
A Fair Approach to the Online Placement of the
Network Services over the Edge

Masoud Taghavian∗†, Yassine Hadjadj-Aoul∗‡, Géraldine Texier ∗†, Nicolas Huin †, Philippe Bertin∗§
∗IRT-BCOM, France; firstname.lastname@b-com.com

†IMT Atlantique/IRISA/Adopnet, France; firstname.lastname@imt-atlantique.fr
‡University of Rennes, Inria, CNRS, IRISA, France; firstname.lastname@irisa.fr

§Orange, France; firstname.lastname@orange.com

Abstract—The unavoidable transition from rigid ded-
icated hardware devices towards flexible containerized
network services, introduced by Network Function
Virtualization (NFV), brings novel opportunities while
presenting several new challenges. Indeed, meeting the
expectations of NFV in post-5G networks depends
on the efficient placement of the services. The online
placement of network services, demanding strict end-
to-end latency requirements, with restricted computing
resources presents a challenging problem which is worth
investigating. We propose a Branch-and-Bound search
approach for finding optimal placements of the network
services by applying several cost functions to maximize
the service acceptance. Extensive evaluations have
been carried out, and the results confirm significant
improvements when we consider a fair distribution of
the resources on the edge.

Index Terms—Network function virtualization, Place-
ment, Branch-and-Bound, Edge, QoS.

I. Introduction
Network operators adopt Network Function Virtualisa-

tion (NFV) and Software-Defined Networking (SDN) in 5G
networks to create more flexible networks that can rapidly
integrate new services. In NFV and SDN, service placement
is a crucial step that involves allocating heterogeneous
network resources for service requests meeting Quality
of Service (QoS) constraints. In terms of complexity, the
problem of the placement falls into the class of NP-
Complete [1]. It is encountered in various NFV uses-cases in
post-5G networks, ranging from Virtual Network Function
Forwarding-Graph (VNF-FG) placement and Network
Slicing to virtualization of the Internet of Things (IoT),
Content Delivery Network (CDN), and Core Network (CN),
following many objectives and constraints including the
resources, QoS requirements, energy consumption, Revenue
to Cost (R2C), Service Acceptance (SA), etc. [2]. We are
curious about improving the SA as our objective which is
defined as the number of services that can be placed over
the network subject to the resources and QoS requirements.

Two general categories considered for the placement prob-
lem in the literature are offline and online placements. In an
offline placement scenario, we know all the service requests
in advance, while in an online placement scenario, we do
not have any information about future service requests,
and we need to make a placement for a service request

as soon as it arrives (we may also have time restrictions
for performing the placement) [2]. In offline placement, by
a well-defined Integer Linear Programming (ILP) model,
we can perform an optimization to find the maximum
number of accepted services (a.k.a. acceptance ratio). In
online placement, although we do not know the service
requests beforehand (consequently, we can not optimize
directly the number of accepted services), we can ensure
that the placement of the current service request enhances
the chances of accepting future service requests. This can
be done by optimizing a cost function consistent with our
objective. The online placement of the network services,
demanding strict End-to-End (E2E) latency requirements,
over the edge networks, with restricted computing resources
presents a challenging problem worth investigating. To meet
the required latency of the network services, we can not
place them on the clouds far from the end users, where
the resources are abundant. Some services must necessarily
stay on the edge, where we are not generous in spending
these resources.

Even though the problem of the placement has been
investigated in several related areas, to the best of our
knowledge, the placement of the service requests with strict
E2E latency on the edge network having limited node
resources, considering user-location and anti-affinity is not
yet addressed.

Generally, the proposed placement approaches opti-
mize the cost of the resources or QoS requirements like
bandwidth and latency. A network service requires node
resources (a.k.a. computing resources) for deploying its
Virtual Network Functions (VNFs) and link resources
(a.k.a. network resources) for realising its Virtual Links
(VLs). The optimization involves placing the VNFs as close
as possible to the user-location and the other VNFs, to
minimize the bandwidth usage and/or the E2E latency.
We show that this optimisation approach can have a
devastating effect on edge networks with limited node
resources, it can lead to draining the resources in the
proximity of the end users, which results in service rejection.
Accordingly, we do not follow an optimization approach
toward the bandwidth/latency, however, we consider them
as constraints that need to be satisfied to maximum SA.

The contributions of the current work can be summarized

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP

as follows. We model the problem in ILP and resolve the
model to obtain the global optimum (which can only be
achieved in an offline scenario). We propose an efficient
approach based on Branch-and-Bound (BnB), capable of
achieving optimal and near-optimal results according to
several cost functions and search strategies. We explore
several cost functions and demonstrate the inconsistency of
bandwidth and/or latency optimization, and the benefits
of fair placement, to maximize SA.

The fairness of our approach can be explained in two
ways. Our achieved improvements are due to the fair
distribution of the resources in our placements. On the
other hand, our approach makes a fair compromise between
the service provider and the network/cloud provider. The
service provider prefers that the realized latency of their
services be the lowest possible (ideally zero), whilst the
network provider would rather it to be the highest possible,
allowing them to push the placement of the services from
the edge to the clouds where the resources are abundant and
cheaper. The maximum acceptable latency for the realized
services is where we can work to meet the expectations of
both sides.

This paper is organized as follows. First, we explore
the related works in Section II. We present our ILP and
Column Generation (CG) formulation of the problem in
Section III. Then, we provide a comprehensive description
of our BnB approach in Section IV. In Section V, we
explore the evaluations to assess the efficacy of our proposed
solution. We will conclude in Section VI.

II. Related Work
Studying the placement problem in existing research

begins with the advent of NFV. It is frequently dealt with
in different use cases, considering different categories of
the objectives.

A substantial portion of the studied placement ap-
proaches includes the Linear Programming (LP) solutions,
where the problem is formulated mathematically in ILP or
Mixed Integer Linear Programming (MILP).

In [3], the placement is investigated for the network
services under multiple constraints to maximise the SA,
initially by suggesting an ILP, and subsequently a heuris-
tic. They consider bandwidth and latency for the links,
and computing resources for the nodes on a star-centric
edge/cloud network topology. Although strict requirements
of E2E latency of the service requests and the anti-
affinity rules are not studied, limited node resources were
considered on the edge, and they demonstrated that a
balanced allocation of the resources can improve the
number of accepted services.

Jin et al. try to address VNF placement problem in [4],
considering the resource shortage on the edge with latency
guarantees. First, they formulate the problem in MILP
to minimize the consumption of the computing resources
(by sharing and reusing the already placed VNFs), and
the bandwidth. Note that using an already placed VNF

reduces the cost of placing a new VNF, but it may result
in using more bandwidth and latency to access that VNF.
Although they did not consider anti-affinity rules, they
proposed an interesting Depth-First Search (DFS) based
algorithm for placing the VNFs and the VLs to obtain
near-optimal solutions for an online placement scenario.

The placement problem on the edge is also investigated
in [5], using MILP over batch-based service requests,
minimizing the overall network latency. They show that
their model can improve the acceptance rate of the services
with strict latency requirements, via sharing the already
placed VNFs and considering the affinity rules. They define
an affinity matrix to identify the VNFs with high-affinity,
that can be placed over the same network node. High-
affinity is defined when two VNFs exchange a big amount of
data flow, while low-affinity or anti-affinity is considered to
allow critical VNFs to be placed on separate network nodes
(in case of failure). They proposed a heuristic placement
algorithm for big networks and a large number of requests,
and they compared it with a Random-Fit algorithm.

Even though the ILP-based methods guarantee opti-
mality, they could face challenges related to scalability.
Performing an exact approach could require a long exe-
cution time for achieving an optimal result, which could
make restrictions for using in large-scale networks. This
constraint poses a significant obstacle for online placements
which may have constraints on the execution time.

Heuristic approaches are often retained when it comes to
scalability. Best-Fit is one of the most popular placement
methods, which places the VNF by sorting the nodes
according to their resources and placing the VNFs in an
iterative way. [6] studies heuristic methods (including the
Best-Fit), and the authors propose an algorithm based on
a multiple-level graph to find near-optimal results in a way
that can scale well to the bigger networks. They evaluate
the execution time, the acceptance ratio, and the average
placement cost regarding the assigned resources.

In [7], an adaptive heuristic approach is proposed to
maximize the total throughput of accepted requests in an
edge/core cloud network, considering anti-affinity rules.
They try to avoid VNF consolidation to avoid severe
performance degradation (a.k.a. VNF interference), which
is intolerable for some QoS-sensitive 5G use cases (e.g.,
autonomous driving and 4K/8K HD video).

In spite of being able to achieve the results as quickly as
possible, heuristics do not offer the quality. Meta-heuristic
and evolutionary algorithms represent a different direction
to solving the placement problem. In [8], a fast sub-optimal
Tabu Search based approach is proposed to minimize
the end-to-end latency and the overall deployment cost.
Although they are effective at overcoming local optima,
these algorithms often are hindered by unpredictability,
particularly regarding execution time, which is of utmost
importance in online placement.

Sophisticated AI search algorithms and innovative break-
throughs in Machine Learning (ML) (especially in Deep

2023 19th International Conference on Network and Service Management (CNSM)

Table I
Notations

Name Description

G = (V, E) Substrate network
V Set of nodes of the network
E Set of links of the network

ω+(v) Outgoing neighboring nodes of v ∈ V
ω−(v) Ingoing neighboring nodes of v ∈ V

Be Bandwidth available on the directed link
from v ∈ Fk to j ∈ w+(v)

Hk = (Fk, Lk) Virtual graph of service k
Fk Set of VNFs to be placed for service k
Lk Set of VLs between the VNFs of service k

ω+(f) Outgoing neighboring VNFs of f ∈ Fk

ω−(f) Ingoing neighboring VNFs of f ∈ Fk

Bl Bandwidth requested between the two VNFs of
l ∈ Lk

Cf Computing resources requested by f ∈ Fk

Cv Computing resources available at v ∈ V
De Latency experienced on link e ∈ E
Dk Latency requested for service k ∈ K
Dl Latency requested between the two VNFs of

l ∈ Lk

Reinforcement Learning (DRL)) have recently caught the
interest of the community. An ILP placement approach is
proposed in [9] for low-latency IoT services on Multi-Tier
Mobile Edge Networks to maximize the throughput and
the SA ratio. They devise a Reinforcement Learning (RL)
approach to address the online placement of the requests,
but they do not take into account anti-affinity rules.

III. The placement problem with fixed user
locations

The placement problem is defined as placing a service
request graph on an Substrate Network (SN) graph. A
service graph k ∈ K, where K is the set of services, is
indicated by a directed graph Hk = (Fk, Lk), containing a
set of VNFs Fk, and a set of VLs (connecting the VNFs)
Lk, plus Service Level Agreements (SLAs) (meeting the
QoS requirements). A VNF f ∈ Fk requests a subset of
resources (e.g., CPU Cf), and each VL l ∈ Lk demands
an amount of bandwidth Bl. Likewise, a SN is represented
by a directed graph G(V, E) of its nodes V and links E. A
node v ∈ V has a resource capacity (Cv), and a link e ∈ E
has a bandwidth capacity of Be, besides QoS parameters
(e.g., E2E latency). Finally, we consider that a VNF f ∈ F
can only be instantiated on a subset of nodes Vf ⊆ V
of the SN. In the case of a user location, this subset can
be reduced to only one node. The problem is finding the
mappings of the VNFs and the VLs of the service requests
into the network nodes and the network paths respectively,
subject to the constraints (Table I represents notations).

Affinity and anti-affinity rules are used in cloud comput-
ing for creating a balance between the performance and
reliability of the placed service. Affinity proposes placing
the VNFs on the same network node for improving inter-
networking performance. While anti-affinity is employed

to enhance the reliability and availability by avoiding
certain VNFs of a service from using the same physical
resources in an effort to decrease the consequences of a
network node failure [10]. Moreover, placing the VNFs of
the same service over the same network node (a.k.a. VNF
consolidation) may cause severe performance degradation
(a.k.a. VNF interference), which is not acceptable for some
QoS-sensitive 5G use cases [11].

We consider anti-affinity for all the VNFs of the service
(i.e., all of the VNFs of a service request are placed over
separate network nodes), since skipping this limitation
leads to a substantial relaxation of the problem such that
the gain of using different placement approaches becomes
marginal.

A. Embedding Decomposition
Similarly to our previous work [12], we exploit a decom-

position method for solving the offline placement problem.
We still consider the embedding decomposition, where each
variable represents a possible embedding of the service onto
the physical network. The main difference relies on the fixed
user location, which slightly impacts the pricing problem.
Once again, the number of embeddings is exponential and
an embedding-based formulation demands an exponential
number of variables (columns). Nevertheless, a solution
consists of only a few of these variables. To create only
useful variables, we use the CG algorithm. CG is used
for solving large-scale linear programs with the help of a
back-and-forth resolution of a master problem and pricing
problems. Beginning from a reduced master problem, the
master problem gives dual values to the pricing problems,
and the pricing problems give improving columns to the
master problem. For every service k, we have to create an
embedding γ among all possible embeddings Γk.

1) Master problem: Only the set of variables zkγ ∈ N
is needed to represent the number of services k allocated
on the embedding γ. Every embedding γ is determined by
the amount of bandwidth it requires from every link e, as
δe(γ), and the number of CPUs required from every node
v, as θv(γ).

For every service k ∈ K, we limit the number of
embedded with the constraints∑

γ∈Γk

zkγ ≤ nk, (1a)

where nk is the number of requests requiring the same
service k.

For each node v ∈ V , we define its capacity constraints
as: ∑

k∈K

∑
γ∈Γk

θv(γ)zkγ ≤ Cv. (1b)

And for each link e ∈ E, we define its capacity constraints
as: ∑

k∈K

∑
γ∈Γk

δe(γ)zkγ ≤ Be, (1c)

2023 19th International Conference on Network and Service Management (CNSM)

The objective function can be written as:

max
∑
k∈K

∑
γ∈Γk

zkγ . (1d)

2) Pricing problems: Given a service k ∈ K, we formu-
late the corresponding embedding problem as an ILP.

• xl
e ∈ {0, 1} indicates if the virtual link l ∈ Lk of the

service is routed through the physical link e ∈ E.
• yf

v ∈ {0, 1} indicates if the VNF f ∈ Fk of the service
is instantiated in node v ∈ Vf .

The following set of constraints ensures that a VNF
∀f ∈ F is embedded on a physical node:∑

v∈V

yf
v = 1. (2a)

The following set of constraints ensure that a node v ∈ V
can host up to one VNF of the service:∑

f∈Fk

yf
v ≤ 1 (2b)

We ensure flow conservation for each node v ∈ V and
each VL l = (fi, fj) ∈ Lk with:∑

e∈ω(v)

xl
e −

∑
e∈ω−(v)

xl
e + yfi

v − yfj
v = 0. (2c)

The overall latency of the service is ensured with:∑
e∈E

De

∑
l∈Lk

xl
e ≤ Dk, (2d)

and the latency between each VL l ∈ Lk with:∑
e∈E

Dexl
e ≤ Dk (2e)

3) Pricing objective function: The pricing problems gen-
erate improving columns for the master problem. Improving
and non-improving columns are different in their reduced
costs, as the reduced cost of a variable represents the
improvement of the objective function if the variable is
present in the solution. The pricing problem aims to find
the columns with the best reduced cost. If all variables have
a null reduced cost, then the CG algorithm has converged.

We can get a variable’s reduced cost formula from the
dual of the master problem. If we define by π the dual values
corresponding to the constraints of the primal problem (and
let the exponent define the corresponding constraint), the
dual problem is formulated as:

min
∑
k∈K

nkπ
(1a)
k +

∑
e∈E

Beπ(1c)
e +

∑
v∈V

Cvπ(1b)
v (3a)

s.t. π(1a) +
∑
e∈E

δe(γ)π(1c)
e +

∑
v∈V

θv(γ)π(1b)
v ≥ 1

∀k ∈ K, ∀γ ∈ Γk (3b)

Columns in the master problem turn into constraints in
the dual problem. Similarly to the CG algorithm, the row
generation algorithm begins from a reduced problem and

looks for unsatisfied constraints. Given a dual solution π̄,
the separation problem of the dual searches an embedding
that violates constraints (3b), i.e., any embedding γ such
that

π̄(1a) +
∑
e∈E

δe(γ)π̄(1c)
e +

∑
v∈V

θv(γ)π̄(1b)
v < 1. (4)

Returning to the embedding sub-problem for a given
service k, defined by constraints (2), the objective function
becomes

min
∑
e∈E

π̄(1c)
e

∑
l∈Lk

Blxel +
∑
v∈V

∑
f∈Fk

Cf π̄(1b)
v yvf . (5)

If the optimal value of this problem is strictly less than
1 − π

(1a)
k , we know that adding the corresponding embed-

ding into the master problem will improve the solution.
Otherwise, no embedding can improve the master problem.

IV. Proposed Solution
In the previous section, we addressed our placement

problem using CG. We can obtain the global optimum
(i.e., the maximum feasible number of placed services)
with CG in an offline placement scenario. But, when it
comes to the online placement, since we do not know all
the service requests in advance, we need to ensure that
the placement of the current service request improves the
possibility of accepting future service requests. This can
be done by optimizing a cost function consistent with our
objective. For simplicity, we utilise the terms network and
service for the graphs of the Physical Network and the
Virtual Service.

BnB is one of the most widely used paradigms of
designing algorithms for solving optimization problems
with exponential complexity. Many types of constraints
exist in the placement problem, which can be satisfied in
BnB in an efficient way (the more constraints we have, the
more we can prune the tree, resulting in a faster search
procedure). Fig. 1 represents our BnB search tree. We call
a node of the search tree as a state to differentiate it from a
network node. Each state carries placement information, as
well as a complete image of the network with its resources
and QoS metrics. The terminal states include a complete
placement of a service over a network.

Expanding States: Beginning with the initial state of
the tree, we choose a VNF from the service and create
the associated sub-states for each network node that can
supply the required resources (a parent-child relationship).
A state includes a snapshot of the entire network after the
placement of the VNF on the associated node. After the
placement of a VNF, we place its connected VLs under
the condition that their source and destination VNFs are
already placed. To place a VL, we look for a shortest path
from the node hosting the source VNF to the node hosting
the destination VNF, taking into account the required
bandwidth and latency. After placing a VLs, the network
image of the state is updated accordingly.

2023 19th International Conference on Network and Service Management (CNSM)

Complete placements (terminal states)

Pruning the branches
that violate constraints

Figure 1. A sample BnB search tree, placing a service with 3 VNFs
over a network with 4 nodes

VNFs’ Selection: At each state, we need to select a
VNF to place it over the network. For this selection, we
need an ordered sequence of the VNFs. To create this
list, we make a Breadth-First Search (BFS) traversal over
the service, beginning from the service entry VNF (BFS
traversal guarantees a connected sub-graph of the service
on every state, representing a partial placement that we
can be verified to meet our constraints). The depth of the
corresponding state indicates the position of the VNF in
the list of the VNFs to be selected for the placement. The
search tree grows by continuing to choose a VNF from the
service and to place it on the network nodes, creating their
associated sub-states. If a service of N VNFs is placed on
a network of M nodes, we would have a search tree which
will grow to the depth of N with a branching factor of M .

Cost Function: The cost function evaluates the states
to determine which state to expand at each iteration of
the search procedure. It is served as a measurement to
allow comparing different states. Since the states represent
different partial or complete placements of the service (they
may have placed more or fewer VNFs and VLs), we need
to ensure that the proposed cost function can compare all
of the states.

Search Procedure: The search procedure is an iterative
procedure involving a sequence of the states, which we call
fringe, and only contains the initial state at the beginning
of the search. At each iteration, we pop and expand the
head state from the fringe, and we store the generated
sub-states in the fringe. The search procedure continues
the iterations until we reach a terminal state or we exceed
a timeout (failure). After expanding a state, we verify
that the sub-states respect the constraints (concerning
resources, latency, and anti-affinity). We only store the non-
violating sub-states in the fringe (i.e., others are discarded).
The sequence of the states kept in the fringe specifies the
traversal or the direction of the search. To traverse the
search tree in DFS, the sub-states of the current state are
evaluated and sorted by the cost function, then they are
pushed into the fringe (which is a stack in DFS) in order so
that the head state (that will be popped for the expansion)
has the minimum cost. In Uniform-Cost Search (UCS)

Off-line Placement

On-line Placement

Branch and Bound

Latency Fair Random

LatUCS

Variation Reciprocal

VarUCS VarDFS RecUCS RecDFS RanDFS

Service Placement

ILP Column Generation

Figure 2. Overview of the proposition

traversal, the sub-states of the current state are evaluated
by the cost function and they are added to the fringe
(which is a list in UCS). The fringe in the UCS traversal
is a sorted list, thus the head state has the minimum cost
among all of the states, i.e., the UCS traversal is complete
and optimal.

Search Strategies: A search strategy includes a cost
function and a search traversal that can be applied over
our BnB formulation. We propose several search strategies,
by following three main approaches (Fig. 2 demonstrates
a taxonomy of the proposed strategies). (1) Latency
Optimized Placement: We propose the LatUCS search
strategy, which performs UCS traversal over a cost function
defined as the sum of the latencies of the realized paths
that place VLs. The idea is to investigate the effect of
latency optimization on the objective of SA. (2) Random
Placement: We propose the RanDFS search strategy, which
performs a DFS traversal over a cost function that returns
a random number. The idea is to investigate a worst-
case random placement on the objective of SA. (3) Fair
Placement: We propose several search strategies to realize
a fair distribution of the node resources. VarUCS and
VarDFS, which perform UCS and DFS traversals over
a cost function defined as the variance of the available
resources over all network nodes. RecUCS and RecDFS,
which perform UCS and DFS traversals over a cost function
defined as the average of the reciprocal function of the
available resources (+1 is added to prevent division by
zero) over the network nodes that place VNFs (1

r+1). We
use the cost function proposed in [3], which tries to put
a high cost for a placement on a network node which is
short on resources.

V. Experimentation
Our implementations are made in Java, and we use the

Gurobi solver. All of our experimentations are made on a
PC with a Core-i7 CPU and 8GB of RAM. To evaluate
our search strategies following our objective of SA, we
begin by initializing the resources of the network nodes
and links. Next, we repeatedly create a service request
according to the specified parameters, and then place it on
the network using the specified strategy. If we accomplish
placing the requested service, we carry out the placement

2023 19th International Conference on Network and Service Management (CNSM)

4 6 8 10 12 14
0

25

50

75

100

Required E2E Latency

#
of

P
la

ce
d

Se
rv

ic
es

CG

VarUCS

RecUCS

RanDFS

VarDFS

RecDFS

LatUCS

Figure 3. Number of placed services comprised of 3 VNFs requiring
different E2E latencies

4 6 8 10 12 14

0
100
200
300
400
500

Required E2E Latency

Av
er

ag
e

T
im

e
(m

s)

VarUCS

RecUCS

RanDFS

VarDFS

RecDFS

LatUCS

Figure 4. Average time of placing services comprised of 3 VNFs
requiring different E2E latencies

by reserving its required resources on the network, and we
begin a subsequent iteration. If we fail to place the service
request, we terminate the evaluation.

We perform our evaluations on the BT-Europe, BT-
North-America and Grid-7x6 topologies (chosen from Zoo
Topology dataset), with respectively 24, 36 and 42 nodes,
and 74, 152 and 142 links. We consider 10 units of CPU
for each network node and 1 unit of latency for each
network link, and daisy chain topology for the service
graphs (representing the topology of Service Function
Chains (SFCs)). Each service contains between 3 to 5 VNFs
with associated VLs, and each VNF requires one unit of
CPU. The user location is fixed at the network node 12 for
BT-Europe, 34 for BT-North-America, and 0 for Grid-7x6.
The E2E latency is calculated as the sum of the latencies
of the paths that place the VLs, starting from the user
location and passing through each VNF and returning to
the user location.

A. Latency Optimization
Latency is a crucial constraint that should be set carefully.

If a service requires the minimum feasible latency, we may
not have many choices for the placement and it would only
be as close as possible to the user location. Similarly, if a
service requires a high E2E latency, so that we can place it
almost wherever, regardless of the selected search strategy,
we will end up placing almost the same number of service
requests until we drain all of the network node resources.

Fig. 3 represents the number of placed services comprised
of 3 VNFs requiring different E2E latencies over BT-Europe
network. As shown in Fig. 3, all of the search strategies
place almost the same number of services for the lowest

0 4 8 12 16 20
10
20
30
40
50

Random Generator Seed

#
of

P
la

ce
d

Se
rv

ic
es

RecUCS

LatUCS

Figure 5. Number of placed services in each random experiment

feasible latency (6 units), and the high-enough latency
(14 units). Considering the E2E latency of 8 to 12 (called
effective range), LatUCS places the minimum number of
services, and CG has the maximum placements. Note that
the number of placed services found by the CG is on average
almost twice (exactly 1.96 times, or 96% improvement) the
number of placements by LatUCS. Even RanDFS can place
more services than LatUCS by making random placements
(1.31 times more on average).

1) Random Service Requests: Until now, we set a con-
stant size for the service requests throughout an evaluation.
But, in practice, the service requests can have mixed sizes,
resource requirements, and latency requirements. To have
realistic experiments, we need to create random services
and repeat these experiments many times with multiple
seeds of randomness. For every random experiment, we
begin by creating a service of a random size in a range of
[3, 5], with a random latency in the effective range based
on its size. We proceed with the placements as long as
the chosen strategy does not fail. As shown in Fig. 5, by
comparing RecUCS, which performs a fair placement, with
LatUCS, which perform latency optimization, we witness
that on average we can place 1.9 times more services using
RecUCS instead of LatUCS.

B. Fair Placement
Although VarUCS and RecUCS achieve almost the same

results by placing 1.78 and 1.83 times more services than
LatUCS on average, their execution times are considerably
different. Fig. 4 show the average execution time of placing
the services comprised of 3 VNFs requiring different E2E
latencies over the BT-Europe network. As it is shown in
Fig. 4, RecUCS can place the services 1.95 times faster
on average than VarUCS. In addition, as we consider the
average execution time of placing the services comprised
of 4 VNFs, the execution time of VarUCS grows signifi-
cantly by increasing the E2E latency. In RecUCS’s case,
the execution time decreases similarly to the DFS-based
strategies, which shows the scalability of RecUCS.

C. Big Picture
1) Service Acceptance: Exhaustive evaluations were

performed, considering both networks of BT-Europe, BT-
North-America and Grid-7x6 with service requests of
different sizes (3 to 5 VNFs), requiring an effective range of

2023 19th International Conference on Network and Service Management (CNSM)

RecUCS VarUCS RecDFS VarDFS RanDFS LatUCS

40

60

80

100 93.1 90.7
82.2 81.4

66.9
50.8

Strategies

%
A

ch
ie

ve
m

en
t

Figure 6. Average achievement to the global optimal results by our
online strategies

3 4 5
4
5
6
7
8
9

10

Service Size

Lo
g

of
av

g-
tim

e
(m

s)

VarUCS

RecUCS

RanDFS

VarDFS

RecDFS

LatUCS

Figure 7. Logarithm of the average placement time for placing
different service sizes on BT-Europe network

E2E latency, and user-location fixed on different network
nodes. Fig. 6 shows the average percentage of the number
of placements achieved by our proposed online placement
strategies in comparison to our CG results.

2) Execution Time: Since the execution time of our
strategies grows exponentially by increasing the service
size, we represent the logarithm of the average placement
execution time in Fig. 7. The complexity of our approach
depends on the growth of expanded states, which is
determined by the search strategy. While the complexity
of our strategies grows exponentially, they do not grow
equally. If we can sort the growth of the complexity of our
strategies, we can put VarUCS in the first place. RecUCS
is placed between VarUCS and RecDFS/VarDFS (which
have almost similar growth), and finally RanDFS.

VI. Conclusion
The placement problem has been studied for several

recent years, and it is one of the most popular topics in
NFV because of the constantly developing use-cases with
evolving requirements and constraints. In this paper, we
studied the online placement of constrained services on edge
networks, and we proposed an efficient approach, capable
of achieving 93% of the global optimum which can only be
achieved in on offline placement.

References
[1] Z. Chen, S. Zhang, C. Wang, Z. Qian, M. Xiao, J.

Wu, and I. Jawhar, “A novel algorithm for NFV
chain placement in edge computing environments”,
in 2018 IEEE Global Communications Conference
(GLOBECOM), IEEE, 2018, pp. 1–6.

[2] G. Mirjalily and L. Zhiquan, “Optimal network
function virtualization and service function chaining:
A survey”, Chinese Journal of Electronics, vol. 27,
no. 4, pp. 704–717, 2018.

[3] C. Morin, G. Texier, C. Caillouet, G. Desmangles,
and C.-T. Phan, “VNF placement algorithms to
address the mono-and multi-tenant issues in edge
and core networks”, in 2019 IEEE 8th International
Conference on Cloud Networking (CloudNet), IEEE,
2019, pp. 1–6.

[4] P. Jin, X. Fei, Q. Zhang, F. Liu, and B. Li, “Latency-
aware VNF chain deployment with efficient resource
reuse at network edge”, in IEEE INFOCOM 2020-
IEEE Conference on Computer Communications,
IEEE, 2020, pp. 267–276.

[5] R. Gouareb, V. Friderikos, and A.-H. Aghvami,
“Virtual network functions routing and placement
for edge cloud latency minimization”, IEEE Journal
on Selected Areas in Communications, vol. 36, no. 10,
pp. 2346–2357, 2018.

[6] S. Khebbache, M. Hadji, and D. Zeghlache, “Scalable
and cost-efficient algorithms for VNF chaining and
placement problem”, in 2017 20th conference on
innovations in clouds, internet and networks (ICIN),
IEEE, 2017, pp. 92–99.

[7] Q. Zhang, F. Liu, and C. Zeng, “Adaptive
interference-aware VNF placement for service-
customized 5G network slices”, in IEEE INFOCOM
2019-IEEE Conference on Computer Communica-
tions, IEEE, 2019, pp. 2449–2457.

[8] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lam-
badaris, “VNF placement optimization at the edge
and cloud”, Future Internet, vol. 11, no. 3, p. 69,
2019.

[9] Z. Xu, Z. Zhang, W. Liang, Q. Xia, O. Rana, and
G. Wu, “Qos-aware VNF placement and service
chaining for iot applications in multi-tier mobile edge
networks”, ACM Transactions on Sensor Networks
(TOSN), vol. 16, no. 3, pp. 1–27, 2020.

[10] N. Bouten, R. Mijumbi, J. Serrat, J. Famaey, S. Latré,
and F. De Turck, “Semantically enhanced mapping
algorithm for affinity-constrained service function
chain requests”, IEEE Transactions on Network and
Service Management, vol. 14, no. 2, pp. 317–331,
2017.

[11] C. Zeng, F. Liu, S. Chen, W. Jiang, and M. Li, “De-
mystifying the performance interference of co-located
virtual network functions”, in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications,
IEEE, 2018, pp. 765–773.

[12] M. Taghavian, Y. Hadjadj-Aoul, G. Texier, N. Huin,
and P. Bertin, “An approach to network service place-
ment reconciling optimality and scalability”, IEEE
Transactions on Network and Service Management,
2023.

2023 19th International Conference on Network and Service Management (CNSM)

