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Abstract—This paper presents an empirical study on deep re-
inforcement learning (DRL) based probabilistic cognitive routing
using the OMNeT++ framework and programming protocol-
independent packet processors (P4). The proposed algorithm
combines the power of DRL and cognitive routing to achieve
efficient and adaptive probabilistic routing in software-defined
networking (SDN) environments. To facilitate the research, we
develop a dedicated network simulation environment using the
OMNeT++ framework and a self-developed SDN platform based
on P4. The empirical study highlights the importance of a
comprehensive training and validation process in both simu-
lation and real-world SDN environments. Through closed-loop
training, the cognitive routing framework provides real-time
feedback from the actual network environment to the simulation
environment, allowing the agent to excel in real-world network
environments. Meanwhile, the results demonstrate that solely
testing the algorithm in either environment is inadequate for
evaluating its performance accurately.

Index Terms—Deep reinforcement learning, probabilistic cog-
nitive routing, software-defined networking.

I. INTRODUCTION

Software-defined networking (SDN) has emerged as a flex-
ible and programmable network paradigm. Previous studies
enhanced traditional routing algorithms with SDN features.
Rego et al. [1] introduced SDN into OSPF, assessing through-
put, packet loss, and delay. Khan et al. [2] compared SDN and
OSPF, optimizing OSPF convergence times for delay-tolerant
networks. Shirmarz et al. [3] improved network performance
with an adaptive greedy flow routing algorithm in SDN. Wang
et al. [4] focused on load balancing in SDN-based data cen-
ters, minimizing network overhead for improved performance.
However, these approaches fall short of fully utilizing network
operational knowledge for intelligent routing. Hence, they are
being replaced by intelligent routing algorithms leveraging
advanced techniques like deep reinforcement learning (DRL)
and data-driven strategies. These intelligent algorithms aim to
optimize network performance, adapt to dynamic traffic, and
enhance overall efficiency.

Recent years have witnessed a surge in interest regarding
the implementation of intelligent routing algorithms within
SDNs. Researchers have explored various strategies, includ-
ing the use of DRL techniques to optimize routing deci-
sions. For example, Yao et al. [5] introduced NetworkAI,
an architecture promoting self-learning control strategies in
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SDN. This approach was demonstrated to enhance network
performance through adaptive routing decisions. Stampa et al.
[6] leveraged deep neural networks to propose a DRL-based
routing optimization technique in SDN, resulting in improved
network performance. Lin et al. [7] presented a Q-learning-
based protocol tailored for SDN networks, aiming to optimize
Quality of Service (QoS) by adapting routing decisions using
reinforcement learning techniques. Wang et al. [8] combined
SDN and DRL in the SDCoR protocol, enhancing routing
within vehicular ad hoc networks. Sendra et al. [9] introduced
a distributed routing approach built upon SDN, incorporating a
DRL-based algorithm into OSPF to reduce delay and jitter. Xu
et al. [10] proposed the DRL-TE algorithm, which outperforms
traditional routing algorithms as well as other DRL algorithms.
Data-driven approaches have also gained attention in SDN
routing, with Hope et al. [11] proposing the GDDR algorithm
based on graph neural networks, leveraging network traffic
data to improve routing decisions. The algorithm proposed
by Yarin et al. [12] effectively addresses TE problem and
improves operational efficiency solely through historical data,
without the need for explicit future demand predictions.
Meanwhile Rusek el al. [13] introduced the RBB method,
demonstrating the potential to optimize OSPF routing using
Graph Neural Networks (GNN). A comprehensive survey of
DRL-based routing optimization was conducted by Xiao et
al. [14], delving into various applications, challenges, and
future research directions in utilizing DRL for network traffic
management and resource allocation. To address SDN rout-
ing challenges, researchers have explored cognitive routing
mechanisms. Chen et al. [15] introduced RL-Routing, an SDN
routing algorithm incorporating DRL for enhanced routing
decisions and adaptation to dynamic network conditions. Xiao
et al. [16] designed an RL-based cognitive routing algorithm
for autonomous networks, dynamically optimizing network
performance. Extensive simulations demonstrate its effective-
ness in improving network throughput, latency, and stability.

While the above studies emphasize the significance of
intelligent routing algorithms in SDN, training agents directly
in real-world networks is infeasible. A more suitable approach
involves training agents in a simulation environment and then
applying them to experimental SDN networks. For example,
Liu et al. [17] proposed an experimental system using Open-
Flow in SDN, collecting QoS parameters and forwarding flow
tables to SDN switches. Chen et al. [18] designed a network
architecture comprising forwarding, control, and management
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Fig. 1: Process of RL-based cognitive routing.

planes. Another work by Casas-Velasco et al. [19] presented
the RSIR architecture aimed at providing intelligent routing
in SDN. However, none of the three mentioned experimental
platforms is suitable for cognitive routing.

In this work, we propose a DRL-based probabilistic cog-
nitive routing method. Our contributions are the following.
Firstly, we introduce the cognitive routing strategy on SDN
to enable adaptive routing. Secondly, we design a novel
network routing platform that encompasses both a simula-
tion environment based on OMNeT++ and an experimental
environment based on P4. The developed platform facilitates
the training and evaluation of routing algorithms in the sim-
ulation environment and the SDN environment. Lastly, we
demonstrate the feasibility of the probabilistic routing algo-
rithm through experiments conducted in the SDN environment.
These contributions collectively advance the understanding
and application of intelligent routing techniques in modern
network architectures.

The rest of this paper is organized as follows. Section
II describes the proposed DRL-based probabilistic cognitive
routing method. Section III introduces the designed routing
simulation platform. Section IV presents the numerical results.

II. RL-BASED COGNITIVE ROUTING

In this section, we firstly introduce the concept of cognitive
routing framework [16]. On this basis, we present the RL
representation for packet routing problem and design a novel
DRL-based probabilistic routing algorithm.

A. RL-based Cognitive Routing Framework

RL-based cognitive routing is an intelligent routing ap-
proach that leverages RL techniques to enable autonomous
decision-making in network routing. This section presents the
workflow of RL-based cognitive routing and the implementa-
tion details.

We propose a closed-loop interaction between the simula-
tion environment and the SDN environment. Fig. 1 illustrates
the process of RL-based cognitive routing, which consists of
two parallel subloops:

The offline subloop facilitates the cognition acquisition of
the cognitive entity. In this subloop, the simulation environ-
ment and the agent exchange state, action, and reward.

Fig. 2: An example of network topology.

The online subloop controls the operation of the SDN
network without engaging in policy learning processes. Within
this subloop, the P4 switch, equipped with embedded comput-
ing modules, observes the performance metrics of the network.

By combining these subloops, RL-based cognitive routing
merges offline cognition acquisition with real-time decision-
making. Our study implements a DRL-based probabilistic
routing algorithm within this cognitive framework, enhancing
agent performance by collecting and integrating data from the
SDN network into the simulation environment.

B. Mathematical Model

1) Network: The network is represented as a directed graph
G = (N , E), where N and E denote finite sets of nodes and
transmission links, respectively [20]. Each node consists of
two component, i.e., the host and the router that is connected
to. The host is responsible for generating traffic demands
and receiving traffic, and the router is responsible for packet
forwarding. Fig. 2 illustrates an example of the network
topology. Each packet originates from a source node s, and is
routed to a sink node d. A path ps,d is defined as a walk
in the graph G = (N , E) that connects the source to the
destination through a sequence of routers. bw(ei,j) represent
the bandwidth of link ei,j , where i, j are indexes of the two
endpoints of an edge, respectively.

2) Routing: The objective of packet routing is to forward
each packet through multiple routers to the destination. The
routers follow a first-in-first-out (FIFO) queuing. Router n
continuously forwards the head-of-line (HOL) packet to its
neighboring node v until the packet reaches its destination.
The TE problem can be formally defined as determining a set
of paths that efficiently forward packets from the sources to
the sinks according to a certain optimization objective. Our
goal is to minimize the average delivery time T calculated
by
∑
p∈P Tp/K, where P represents the set of packets and

K represents the number of packets in P . In addition, the
packet loss rate, given by Kloss/K, where Kloss represents the
number of lost packets, also needs to be reduced. In practice,
network traffic exhibits temporal variations. Therefore, our
objectives should also adapt to dynamic traffic.
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C. DRL-based Probabilistic Routing

On basis of the mathematical model of network and rout-
ing, we present a DRL-based probabilistic routing algorithm.
Typically, an RL problem is modeled by (S,A,P,R), where
S denotes the set of states, A denotes the set of actions,
P denotes the state transition probability, and R denotes
the reward function. Our definitions of S, A, P and R are
introduced as follows:

1) State: The state space is defined as

S ⊆ Rn×n+m, (1)

where n represents the number of switches, and m represents
the hours of a day. The state at time interval t is defined as

st = [f1, f2], (2)

which encompasses the traffic information at t. The link
utilization feature is obtained by

f1,i =

{
flowt,ij/bwij

4t

}
, (3)

which implies the link utilization referring to the ratio of the
traffic on each output port of a switch to the bandwidth of
the link, as shown in equation (3). Here, i represents the
switch identifier, and j represents the various output ports of
the switch, where the number of output ports may vary for
each switch. The link utilization contains both the absolute
value information of the traffic and the remaining capacity
information of the links. By observing the link utilization, the
agent can gain insights into the load condition and perform
load-balancing scheduling for the traffic. The time zone feature
is defined as

f2 = [0, 0, . . . , 1, 1, . . . , 0, 0], (4)

which is a 24-dimensional vector representing 24 hours. We
divide a day into 24 non-overlapping time intervals. The entry
in the vector corresponding to the current time interval is set
to 1, while others are set to 0.

2) Action: The action space is expressed as

A ⊆ Re×2, (5)

where e represents the number of links. The action at t is
defined as

~at = {w1,jt, w2,jt} , (6)

which consists of the directed weight for each link. Each
switch forwards the received packets based on the weight
proportion, using the ratio as a probability. In which, w1,jt

represents the forward weights metric and w2,jt represents the
reversed direction weights metric.

3) Reward: We propose two alternative approaches for
different situations. One approach balances average delay and
packet loss, while the other emphasizes delay. The reason for
this design is that probabilistic routing strategies often result
in longer path selections. To enable the agent to find a feasible
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Fig. 3: The contour plot of overall delay and packet loss rate.

path that is relatively shorter, we need to emphasize control
over delay. We firstly define the delay utility as

du =
(
∑
p∈P Tp/K)1−µd

1− µd
, (7)

where P represents the sets of packets, K represents the
number of packets, Tp represents the propagation delay of
packet p, and µd represents the coefficient of delay.

lr =
∑
t∈T

Kloss,t/Kt. (8)

r1 = µr × e−du−µl×lr. (9)

In equation (8), Kt represents the total number of packets
sent within t, Kloss,t represents the number of packets lost
during that period, and T represents the total duration. In
equation (9), we define the first type of reward function, where
µr, µl are coefficient of the reward and loss rate, respectively.

r2 = −ut = −(
∑
p∈Pt

Tp/K + timeout× lrt
1− lrt

). (10)

Additionally, we design another type of reward function.
The action reward is set as the negative value of the overall
delay in equation (10). The overall delay can comprehensively
reflect the impact of end-to-end average delay and packet loss
from the perspective of users. By utilizing queuing theory, we
propose the process of calculating the comprehensive queuing
delay (referred to as overall delay) as follows:

u =
∑
p∈P

Tp/K × (1− lr) + (timeout+ u)× lr, (11)

Assuming that users need to retransmit after the timeout, the
average delay for users can be obtained from equation (11).
By transformation, we also have

u =
∑
p∈P

Tp/K + timeout× lr

1− lr
. (12)
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By setting the timeout to 1 second and utilizing equation
(10), we generate contour lines (as depicted in Fig. 3) that
illustrate the relationship between overall delay and packet
loss. In both figures, overall delay and packet loss exhibit
a monotonic increasing relationship. When overall delay and
packet loss are high, the impact of packet loss is significant,
prompting the agent to optimize the packet loss rate. Con-
versely, the agent prioritizes optimizing overall delay.

Two reward functions accommodate differences between
simulation and SDN environments. The first, apt for high
packet loss scenarios, swiftly reduces losses and stabilizes
policies but has limits on delay reduction. The second, de-
signed for low packet loss, prioritizes delay reduction and
seeks optimal routing paths.

D. Learning Algorithm

We employ the proximal policy optimization (PPO) [21]
to train our policy network. The training process involves
iterative updates of the policy parameters using minibatch
gradient descent. A batch of experiences is collected using
the current policy πθ for each training iteration. During each
optimization epoch, the advantages A(st, at) are computed
using value function estimates

A(st, at) =
∑
t′>t

γt
′−trt′ − Vφ(st), (13)

where γ is the discount factor of action value rt′ and Vφ(st) is
computed through a value network, which consists of a neural
network with the same structure as the policy network but with
different parameters φ. Then, A(st, at) is used to approximate
the discounted rewards from the current state to the terminal
state [22].

The target policy parameters θ are updated by minimizing
the PPO objective function, which consists of a policy loss
Lp, a value function loss Lv , and an entropy regularization
loss Le. Let rt(θ) denotes the probability ratio

rt(θ) =
πθ(at|st)
πθold(at|st)

, (14)

where θ is the policy parameters and θold is the policy
parameters before the update. The surrogate objective is

Lp = Et[min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)], (15)

where ε is a hyperparameter, the second term clip(rt(θ), 1−
ε, 1 + ε) involving the clipping of the probability ratio, mod-
ifies the surrogate objective by restricting the range of the
probability ratio. The value function loss is a squared-error
loss defined as

Lv = (Vφ(st)− V targt )2. (16)

The entropy regularization loss is defined as

Le = S[πθ](st), (17)

where S denotes an entropy bonus. Combining these terms,
we obtain the following objective

Lp+v+et = Êt[Lp − c1Lv + c2Le], (18)

Algorithm 1: Proximal Policy Optimization Training
Input: Initialize policy network π with random weights θ,

value network V with random weights φ;
Output: Policy network π;

1 Initialize a buffer to store trajectories D ← ∅;
2 for t = 1 to T do
3 Collect flow information tf from SDN environment;
4 for i = 1 to N do
5 Select action with action noise;
6 Collect a batch of experiences using the current

policy πθ;
7 Compute advantages A(st, at) using value function

estimates;
8 for j = 1 to K do
9 Update policy parameters θ using minibatch

gradient descent;
10 Compute policy loss Lp;
11 Compute value function loss Lv;
12 Compute entropy regularization loss Le;
13 Compute total loss:

Lp+v+et = Êt[Lp − c1Lv + c2Le];
14 Update θ using gradient descent:

θ ← θ − α∇θL;
15 end
16 Update action noise;
17 Update the policy network parameters θ to old

policy network θold;
18 end
19 end

where c1, c2 are coefficients. The policy parameters are
updated using gradient descent: θ ← θ−α∇θL. This process
are repeated for multiple training iterations until convergence.

III. DESIGN OF SIMULATION AND SDN PLATFORM

In this section, we describe the implementation and techni-
cal details of our self-developed routing validation platform.

A. Simulation Environment

Our simulation environment is developed based on OM-
NeT++, which allows distributing DRL-based probabilistic
routing weights, collecting environmental states, and offering
a customizable UDP packet traffic generation module that
updates the simulation environment based on the SDN en-
vironment. To enable interaction between the agent and the
simulation environment, we employ ZeroMQ as an interface
tool, ensuring the sequential reception of states and rewards.

B. SDN Platform

We implement the network environment based on the P4
protocol. Fig. 4 shows the architecture of the whole system.
The SDN platform is divided into three parts: the control plane,
the data plane, and the management plane.

1) Control plane: The control plane consists of the P4
controller and the north API server. The controller handles
information distribution, including marker bits, multicast set-
tings, and link weights for the routing algorithm. Meanwhile,
the north API server manages configuration data, offers net-
work status feedback, provides interfaces for agents to access
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Fig. 4: Architecture of the network routing validation system.

Fig. 5: Processing flow of V1Model.

network data and control operations, and takes care of cleanup
and reporting duties for the experimental network.

2) Management plane: The management plane includes a
traffic controller component that controls the traffic generators
in the network by issuing instructions to all traffic genera-
tors. The specific process involves the controller first setting
the configuration information for each traffic generator and
then waiting for all controllers to receive and process the
instructions before issuing a command to activate the new
configuration. In this part, we implement event publishing and
subscription using Redis.

3) Data plane: The data plane consists of Mininet and
P4 switches. We start by defining the network topology with
Python scripts, converting config files into Mininet-compatible
data structures. Then, we invoke the Python interface to
create hosts, switches, and links. Finally, we use the P4
BMV2 software switch and extend Mininet’s switch class with
P4RuntimeSwitch.

P4 algorithms rely on a specific P4 model, typically
V1Model, which defines the switch’s processing pipeline (see
Fig. 5).

Our switch selects the next hop based on link weights,
achieved through two custom data segments at the data link
layer: a custom routing header and a flooding broadcast header.
During unpacking, we examine the Ethernet header’s type field
to determine whether to parse the custom routing header and
check for the presence of the flooding header for analysis.

TABLE I: Agent Design

Agent Design Reward Funtion Activation Function
Agent1 r1 softmax
Agent2 r2 ReLU
Agent3 r2 softmax

TABLE II: Structure of ActorCritic Neural Network

Layer Nerual Network Structure Activation Function
Input state dim× 256× 128× 128× 64 tanh
Actor 64× 32× 32× action dim tanh
Critic 64× 32× 32× 1 tanh

IV. NUMERICAL RESULT

A. Experimental Environment Setup

This section presents the experimental results of the DRL-
based probabilistic routing algorithm under the RL-based
cognitive routing framework. NSFNet is used as the network
topology that consists of 13 nodes and 20 bidirectional links,
as shown in Fig. 7. We deploy the experimental environment
within container that consists an 8-core Intel(R) Xeon(R) Gold
6130 CPU @ 2.10GHz, 32GB of memory and a GeForce RTX
2080 GPU.

B. OMNeT++ Training Experiments

In the training phase of the simulation environment, we
design three different agents by combining different reward
functions and activation functions, as shown in TABLE I, and
conduct 144 hours of training for each agent. The two reward
functions in the table are described in section II, focusing on
delay and packet loss respectively.

The structure of the ActorCritic neural network primarily
consists of three main components: the input layer, the actor
layer, and the critic layer. The neural network structure of each
component is elaborated in TABLE II. Afterwards, we can
construct the policy and value networks with these components
in the PPO algorithm.

Regarding the training process, we gradually decrease the
action noise. In the first 2/3 of the training duration, the
action noise linearly decreases, and in the remaining 1/3 of
the training duration, it remains at the lowest value.

Fig. 6 shows training results for the three agents in the
OMNeT++ simulation environment, focusing on end-to-end
delay and packet loss rate. All agents achieve zero packet
loss, demonstrating excellent performance. Agent2 excels in
delay reduction, thanks to its reward function prioritizing delay
reduction in a lossless simulation environment. Fig. 6f and
Fig. 6e illustrate the learning processes of all agents, with
fluctuations during varying traffic intensity.

C. SDN Confirmatory Experiments

We collect 24-hour flow rate data from a real network with
13 nodes, where 4 nodes receive packets generated at random
intervals following a Poisson distribution. We then assess
trained agents in the SDN environment, running simulations
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Fig. 6: Training processes on OMNeT++.

Fig. 7: Topology of NSFNet.

for 72 hours. Fig. 8b and Fig. 8c show test results. Surpris-
ingly, Agent2, previously the top performer in simulations,
proves ineffective in the SDN setup. Agent3 consistently
outperforms Agent1 in delay and packet loss, aligning with
their performance in simulations. This suggests that training
in the simulation environment partially reflects agents’ SDN
performance.

The gap stems from differences between the simulation and
SDN environments. Agent2’s ReLU activation function, unlike
the others’ softmax, affects link availability. Softmax ensures
values between (0, 1) while ReLU sets negative weights to 0.
Due to statistical variability, discrepancies exist between the
environments. SDN network validation is crucial to fully re-
veal agent design flaws and demonstrate expected experiment
results.

Finally, we validate our DRL-based cognitive routing frame-
work’s impact on agent performance in the SDN environment,

as shown in Fig. 8. In Fig. 8d, cognitive routing slightly im-
proves delay over the original agent. In Fig. 8e, it significantly
reduces packet loss, effectively adapting to traffic fluctuations
and mitigating loss increases with a 50% reduction, reaching
below 0.01. Feedback from the SDN environment enhances
the agent’s performance.

V. CONCLUSION

We proposed a DRL-based cognitive routing method, de-
signed a simulation and validation platform, and showed the
importance of experiments in both environments. Interaction
between SDN and simulation improved agent performance.
Future work involves adding SDN metrics, maximizing P4’s
potential, and analyzing the simulation-to-SDN transition to
support RL-based routing in real-world applications.
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