this work,
we develop a novel method within the HCDT paradigm for es-
timating change points in the proposed prediction framework.

B. Probsparse Attention

The transformer model has been widely used in processing
time series data and has achieved great success in many fields.
The attention mechanism introduced in [20] plays a vital role
in the transformer model. The attention module takes query
Q ∈ RLQ×m, key K ∈ RLK×m and value V ∈ RLV ×m as
inputs, where LQ, LK and LV represent the length of the
corresponding series and m is the dimension of an instance in
the input series. The attention function is formulated as

A(Q,K,V) = Softmax
(
QKT

√
d

)
V (3)

The output of the attention function A is the weighted sum
of V, where the weights are calculated from the dot-product
between Q and K, followed by the softmax function applied
column-wise.

Some of the previous works [21], [22] have noted that
the attention weights of query qi have potential sparsity,
which means only a few dot-product pairs (qi, kj) with large
weight contribute to the attention, where qi and kj are the
ith row and jth row of query Q and key K respectively.
In this scenario, the attention function should extract key
features from the value V with dominant weights. On the
contrary, the attention function becomes calculating the mean
of the value V when the attention weights are identical. The
calculation of attention becomes trivial in this circumstance,
which reduces the processing speed and increases memory
usage in processing long sequences.

The ProbSparse attention defines a query sparsity measure-
ment to evaluate the potential sparsity of a query qi [25].
Following the formulation in [26], the attention weight of
a dot-product pair (qi, kj) can be written as a conditional
probability p(kj |qi). If sparsity does not exist in the attention
weights, the attention weights would be close to a uniform
distribution, i.e., q(kj |qi) = 1/LK . The Kullback-Leibler
divergence KL(q||p) can be used to measure the distance
between attention probability p(kj |qi) and the uniform distri-
bution q(kj |qi). KL divergence increases when sparsity exists
in the attention weights, and it decreases when the attention
weights are identical. Therefore, KL divergence can represent
the sparsity of the attention weights for qi. The sparsity
measurement of qi is defined as

M(qi,K) = max
j

(
qik

T
j√
d

)
− 1

LK

LK∑
j=1

qik
T
j√
d

(4)

To reduce the calculation on dot-product pairs, ProbSparse
attention randomly selects LK lnLQ pairs to calculate the
sparsity measurement for a query qi. The queries with the

top c lnLQ measurement are selected and form the new query
metric Q̄ and replace the original query Q in Eq. 3, where c
is a tunable factor.

V. PROPOSED MODEL

In this section, we present a hierarchical framework to
predict a long-time arrival series for the co-simulator to
estimate the performance metrics of the new arrival tasks with
the default scheduling policy.

A. Non-parametric Hierarchical Change Point Detection

As we mention in Section IV-A, HCDT is an effective
framework to detect the changes in an online scenario and has
the ability to estimate change points. However, the original
work [4] does not evaluate the performance of change point
estimation. Furthermore, our framework requires knowledge of
when the change happens in order to adapt the prediction with
the latest valid data. Therefore, we extend its usage to detect
the change point in our prediction framework and rename it
hierarchical change point detection (HCPD).

To detect both location and scale shifts in the time series,
we apply MCUSUM and DD+-CUSUM change detection
algorithms. MCUSUM, presented in [27], is a non-parametric
location shift detection algorithm. It replaces the log-likelihood
ratio with the difference between the new observation and the
sample mean and draws the control chart on the summation
of this difference. DD-CUSUM [13] can be used to detect the
scale increase. However, the original work does not consider
decreasing in scale shift. To address this issue, we propose
an extended version of DD-CUSUM named data-depth plus
CUSUM (DD+-CUSUM) to detect both increase and decrease
shifts in scale.

The data depth R statistic measures the distance between
an observation and the mean of a distribution. Given observed
arrivals xt, the data depth can be formulated as

DDΦ0(xt) = 1− ||EΦ0(U(xt − y))||, (5)

where y ∼ Φ0 is data from distribution Φ0, and the operation
U(x) = x

||x|| . Thus, DDΦ0
(x) is close to 0 if the observation

x is far away from the center of the distribution Φ0. On the
contrary, DDΦ0

(x) becomes large and attains the maximum
value 1 if the observation is near the center of Φ0. In a change
detection problem with a given historical data set y1, . . . ,ym,
the sample data depth is defined as

DDΦ̂0
(xt) = 1− 1

m

∥∥∥∥∥∥
m∑

i=1,yi ̸=xt

U(xt − yi)

∥∥∥∥∥∥ (6)

where Φ̂0 represents the empirical distribution of the data.
The original DD-CUSUM algorithm only considers the

increase of the scale by cumulatively summing the estimated
R calculated from

R+

Φ̂0
(xt) =

∑m
i=1 I(DDΦ̂0

(yi) ≤ DDΦ̂0
(xt))

m
(7)

which is the count of the historical data with a large data depth
compared to the new observation. If the new observation xt is

2023 19th International Conference on Network and Service Management (CNSM)

near the center of the historical data set yi, the data depth of xt

would be greater than most of the historical data, which leads
to a large R statistic value. Hence, 1− R+

Φ̂0
(xt) can represent

the distance between xt and the empirical distribution of the
historical data.

In order to detect the decrease of the scale, we first propose
to estimate the negative R statistic measures by counting the
historical data, which have a smaller data depth than the new
observation. The negative estimate can be represented as

R−
Φ̂0

(xt) =

∑m
i=1 I(DDΦ̂0

(yi) ≥ DDΦ̂0
(xt))

m
(8)

Then, DD+-CUSUM cumulatively sums both positive and
negative R statistic measures and the control chart is per-
formed on the one with the maximum value. The complete
DD+-CUSUM can be formed as follow:

S+
t = max(0, S+

t−1 + (1− R+

Φ̂0
(xt))− k) (9)

S−
t = max(0, S−

t−1 + (1− R−
Φ̂0

(xt))− k) (10)

St = max(S+
t , S−

t) (11)

DD+-CUSUM detects a change when St > h.
The MCUSUM and DD+-CUSUM monitor the arrival

simultaneously and store the new observation in a buffer with
a prefix size. The buffer drops the oldest observation and adds
the newest one if the buffer reaches its size limit. HCPD
detects a potential change if either one of these two CUSUM
algorithms raises a detection flag.

Once the detection algorithms trigger the alarm, a validation
module uses the Lepage-type (LP) hypothesis test [28], which
can detect both location and scale shifts, to validate the change
and estimate the change point with the stored data in the buffer.
We calculate the LP test value on every possible splitting and
performance hypothesis test on the one with the maximum.
If the LP test confirms the change exists, we consider the
splitting point with the maximum statistical test value as the
estimated change point.

B. Arrival Series Forecasting

We design a transformer based encoder-decoder model
with the ProbSparse attention as the self-attention module.
to predict the long-term arrival series. The overall structure of
our transformer model is shown in Fig 2.

1) Encoder: The encoder takes the input arrival series and
the time features as the input. The time features of the arrival
series are represented in vector form and concatenated with the
input arrival series as extra features. The input series is first
processed with a 1-D convolution layer to project the input
series X ∈ RLenc×d into a high dimensions space so that
X′ ∈ RLenc×dmodel . The projected series is processed with
a positional encoding layer to encode order features into the
series.

The encoder contains multiple self-attention blocks. In each
self-attention block, the input is processed with a multi-head
self-attention module with ProbSparse attention. The multi-
head self-attention projects the encoded input to multiple

Fig. 2: The architecture of the probabilistic transformer

queries and key-value pairs so that these projected vectors
contain different information that the attention should focus
on. The output of the multi-head self-attention module is added
to the input of the attention module as a residual block [29] so
that the loss can back-propagate through the attention module
or directly pass to the input.

2) Decoder: In a standard encoder-decoder transformer
model, the decoder takes the output of the encoder and a
start token or its previous predictions as the input and makes
the next prediction. However, the previous predictions are
unavailable at the beginning under the co-simulation scenario.
Meanwhile, the model is required to have fast inference speed
to avoid long scheduling time. Unlike [25], which adds zero
paddings to the input of the decoder to make prediction
simultaneously, we set a sequence of learnable parameters
with the length of maximum prediction Lmax to replace the
zero paddings. In the meantime, a subsequence of the input
series of the encoder with length Lstart works as the start
token of the decoder. Therefore, the start subsequence and
the learnable padding parameters form the input series of the
decoder Xdec ∈ R(Lstart+Lmax)×d. The timestamps are also
added as the time features to the corresponding input.

The decoder also has multiple layers. In each layer, Xdec is
first processed with a multi-head masked ProbSparse attention.
The masked dot product prevents each position from getting
information from the future position. The output of the self-
attention acts as the query in the cross-attention layer, and the
output of the encoder forms the key-value pairs. The decoder
can, therefore, receive the information of the history series and
process it with the decoder input to predict future arrivals.

3) Distribution Prediction: The arrival series represents
the number of tasks that are integers at each timestamp.
Commonly, standard outputs of a DL model are continuous
real numbers. To address this issue, one can round the output
to its nearest integer, but the rounding procedure could lose
information and ignore the distribution feature of count data.
Instead of directly predicting the number of future arrivals, we
predict the parameters of the distribution of the future arrival.
Since the arrival series is a sequence of positive count data,

2023 19th International Conference on Network and Service Management (CNSM)

Algorithm 1 Adaptive Arrival Prediction Framework

Require: History arrivals Xhis, input length Lin, prediction
length Lpred, fine-tuning length Lfine, buffer B with
prefix length, sampling number Nsample

1: Initialization: HCPD, Probabilistic Transformer fθ
2: Apply HCPD to detect change point on Xhis

3: Sample change-point free series from Xhis

4: Train fθ with change-point free series
5: Fine-tuning flag g ← False
6: while new arrivals xt is available at t do
7: Update B with xt

8: if HCDP detects a change point with xt then
9: Estimated change point T̂

10: g ← True
11: Update B← B[T̂ : t]
12: end if
13: if g then
14: if len(B) > Lfine then
15: Sampling fine-tuning data from B
16: Fine-tuning fθ
17: g ← False
18: end if
19: end if
20: Predict µ̂, α̂← fθ(xt−Lin:t)
21: Sample Nsample arrival series with µ̂, α̂
22: end while

our transformer model predicts the parameters of a negative
binomial distribution. The probability of the arrival number of
class ith tasks at time t can be represented as

p(xi
t|µ, α) =

Γ(xi
t +

1
α)

Γ(xi
t + 1)Γ(1

α)

(
1

1 + αµ

) 1
α
(

αµ

1 + αµ

)xi
t

(12)
where µ ∈ R+ is the mean and α ∈ R+ is the shape parameter
of the corresponding negative binomial distribution. Therefore,
the output of the decoder is passed to two independent fully-
connected linear layers with softplus activation function to pre-
dict µ̂ and α̂. The transformer model is trained by minimizing
the negative log-likelihood function.

C. Adaptive Arrival Series Prediction Framework

In real-world systems, the distribution of task arrivals may
change over time. A DL model trained with history arrivals
may struggle to adapt its predictions to unseen arrival distribu-
tions without additional assistance. The prediction on the new
arrival distribution might not be as good as the seen one. This
can reduce the simulation accuracy and negatively affect the
scheduling to make migration and allocation decisions. One
solution is to fine-tune and update the DL model when a new
observation becomes available.

The procedure of the online adaptive arrival prediction
framework is present in Algorithm 1. Suppose we have a
dataset of the history arrivals Xhis. Before the online pro-
cedure (lines 1-5), HCPD is used to find the change points in

Xhis. The training series is generated from Xhis, excluding
those containing change points. The series with change points
contains arrivals from different distributions, which increases
the difficulty for the transformer to learn to predict the
parameters of future arrivals because the transformer needs
to recognize the position of the change point and only focus
on the data after the change point. Therefore, we sample the
series, which is change-free, to enhance the training procedure.

During the online prediction (lines 6-22), the framework
observes a new arrival xt and saves it in the buffer. Once
HCPD detects a change point T̂ , the framework updates
the buffer B to contain the arrivals after T̂ and raises the
flag for the transformer to execute the fine-tuning procedure.
In the fine-tuning procedure, the framework first checks the
length of the buffer (line 14). If the length of the buffer
contains enough data, the framework generates fine-tuning
sample series from the buffer and fine-tunes the transformer
(lines 15-16). Otherwise, the framework postpones the fine-
tuning procedure to gather additional data.

The transformer predicts the parameters µ̂, α̂ of the future
distributions with series xt−Lin:t generated from B (line 20).
Finally, the framework uses Monte Carlo sampling method to
sample Nsample arrival series with the predicted parameters
and the length of each predicted series is Lpred (line 21).
The co-simulator runs simulations with these arrival series and
estimates the QoS with the mean of the simulation results.

VI. EXPERIMENTAL RESULTS

In this section, we quantify the performance of the proposed
model with three experiments.

A. Dataset
1) Synthetically Generated Dataset: The synthetically gen-

erated dataset contains a sequence with 12000 observations
and 20 change points, derived from a negative binomial distri-
bution. By adjusting the count number n and the shape factor
p, we can control the mean and variance of the observations.
The gap between two consecutive changes is at least 400 steps
and at most 1000 steps. The n and p are initialized as 50 and
0.5, respectively, and n is increased or decreased by 25 or 50
at each location shift. The shape factor is chosen from 0.1
and 0.5 to simulate the scale shift. We also include trend and
seasonal data using linear and sine functions. Each observation
represents arrivals gathered by the gateway over a 60-second
period considered as a step.

2) Alibaba Trace Dataset: We use the 2018 Alibaba arrival
trace [5] as the real-world application dataset to evaluate our
model since the arrival of tasks exhibits random changes. This
dataset records data from over 4000 machines across 8 days.
To simplify without losing generality, we focus on arrivals to
the first 50 machines by ID. The trace comprises 12 classes
of tasks. We count the arrivals for every 60 second as one
observation, forming a trace of 11219 observations.

B. Models settings
1) COSCO Simulation Framework: We use the COSCO

framework presented in [2] as the co-simulator. In COSCO,

2023 19th International Conference on Network and Service Management (CNSM)

tasks are generated based on given arrival series and are
built using the BitBrain workload trace [30]. These tasks
are allocated by a scheduling broker using a first-come-first-
service (FCFS) strategy, directing them to the most resource-
available host. COSCO executes the assigned tasks in the
respective simulated hosts within a specified interval and
records the QoS metrics. Simulations are run on an Intel i7-
9750H CPU with 16 GB of memory.

2) Baseline Models: In the first experiment, we consider the
Bayesian online change point detection method (BOCPD) [31]
and the kernel change point detection with RBF kernel [32]
as the baselines to evaluate the performance of our HCPD. By
adjusting the thresholds of the baseline models on change-free
sequence, we aimed for an average run length (ARL) of 500,
denoting the expected steps before a false positive detection.

In the second experiment, we select three prediction models:
mean prediction, moving average (MA) and auto-regressive
integrated moving average (ARIMA) [33], as our baselines
in the arrival forecasting experiment. The most recent 50
observations are used as the training data for these models,
referred to as the reference series. These models are fitted to
the reference series to predict the next 25 steps.

3) Adaptive Framework: The threshold of HCPD is also
selected to achieve ARL 500 with the same experiments as
the baseline change point detection models. The probabilistic
transformer contains 6 layers of self-attention blocks in the
encoder and 6 decoder layers in the decoder, with a hidden
dimension of 512. The model receives a history sequence with
a length of 50 as the reference series and takes the last 25
steps as the start subsequence to forecast the parameters of the
arrivals in the next 25 steps. For both synthetic and Alibaba
traces, the initial 7000 steps are used to pretrain the model
on a single Nvidia Quadro RTX 4000 8GB GPU, with the
remaining steps used for evaluation. In the online process,
fine-tuning lengths, batch size and epoch are set to 150, 32
and 5, respectively, with Adam [34] as the optimizer. With
these settings, the checkpoint of the probabilistic transformer is
about 120MB and the resident memory as 451MB on synthetic
trace and 471MB on Alibaba trace.

C. Evaluation Metrics
We define three performance metrics to evaluate the change

point detection algorithms, which are false positive rate (FPR),
mean detection delay (MDD) and mean absolute error (MAE).
The false positive rate is defined as the inverse of the mean
time of the algorithm given a false positive detection

FPR =
1

1
Nfp

∑Nfp

i=1 si
(13)

where si is the number of steps between the ith false detection
and the last detected change, and Nfp is the number of false
positive detection. MDD is defined as the mean difference
between the change occurring and the time when the algorithm
detects the change. It is formulated as

MDD =
1

Ncp

Ncp∑
i=1

(tdetecti − tcpi) (14)

TABLE I: Performance metric of change point detection
algorithms on synthetically generated dataset

Methods FPR (%) MDD MAE
HCPD 0.25 106.88 75.29

BOCPD 0.23 127.24 117.24
KCPD 0.24 228.82 151.45

where Ncp is the number of change points, tcpi is the time
of the ith change point occurs, and tdetecti is the detection
time for the ith change point. The MAE for the change point
detection is defined as follows

MAEcp =
1

Ncp

Ncp∑
i=1

|t̂cpi − tcpi |

where t̂cpi is the estimated change point for the ith change
point.

When we evaluate the performance of the prediction models,
we calculate the absolute difference between the QoS of the
simulation running with the predicted traces and the simulation
with the true arrivals. We consider two types of QoS per-
formance in our experiments which are the average response
time (ART) and the average service level agreement violation
(ASLAV) of the tasks that arrive at the last observation time
of the reference sequence. The ART is defined as

ART =
1

Ntask

Ntask∑
i=1

rti (15)

where Ntask is the number of tasks that arrive at the last
observation time of the reference sequence, and rti is the
response time of the ith task. The ASLAV is formulated as

ASLAV =
1

Ntask

Ntask∑
i=1

max(rti − slai, 0) (16)

where slai is the maximum response time contractually stip-
ulated in the SLA of the ith task.

D. Results

1) HCPD evaluation: We first evaluate the performance of
HCPD on the synthetic dataset with BOCPD and KCPD as the
baseline models. Table I shows the performance metrics of the
CPD models. While BOCPD has the lowest FPR at 0.23%,
the FPR difference among the three models is minimal, with
KCPD at 0.24% and HCPD at 0.25%. Conversely, the MDD
of HCPD is 106.88, which is 16% and 53% lower than for
BOCPD and KCPD, respectively. Also, HCPD has the lowest
MAE of the distance between the estimated change point and
the true change point compared to BOCPD and KCPD.

2) Framework evaluation: To evaluate the performance of
our proposed online adaptive framework, we run simulations
with the synthetically generated trace and the Alibaba arrival
trace after the 7000th step, using ART and ASLAV as sample
labels at each step. The framework and the other three baseline
models make forecasting at each step. We also evaluate the
effect of the adaptive mechanism by removing HCPD and fine-
tuning the procedure in the framework and refer to it as the

2023 19th International Conference on Network and Service Management (CNSM)

TABLE II: The MAE of ART and ASLAV estimated with
forecasting models on Synthic trance and Alibaba trace

Dataset Synthetic trace Alibaba trace

Mean ART 24.97 40.33
ASLAV 4.58 18.59

MA ART 24.17 52.84
ASLAV 7.45 23.57

ARIMA ART 26.16 47.87
ASLAV 4.27 22.96

Our Model ART 15.28 31.74
ASLAV 3.09 11.21

Model w/o adapt. ART 24.72 34.87
ASLAV 5.38 12.68

Fig. 3: The CDFs of the absolute error of the QoS metrics on
synthetically generated trace

model without adaptation. The digital-twin co-simulator runs
simulations with the predicted arrivals to estimate the ART
and ASLAV of the corresponding step. The performance of
the model is measured by the absolute difference between the
labelled estimated ART and ASLAV.

Table II shows the MAE of the ART and ASLAV estimated
by the co-simulator with arrivals estimated by the correspond-
ing models. Our model outperforms the other baseline models
with 37% lower MAE of ART and 28% lower MAE of ASLAV
testing on the synthetic trace. In addition, the proposed model
also achieves the best performance with 27% and 39% lower
MAE on ART and ASLAV, respectively, on the Alibaba trace.

Figure 3 and 4 show the cumulative distribution function
(CDF) of the absolute error of ART and ASLAV on synthetic
trace and Alibaba trace. These figures present that most of
the traces predicted by the proposed model can well represent
future arrivals. Therefore, the QoS estimated by the simulator
using the adaptive framework is more accurate compared to
the other baseline methods.

These tables and figures also show that the adaptation
mechanism can help the arrivals forecasting model to adapt
to the concept drift in the arrival trace. The MAE of ART
and ASLAV estimated with the adaptive framework are 38%
and 42% lower than the one without the adaption mechanism
on the synthetic trace and 8% and 12% lower when testing

Fig. 4: The CDFs of the absolute error of the QoS metrics on
Alibaba trace

Fig. 5: The MAE of ART and ASLAV with different factors c
of the ProbSparse attention testing on synthetically generated
trace. Stand represent the prediction model with standard
attention function

on Alibaba trace. The adaptive framework is also more robust
compared to the one without adaptation.

We evaluate the complexity of our framework by its average
prediction time, inclusive of fine-tuning. The MA and ARIMA
models take 0.074 and 0.083 seconds respectively on the
synthetic trace, and 0.081 and 0.087 seconds on the Alibaba
trace. Our adaptive framework takes 0.072 seconds on the
synthetic trace and 0.094 seconds on the Alibaba trace. The
processing speed of our framework is comparable to MA,
15% faster than ARIMA on the synthetic trace, but 7% slower
than MA on the Alibaba trace due to more frequent change
detection and fine-tuning.

3) Sensitivity Analysis: A sensitivity analysis is conducted
on the factor c in the ProbSparse attention function, which
determines the number of queries used in the attention cal-
culations and impacts the fine-tuning and inference speed
of the prediction model. We also compare the ProbSparse
attention with the standard attention function to evaluate the
effectiveness of the ProbSparse attention. We set the batch
size to 32, and the fine-tuning epoch is set to 5 during the
fine-tuning procedure.

Figure 5 indicates that as the factor increases, the MAE of
ART and ASLAV decreases due to more queries influencing
the weighted sum via attention instead of simply averaging

2023 19th International Conference on Network and Service Management (CNSM)

Fig. 6: The average fine-tuning time and inference time
consumed by the framework with different factors of the
ProbSparse attention testing on synthetically generated trace.

the series. However, Figure 6 shows increasing computation
speed during fine-tuning and inference with a higher factor, as
more queries require attention computation. Despite negligible
improvement in MAEs with standard attention beyond a
factor of 5 and slower speeds, the proposed framework using
ProbSparse attention with this factor ensures efficient arrivals
estimation and quick inference.

VII. CONCLUSION

In this paper, we have presented an online adaptive arrivals
prediction framework, based on hierarchical change point
detection, to monitor and detect concept drift and a proba-
bilistic transformer model to forecast arrivals. The proposed
framework can leverage a co-simulator to adapt the concept
drift in arrival traces and make better QoS estimation for
scheduling. The experiments on synthetic trace and real-world
arrival trace demonstrate that the proposed online adaptive
framework has the ability to adapt the concept drift in the trace
and provide valuable arrivals to the co-simulator to achieve
better QoS estimation.

Future work may apply the proposed framework in the
digital-twin co-simulation to assist gradient base schedulers,
such as GOBI and GOBI∗ [2], to make better scheduling
decisions in a dynamic Fog system. The framework can also
be used in other scenarios, where the digital-twin model of a
system requires adaptation to a dynamic environment.

ACKNOWLEDGMENTS

We thank Yingzhen Li (Imperial College London) for pro-
viding assistance and comments on this work.

REFERENCES

[1] D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, and W. Wang, “Quality-
of-service in cloud computing,” JISA, Sept. 2014.

[2] S. Tuli, S. R. Poojara, S. N. Srirama, G. Casale, and N. R. Jennings,
“COSCO: Container Orchestration Using Co-Simulation and Gradient
Based Optimization for Fog Computing Environments,” IEEE TPDS,
Jan. 2022.

[3] S. Tuli, G. Casale, and N. R. Jennings, “GOSH: Task Scheduling Using
Deep Surrogate Models in Fog Computing Environments,” IEEE TPDS,
Nov. 2022.

[4] C. Alippi, G. Boracchi, and M. Roveri, “Hierarchical Change-Detection
Tests,” IEEE TNNLS, Feb. 2017.

[5] A. Inc., “Alibaba production cluster data v2018,” 2018. Accessed: 2023-
06-01.

[6] J. Ullman, “NP-complete scheduling problems,” JCSS, June 1975.

[7] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in Cloud data centers,” Concurrency
and Computation, 2012.

[8] K. Han, Z. Xie, and X. Lv, “Fog Computing Task Scheduling Strategy
Based on Improved Genetic Algorithm,” Computer Science, Apr. 2018.

[9] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic
Scheduling for Stochastic Edge-Cloud Computing Environments Using
A3C Learning and Residual Recurrent Neural Networks,” IEEE TMC,
Mar. 2022.

[10] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration Modeling
and Learning Algorithms for Containers in Fog Computing,” IEEE TSC,
Sept. 2019.

[11] S. Kuvattana, S. Sukparungsee, P. Busababodhin, and Y. Areepong,
“Performance Comparison of Bivariate Copulas on the CUSUM and
EWMA Control Charts,” p. 5, 2015.

[12] A. Mukherjee, M. A. Graham, and S. Chakraborti, “Distribution-Free
Exceedance CUSUM Control Charts for Location,” CS-SC, May 2013.

[13] J. Li, X. Zhang, and D. R. Jeske, “Nonparametric multivariate CUSUM
control charts for location and scale changes,” Journal of Nonparametric
Statistics, Mar. 2013.

[14] D. M. Hawkins, P. Qiu, and C. W. Kang, “The Changepoint Model for
Statistical Process Control,” JQT, Oct. 2003.

[15] Z. Harchaoui, E. Moulines, and F. Bach, “Kernel Change-point Analy-
sis,” in Advances in NeurIPS, vol. 21, 2008.

[16] R. P. Adams and D. J. C. MacKay, “Bayesian Online Changepoint
Detection,” Oct. 2007.

[17] G. E. P. Box, Time series analysis : forecasting and control. Wiley
series in probability and statistics, Wiley, 2016 - 2016.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[19] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “DeepAR:
Probabilistic forecasting with autoregressive recurrent networks,” IJF,
July 2020.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances
in NeurIPS, 2017.

[21] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The Long-
Document Transformer,” Dec. 2020.

[22] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating Long
Sequences with Sparse Transformers,” Apr. 2019.

[23] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov,
“Transformer-XL: Attentive Language Models beyond a Fixed-Length
Context,” in Proc. of the 57th AM of the ACL, July 2019.

[24] A. I. Goldman, “Issues in designing sequential stopping rules for
monitoring side effects in clinical trials,” Controlled Clinical Trials, Dec.
1987.

[25] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond Efficient Transformer for Long Sequence Time-
Series Forecasting,” Proc. of AAAI, May 2021.

[26] Y.-H. H. Tsai, S. Bai, M. Yamada, L.-P. Morency, and R. Salakhutdinov,
“Transformer Dissection,” in Proc. of the EMNLP-IJCNLP, Jan. 2019.

[27] R. B. Crosier, “Multivariate Generalizations of Cumulative Sum Quality-
Control Schemes,” Technometrics, Aug. 1988.

[28] G. J. Ross, D. K. Tasoulis, and N. M. Adams, “Nonparametric Monitor-
ing of Data Streams for Changes in Location and Scale,” Technometrics,
Nov. 2011.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Proc. of the CVPR, pp. 770–778, IEEE, June
2016.

[30] S. Shen, V. Van Beek, and A. Iosup, “Statistical Characterization of
Business-Critical Workloads Hosted in Cloud Datacenters,” in Proc. of
the CCGC, May 2015.

[31] A. H. Gee, J. Chang, J. Ghosh, and D. Paydarfar, “Bayesian Online
Changepoint Detection Of Physiological Transitions,” in Proc. of the
IEEE EMBC, pp. 45–48, July 2018.

[32] F. Desobry, M. Davy, and C. Doncarli, “An online kernel change
detection algorithm,” IEEE TSP, Aug. 2005.

[33] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[34] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
Jan. 2017.

2023 19th International Conference on Network and Service Management (CNSM)

