
Look at my Network: An insight into the ISP
Backbone Traffic

Tomas Benes , Jaroslav Pesek
Czech Technical University in Prague & CESNET a.l.e.

Prague, Czech Republic
{benesto3, jaroslav.pesek}@fit.cvut.cz

Tomas Cejka
CESNET a.l.e.

Prague, Czech Republic
cejkat@cesnet.cz

Abstract—High-speed ISP networks provide several challenges
that prevent the creation of long-term datasets for giving insight
into the traffic. Currently, there are no publicly available long-
term datasets capturing the entirety of high-speed ISP networks.
Such networks are traditionally monitored using IP Flows,
which provide enough high-level information about the situation
in the network and support various use cases, such as the
detection of outages or security threats. Even with this type
of aggregation long-term datasets are very unpractical due to
their size. The other problem is that flow monitoring comes
with significant aggregation and common traffic statistics are
brief and lack useful details and require further processing. This
paper addresses these problems and presents a new long-term
aggregated dataset, a detailed analysis of public network traffic
measured on the ISP backbone, and a monitoring architecture
composed of open-source tools capable of using an existing flow
exporter infrastructure. Such insight into traffic helps to design
and develop hardware optimizations, tuning the performance of
monitoring systems, and adapting security detection algorithms.

Index Terms—traffic monitoring; IP flows; traffic statistics;
heavy-tailed distribution; ISP network

I. INTRODUCTION

Network technologies are evolving, and the complexity of
network infrastructures is increasing. Increasing the speed of
network lines requires a sophisticated and fast approach to
packet processing and sufficient memory to track connections.
Since hardware resources and computing power are limited, it
is necessary to consider optimizations of hardware-software
applications. However, such optimization requires a deeper
understanding of the traffic and its distribution.

In addition, networks are increasingly becoming larger,
more complex, and more distributed, making them more
challenging to understand and manage. Monitoring systems
help maintain situational awareness and provide continuous
streams of information about data transfers and activities
of network devices. This functionality is essential, e.g., for
network security, especially enforcing security policies and
detecting security threats. Therefore, monitoring probes must
be precise and powerful enough to analyze all packets and
compute statistics without loss.

Understanding the complexity of a large network allows
proactive management and planning and maintains network
performance, reliability, and security. It can help identify
bottlenecks, recognize patterns, predict future capacity needs,
and detect security threats. In an ISP context, understanding
peering traffic can form peering decisions, optimize traffic

routing, and provide adequate service quality to end users.
Additionally, a deep understanding and monitoring of such a
network are necessary to enhance the development further and
reduce the cost of connection tracking tables and flow caches
designed for use in hardware-based solutions. Therefore, deep
insights into large networks are beneficial and necessary in
our increasingly digital and connected world.

The consecutive survey of the latest resources and related
work revealed that it is very challenging to find or create real
traffic datasets that could be used to study the characteristics
and distribution of high-speed network traffic. The main prob-
lem is the sheer amount of data transferred throughout the
networks that cannot be simply captured and stored. To our
knowledge, there is no publicly available capture of high-speed
that would depict the entirety of traffic over a long period of
time.

Therefore, we present a long-term aggregated dataset ad-
dressing the impracticality of dealing with and sharing a
tremendous amount of data. This paper also presents a com-
prehensive analysis, traffic properties, and detailed statistics
of the presented dataset. The dataset has been created from
a large-scale national research and education network using
our monitoring architecture. To provide a better understanding
of the dataset we briefly present the monitoring architecture,
which has been used to capture the dataset.

II. RELATED WORKS

There are many existing datasets — Table I summarizes
some publicly available datasets of observed network traffic.
Most are outdated or deal with only a limited traffic subset,
or the measurement is not continuous. This exact problem is
also mentioned in [14].

The most relevant group that provides an ISP dataset is
the MAWI Working Group [1, 15]; the most recent available
dataset is from samplepoint-F dated early 2023 within network
speed of 1 Gbit/s. Even some of the recent publications [16]
refer to these datasets, which may provide insufficient insight
into the performance of high-speed networks. The main prob-
lem with providing high-speed network datasets is the amount
of data required to store such datasets. The most recent MAWI
dataset, less than 500 GB in size, would occupy between
12.5 TB and 50 TB of space if it were at a traffic speed of
100 Gbit/s.

When it comes to network monitoring approaches operating
on large scale network the preferred approach is the flow-based
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Table I: Network Traffic Datasets

Dataset Description

MAWI’s Packet traces from WIDE backbone [1] Recognized and up-to-date dataset; however, it is captured on a relatively slow
line, not reaching modern standards in tens of Gbit/s

CESNET-TLS22 [2] Two-week long dataset containing only a TLS protocol from CESNET network
CESNET-QUIC22 [3] One-month long dataset containing only a QUIC protocol from CESNET

network
The CAIDA UCSD Anonymized Internet Traces 2008-2019 [4] Anonymized packet headers in PCAP format, traffic is sampled and non-

continuous, captured on the relatively slow network
UMassTrace Repository [5] Outdated generic captures and more recently capture targeting specific traffic
10 Days DNS Network Traffic from April-May [6] Only DNS traffic and only ten days of 2 months. It does not describe traffic

on a full scale; however, it could be useful for specific tasks.
University of Oregon Route Views Project [7] It provides AS path visualization, topological mapping, host geolocation, etc.

BGP perspective.
UNIBS-2009 [8] Outdated, it describes a completely different reality than today’s; moreover, it

contains relatively little data (approximately 79k flows only).
Internet Traffic Archive [9] Wide variety of outdated captures from wide area network and dedicated servers

between 2000–2008.
Labeled Network Traffic flows [10] Small amount of raw flows, but all flows are labeled, so could be used as a

dataset for machine learning
UNSW-NB15 [11, 12] Small generated flow-dataset with the primary goal of benchmarking intrusion

detection systems.
TON IoT [13] Small flow and capture dataset focused on IoT devices for cybersecurity

oppose to high resource intensive packet-based usually called
deep packet inspection (DPI).

For the flow-based approach (surveyed in [17] and further
elaborated, e.g., in [18]), the monitoring infrastructure extracts
and computes metadata and statistical data for the observed
traffic. This aggregation dramatically reduces the amount of
information that must be stored or analyzed.

There is an existing category of network monitoring tools
using an information aggregation [19, 20]; these usually deal
with similar problems as flow exporters for maintaining per-
flow information. Subsequently, they perform aggregation and
filtering functions with stored flows. However, they typically
perform very specific measurement tasks, for example, Heavy
hitter detection, and etc. The main point of these tools is to
provide accurate and real-time feedback to network operators
to evaluate the situation on the distributed network, even under
DDoS conditions. They usually require a dedicated deploy-
ment of measurement nodes for the measurement technique,
which is impractical.

The most recent flow-based measurement/analysis tool by
Saidy et al. [21] focuses on query-based architecture. The
system Flowyager stores the flows in memory to perform
queries on them. The authors constructed flow datasets IXP
and ISP; however, they have not been published.

Trevisan et al. [22] have looked inside the Italian national
ISP for more than five years and observed the trend of increas-
ing downloaded data for the average network user. However,
the author primarily focused on providing insight into services
within the application layer (L7 in the ISO/OSI model). The
size of their dataset is 31 TB over five years within the lines of
4 Mbps-20 Mbps for ADSL users and 100 Mbps for fiber-to-
the-home (FTTH) users, while providing no information about
their backbone network.

Benson et al. [23] is also an outdated article from 2010.
They studied 10 data centres of different kinds (university
campuses, private data centres, and cloud data centres) and
modelled distributions of the interarrival times of packets.

Gebert et al. [24] analyzed a network for 14 days with 600
users, but their observations are rather outdated since the
measurement is more than 10 years old.

There are flow-based datasets [11–13, 25, 26], which are
primarily focusing on use in machine learning. However, these
types of data sets do not represent the actual behaviour on the
network; they try to cover as many labelled traffic cases as
possible.

To our knowledge, no recent related work focuses on
the extensive detail of long-term analysis of real high-speed
network traffic (100 Gbit/s and potentially more) using flow-
based online monitoring tools that collect advanced statistics
regarding the distribution of data streams over time. However,
we have drawn from previous publications to include com-
monly used statistics and metrics the community monitors.

Figure 2: Flow intervals visualized across aggregation win-
dows. The top numbers visualize the number of active flows
inside the given window.

III. METHOD OF INTERPRETATION OF FLOW INFORMATION
IN A TIME-BASED DOMAIN

A, Flows: The flow-based monitoring approach was ex-
plained in detail, e.g., by Hofstede et al. in [27]. The com-
monly used representation of flow data is currently Net-
flow [28] or IPFIX format [29]. This section emphasizes how
packets are associated with a given flow using flow keys
because it is the most crucial concept for fully understanding
our aggregation architecture.
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(a) The number of active flows during one
day.
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(b) The number of active flows during one
week.
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(c) Unusual traffic containing possible scan-
ning or an SYN flood.

Figure 1: Number of active flows from different time points of the measurement.

B, Flow data in time windows: Bidirectional flow [30]
information is better for the interpretation and understanding
of traffic than traditional unidirectinal ones. This leaves us
with aggregated information, which is contained in a time
interval defined by the first packet and the last packet inside
the flow. Unfortunately, even this aggregation creates too large
an amount of data in 100G networks to create any practical
dataset.

Therefore, it is useful to aggregate the data on the fly and
compute statistics that can explain the distribution of the traffic
within each time interval of the observed long-term period. We
have chosen a time-based aggregation using a time window
of one minute. A predefined set of statistics is computed
using a set of overlapping flows for a given time window.
This example situation is shown in Figure 2, where the flows
are displayed as bars spreading across single or multiple time
windows t+n. Additionally, on the top, we can always see the
current number of active flows for a given time window. Note
that the aggregation intervals are in the order of minutes, which
keeps the number of splittings of bursts, which are common
in cloud infrastructures, into separate windows relatively low
compared to the total volume of traffic.

ISP traffic
IPFIX exporter

flow_scatter

rules.rl

flow_scatter
scalar_aggregator scalar_merger repeater

files split by
time interval

MySQL

Grafana

Figure 3: The schema shows flow-based infrastructure to
capture, process, and visualize information about the network
traffic of an ISP peering line.

Unfortunately, the traditional flow information does not
contain any items regarding the distribution of the packets
over its time interval. For statistics such as the “number of
bytes,” “number of packets,” etc. We chose to proportionally
distribute the information across all overlapped time windows

Table II: Flow features and their descriptions

IP Flow Feature Description

BYTES Total number of bytes in the flow
PACKETS Total number of packets in the flow
SRC_IP The IP address from which the flow originated
DST_IP The IP address to which the flow is destined
SRC_PORT The port of the originating device
DST_PORT The port of the destination device
PROTOCOL The L4 protocol used for the flow (e.g., TCP, UDP)
TIME_FIRST Timestamp of the first packet in the flow.
TIME_LAST Timestamp of the last packet in the flow.
FLOW_KEY Flow key for unidirectional flow
TCP_FLAGS TCP flags if TCP protocol is used

to avoid overestimating the characteristics in long flows, as
some values would then be aggregated multiple times across
multiple windows or one time into a single window.

Other more simple information, such as “how many active
flows” or “how many source ports”, simply sums the number
of flows overlapping on top of the current time window t.
These are not affected by inaccuracies caused by the aggrega-
tion of flow data.

IV. MONITORING ARCHITECTURE

In the following section, we describe the components of our
scalable monitoring infrastructure composed of open-source
tools, as shown in Fig. 3. These days flow exporters are
commonly used for gaining basic insight into the networks. We
are trying to extend the insight by using the pre-existing in-
frastructure of these exporters. The measurement is compatible
with any flow exporter as long as it provides features shown
in Table II and is using a widely used IPFIX data protocol.
We take the input IPFIX stream and separate it into N parts
to enable parallel processing using our aggregation method.
The aggregation of computed statistics is fully configurable
and controlled using a rules file for the scalar aggregator.
Any additional fields provided by flow-exporters are passed
through the infrastructure architecture to the aggregators and
can be used by the rule set. After the aggregation, we merge
the results and save them into permanent storage.

A, Flow exporter: As a flow data source, we use ipfix-
probe [31], a robust open-source exporter offering a com-
prehensive suite of features for inspecting network traffic. It
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(a) Duration of flows (b) Number of packets in the bin (c) Number of bytes in the bin

Figure 4: Time-oriented histograms of duration. The vertical axis uses a logarithmic scale, and each histogram bin aggregates
flows with similar duration. The horizontal axis corresponds to the 1-minute time windows.

supports hardware-accelerated network cards to monitor even
100 Gbit/s lines and is faster using Network Development Kit
(NDK) or Data Plane Development Kit (DPDK).

B, Scalability: The architecture can deploy any number of
aggregation nodes to process high volumes of data efficiently.
This is managed by the flow scatter node shown in Fig. 3.
It splits the input flow stream into N parts using a hashing
method based on the flow key. We can then scale the number
of nodes to provide the necessary processing power for a given
network.

C, Aggregation of flows: In our study, we employ a scalar
aggregation (included in the NEMEA system [18]) to analyze
the properties and behaviour of flows. These scalar aggregator
nodes are shown in Fig. 3. It is a special case of an aggregation
process over time, where the output is a single vector of
statistics per fixed time window.

The main power of scalar aggregation is the ability to
configure a set of computed statistics and the time window
size. The set of statistics is specified using a series of rules.
The rules always consist of a label (name of the new computed
statistic), operation, and a filter. Operation defines a statistic
calculation consisting of various functions, which always
operate on the fields exported by the flow exporter listed in
Table II. The scalar aggregator then uses the set of rules as
input depicted in Figure 3. Thanks to this the aggregation
process can be simply modified/configured to accommodate
most of the specific monitoring needs.

D, Scalability merging: At the end of the multiple aggre-
gations, the results need to be aggregated into a single one
to represent the entire input flow stream. This is done by the
scalar merger node shown in Fig. 3. The scalar merger uses
the same rules set as the aggregation and carefully applies
appropriate functions to merge the partial results into a single
one.

Table III: Basic descriptive statistics for a 1-minute window
calculated across the whole measurement period.

Variable Mean (SD) Min Q1 Q3 Max

Flow average duration [s] 12.04 (3.06) 2.71 10.20 14.46 18.07
Data transmitted [GB] 45.59 (27.67) 5.38 21.84 65.66 215.66
Data TCP [GB] 28.57 (17.33) 3.24 14.02 41.11 159.99
Data UDP [GB] 16.12 (10.63) 0.90 7.20 23.69 54.85
Number of flows [MF] 1.10 (0.78) 0.38 0.58 1.44 5.83
Packets [MP] 53.85 (32.25) 7.54 26.02 77.85 243.92
Average packets per flow 53.14 (18.33) 5.49 38.56 64.62 172.26

E, Output: The computed statistics are efficiently stored in
two primary ways by the repeater node shown in Fig. 3.
Firstly, the results are stored in a MySQL database for real-
time visualization using the open-source platform Grafana.
Secondly, they are stored in a file system with periodic
backups.

V. MEASUREMENT AND ANALYSIS

This section presents traditional metrics, such as the number
of flows or packets on the network, etc. We demonstrate
the differences in traffic during weekdays, weekends, days,
and nights and point out some of our observations from our
extensive traffic data analysis. Lastly, we focus on showing
the heavy-tail nature and shape of the traffic.

A, The environment of the experiment: The measurement
was conducted in CESNET2, the national research and educa-
tion network in the Czech Republic. It interconnects many
academic institutions, research organizations, governmental
offices, and others. It represents around 500 K users. There
are multiple 100 Gbit/s peering and transit links; six mon-
itoring probes monitor them at the infrastructure perimeter.
The probes are equipped with custom hardware cards with
FPGA to accelerate packet processing created by Liberouter
project [32]. The flow collector receives an average rate of
about 150 K bidirectional flow records per second from 8
peering lines. Measurement for this paper was performed from
February 25th, 2023, to May 3rd, 2023, using one monitoring

2023 19th International Conference on Network and Service Management (CNSM)



Table IV: Description of network traffic volumes (flows, bytes, packets) for different periods (day/night, weekday/weekend).

Flows [MF] Bytes [GB] Packets [KP]

Mean (SD) Min Q1 Q3 Max Mean (SD) Min Q1 Q3 Max Mean (SD) Min Q1 Q3 Max

Day Weekday 82.27 (25.65) 13.87 66.88 101.57 243.92 69.97 (22.40) 10.73 56.39 86.54 215.66 1.56 (0.79) 0.48 1.00 1.82 5.83
Weekend 38.30 (12.13) 10.68 30.17 44.64 88.44 32.52 (10.02) 7.76 26.06 37.69 88.40 0.70 (0.79) 0.44 0.59 0.74 3.15

Night Weekday 34.21 (21.36) 7.54 17.07 46.63 108.10 28.50 (17.92) 5.37 14.09 39.64 98.32 0.89 (0.72) 0.38 0.51 0.84 3.67
Weekend 27.69 (17.73) 8.38 14.43 37.01 93.43 23.28 (14.76) 5.54 12.07 31.59 98.58 0.59 (0.36) 0.38 0.47 0.59 3.27

probe that observes one of the 100 Gbit/s lines to the Czech
internet exchange point (NIX.CZ), which carries the majority
of public traffic of CESNET2.

B, Measured statistics: The day is defined as the time period
of from 6 to 20 hours of local time; otherwise, there is a night.
The weekday is defined as commonly understood Monday
till Friday; otherwise weekend. These heavily depend on the
country’s culture where the measurement is conducted. We
primarily defined these properties to separate the results and
make them more presentable. Students and workers mainly
use the network during their work time period. Due to the
specific nature of our network, we have chosen this view
to separate weekends and weekdays due to their significant
traffic difference. Additionally, we wanted to highlight the
rush hour, which is on our network during the middle of the
weekdays. Traditionally is the rush hour, on home-connected
ISP networks, around 6 pm-8 pm when people are coming back
from home.

Table V: Top prevalent ports (source and destination) from
one-month perspective.

Top ports by flows Top ports by packets

Port Portion [%] Service Port Portion [%] Service

443 55.10 https 443 76.74 https
53 31.73 domain 80 7.62 http

123 4.24 ntp 1095 2.04 nicelink
0 2.12 icmp 0 1.88 icmp

80 1.67 http 873 1.74 rsync
5222 1.10 jabber-client 53 0.54 domain

993 0.23 imaps 1194 0.33 openvpn
25 0.14 smtp 993 0.25 imaps

445 0.13 microsoft-ds 5222 0.18 jabber-client
22 0.10 ssh 554 0.17 Rtsp

When we mention the number of flows, we always refer to
the number of active flows, ergo the number of overlapping
flows in a given time window. Such a number is related to the
number of flows kept inside a flow cache of flow exporters,
which is controlled (and prolonged for short flows) by inactive
timeouts. Typically, UDP flows do not have the connection-
ending condition; thus, flow exporters have an inactive timeout
to wait for possible following packets within the same stream.
Due to this property of the flow exporters, the number of flows
always represents the worst-case scenario on the network. It
is essential to understand this metric to interpret the results
accordingly. This metric should be more accurate for network
applications than commonly used flows per second, obscuring
the network traffic’s reality in certain situations.

C, Volumetry: This section presents an empirical analysis
of an approximately four-month data collection period, scru-

Table VI: Table of throughput (byte-wise and packet-wise)
across all one-minute windows.

Estimated throughput [Gbps] Packet rate [MPps]

Mean (SD) Min Q1 Q3 Max Mean (SD) Min Q1 Q3 Max

6.08 (3.69) 0.72 2.91 8.76 28.75 53.82 (32.25) 7.54 26.02 77.85 243.92
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Figure 5: Histogram of detailed flow, packet, and size distri-
bution in 1-minute windows during the middle of the day. The
black horizontal line denotes the duration mean of flows.

tinizing multiple components — flows, packets, and bytes
transmitted. We show off the different views of the network
traffic to provide insight into any network application dealing
with a specific network layer and emphasize the difference
between flow-based and packet-based network applications.
Table IV shows basic volumetrics (flow-wise, packet-wise,
byte-wise). Here we can see the total volumes of flows,
packets and bytes being transferred throughout the network in
different time periods. The most notable difference is between
a weekday and weekends across all of the domains. The
traffic during the night is very similar to the traffic during the
weekend, which is caused by most of the users being inactive
during this period of time.

Figure 1 shows a progression of the number of active flows
throughout the day (1a) and the week (1b). It is worth noting,
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Table VII: Proportion (fraction of all active flows) of L3 (IPv4/IPv6) and L4 (TCP/UDP) protocols across time windows.

Flows [%] Bytes [%] Packets [%]

Mean (SD) Min Max Sum [GF] Mean (SD) Min Max Sum [PB] Mean (SD) Min Max Sum [TP]

IPv4 72.14 (7.24) 14.73 95.58 80.62 80.93 (5.97) 9.19 95.73 3.53 83.15 (4.40) 17.75 94.41 4.31
IPv6 27.86 (7.24) 4.42 85.27 25.54 19.07 (5.97) 4.27 90.81 0.89 16.85 (4.40) 5.59 82.25 0.90
TCP 54.19 (7.67) 12.14 81.39 59.98 63.69 (6.61) 40.95 96.76 2.77 65.14 (5.63) 47.89 94.72 3.36
UDP 43.73 (7.20) 17.88 87.19 44.52 33.37 (7.24) 2.26 52.06 1.56 32.28 (6.41) 3.95 49.05 1.77

contrary to expectations for public ISP networks, that the peak
traffic in our monitored network does not occur in the evening.
Instead, as this is predominantly a working network, the rush
hour appears before noon, indicating a specific usage pattern
and showcasing the characteristic behaviour of this type of
network.

Figure 1c illustrates a time period where we noticed an
unusual traffic of around 2 million flows, half of which
were TCP flows containing only SYN packets. While this
pattern could suggest a potential scanning or SYN-flood attack
treating this observation as a hypothesis requiring further
investigation is essential.

Figure 6 visualizes all the days included in our measurement
grouped by their weekday. The main curve represents the mean
value of all respective weekdays, and the gradient represents
the overlap of all the respective weekdays. Here we can
see the other specific factor of your network, which is that
the weekend traffic is absolutely different from the weekday
traffic. This makes sense because students and workers mainly
use our network during their work time period.

Table III summarizes the volumetric and overall information
across all the measurement windows. It represents information
transmitted every 1-minute window over the network. This
information can be used to have an approximate load for any
network application running on such 100 G link.

Table VI shows the byte and packet rates on the mea-
surement probe. This metric is an approximation for these
rates from the flow interval information. Due to the nature
of the measurement, we do not have the exact values for
each time window on the flow-based aggregator. The number
of packets/bytes is always equally distributed to all the time
windows the flows cover, decreasing the actual network’s
peaks. Thus it should be taken as an orientation value instead
of an exact view of the traffic.

D, Protocols: Table VII shows the portions of traffic trans-
mitted throughout the network by L3 and L4 protocols. The
percentage is stated for each respected domain to demonstrate
the difference in traffic nature. We can see that IPV4 is still the
dominant protocol over IPV6 in all of the cases. Additionally,
we can unexpectedly see that the TCP is dominant over UDP
in the number of flows, which is rather unexpected due to the
overall number of short flows inside the traffic. Moreover, the
average of transmitted bytes and packets by the UDP flows
is also unexpectedly very close to the number of bytes and
packets transmitted by the TCP flows. The other most notable
information shown in Table VII is the total number of flows
observed by our measurement which reaches the order of

Giga Flows, the number of packets reaches Tera Packets, and
the number of processed reaches the order of Peta Bytes.
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Figure 6: Number of active flows throughout selected days of
the week.

Table V summarizes our network’s most frequently ob-
served protocols/ports from both packet and flow perspectives,
based on the top twenty source and destination ports. We
currently estimate the L7 protocol based on the lower of
the source and destination ports. In our list there are some
unexpectedly high-range ports, we surmise this might be due
to the use of common protocols like HTTPS or, more likely
lesser-known services’ usage of these ports. Our dataset does
not yet contain the port aggregation part of the traffic that will
be added in the future. We acquired this statistic using our
internal flow monitoring tools mainly to complete the gathered
statistics as other related work is doing the same [1].

E, Traffic distribution: Traffic on ISP networks tends to be
heavy-tail in nature. This is shown by the histograms in Fig-
ure 5, showing the distribution of flows according to their time
lengths in the chosen time windows. Each time interval has a
number of flows, packets, and bytes that belong to a group of
flows with the given length. More than 70% of the flows (short
flows) contain less than 3% of packets and 2% of bytes. More
than 70% of packets and bytes are contained in less than 10%
of flows (long flows), commonly called heavy flows. All of our
bin measurements end with the last bin (9–18 min) due to the
configuration of the active timeout of the flow exporter. It is
set to 10 min during all of our measurements. This causes all
flows longer than the active timeout to be separated into two
flow records. Our measurement does not contain any collector,
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which would stitch these flows together, so our view is limited
to a maximum of 10 minutes.

Looking at the flows’ min, max, and mean values can
be very misleading when inferring information about the
network’s traffic. This obstruction usually causes most vi-
sualization attempts to depict the situation on the network
incorrectly. This can be seen in Figure 4, a histogram that tries
to visualize the progression of the number of flows according
to their lengths during a week. The first figure shows that most
flows are shorter than 1 ms. To display the proper magnitude
of the actual traffic of the flows, we have to show the number
of packets and bytes transmitted instead of the flow count.
The second figure shows the sum of bytes transferred inside
the bin, and the third is the sum of packets transferred inside
the bin.

VI. CONCLUSION AND FUTURE WORK

We published all the information gathered for our CESNET
ISP network as a dataset in the form of a CSV file with the
statistics gathered available at [33] for other researchers. We
have given researchers access to detailed information about an
ISP network, a complex field that lacks comprehensive data.
We processed and extracted the most interesting metrics, in
our opinion, to allow researchers to optimize future research
for ISP networks. We presented novel views on the data
gathered, such as packet, byte, and flow domains, to highlight
the effect of heavy-tail traffic on the ISP network. Lastly,
provide information on the difference between traffic during
different periods of time according to the system’s location to
allow the service to optimize its computational resources and
reduce maintenance costs.

REFERENCES

[1] “MAWI Working Group Traffic Archive,” [Online]. Available: https:
//mawi.wide.ad.jp/mawi/.

[2] J. Luxemburk et al., “Fine-grained TLS services classification with
reject option,” Computer Networks, vol. 220, p. 109 467, Jan. 1, 2023,
DOI: 10.1016/j.comnet.2022.109467.

[3] J. Luxemburk et al., “CESNET-QUIC22: A large one-month QUIC
network traffic dataset from backbone lines,” Data in Brief, vol. 46,
p. 108 888, Feb. 2023, DOI: 10.1016/j.dib.2023.108888.

[4] “The CAIDA Anonymized Internet Traces Data Access,” CAIDA.
(Mar. 21, 2019), [Online]. Available: https://www.caida.org/catalog/
datasets/passive dataset download/ (visited on 06/18/2023).

[5] “UMass Trace Repository,” [Online]. Available: http://traces.cs.umass.
edu/index.php/Network/Network.

[6] M. Singh et al., “10 days DNS network traffic from april-may, 2016,”
vol. 2, May 7, 2019, DOI: 10.17632/zh3wnddzxy.2.

[7] “University of Oregon Route Views Project,” [Online]. Available: http:
//www.routeviews.org/routeviews/.

[8] “The Telecommunication Networks Group. (UNIBS),” [Online]. Avail-
able: http://netweb.ing.unibs.it/∼ntw/tools/traces/.

[9] “Traces In The Internet Traffic Archive,” [Online]. Available: https :
//ita.ee.lbl.gov/html/traces.html (visited on 06/18/2023).

[10] “Labeled Network Traffic flows - 141 Applications,” [Online]. Avail-
able: https://www.kaggle.com/datasets/jsrojas/labeled-network-traffic-
flows-114-applications (visited on 06/18/2023).

[11] N. Moustafa et al., “UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in 2015 Mil. Commun. Inf. Syst. Conf. MilCIS, Nov. 2015, pp. 1–6,
DOI: 10.1109/MilCIS.2015.7348942.

[12] M. Sarhan et al., “NetFlow Datasets for Machine Learning-based
Network Intrusion Detection Systems,” version 1, 2020, DOI: 10 .
48550/ARXIV.2011.09144.

[13] N. Moustafa, ToN IoT datasets, IEEE DataPort, Oct. 16, 2019, DOI:
10.21227/FESZ-DM97.

[14] A. D’Alconzo et al., “A Survey on Big Data for Network Traffic
Monitoring and Analysis,” IEEE Trans. Netw. Serv. Manag., vol. 16,
no. 3, pp. 800–813, Sep. 2019, DOI: 10.1109/TNSM.2019.2933358.

[15] K. Cho et al., “Traffic data repository at the WIDE project,” in 2000
USENIX Annu. Tech. Conf. USENIX ATC 00, San Diego, CA: USENIX
Association, Jun. 2000, [Online]. Available: https://www.usenix.org/
conference / 2000 - usenix - annual - technical - conference / traffic - data -
repository-wide-project.

[16] G. Vormayr et al., “Why are My Flows Different? A Tutorial on Flow
Exporters,” IEEE Commun. Surv. Tutor., vol. 22, no. 3, pp. 2064–2103,
2020, DOI: 10.1109/COMST.2020.2989695.

[17] B. Li et al., “A survey of network flow applications,” Journal of
Network and Computer Applications, vol. 36, no. 2, pp. 567–581,
Mar. 1, 2013, DOI: 10.1016/j.jnca.2012.12.020.
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