
Bridging Resource Prediction and System
Management: A Case Study in Cloud Systems

Justin Kur, Ji Xue, Jingshu Chen and Jun Huang

Abstract—In recent years, there has been a significant amount
of research focused on predicting resources in order to enhance
the performance of cloud systems. Many researchers believe that
the more accurate the prediction, the more effective resource
management will be in ensuring reliable performance. However,
our study in this paper demonstrates that there is a gap
between resource demand prediction and system performance.
Furthermore, our experiment results have demonstrated that the
accurate and fine-grained prediction helps to achieve a more
reliable and efficient system performance, especially in CPU
utilization rate.

Index Terms—Resource Prediction, System Management,
Cloud Performance

I. INTRODUCTION

Over the last decade, machine learning models have started
playing an increasingly prevalent role in system performance
prediction and management tasks for the cloud systems. For
instance, learning-based approaches have become popular for
predicting resource demands of latency-sensitive jobs, includ-
ing the seasonality and peaks, to better maintain the health of
the system performance. While system performance prediction
powered by learning-based approaches achieve remarkably
good results overall, it can be frustrating to understand when
they do not help meet performance requirements. Especially,
when multiple types of jobs are co-located on a single ma-
chine, cluster performance must be evaluated by aggregating
the results for each job type. A typical cloud system with
its workload multiplexed consists of two types of jobs: batch
jobs and container jobs. The service providers’ goal usually
is to keep the average container job latency within Service
Level Agreement (SLA) while maximizing the overall CPU
utilization of the machine by serving batch jobs. In such
cases, most of the existing researches assume that computing
accurate job arrival time series data (namely resource demand
prediction) would be sufficient to meet the above requirement.

In this paper, we revisit such assumption, conduct extensive
simulations using Alibaba traces (consisting of more than
3,700 VMs), and observe the discrepancy between resource
demand prediction and actual system management. Our re-
sults have demonstrated that the accurate and fine-grained
prediction helps to achieve a more reliable and efficient system
performance in terms of CPU utilization rate.

II. MOTIVATING EXAMPLES

Extensive work (e.g., [1] and [2]) apply machine learning
based time series models, such as LTSM, to accurately predict
the resource demands, i.e., average CPU demand, of latency-
sensitive jobs, in fine granularity. However, co-located with

batch jobs (low priority) in the cloud incurs more challenges
to maintain the SLA of container jobs (high priority), than
just being able to accurately predict the resource demand of
container jobs. For example, when the duration of batch jobs
is very long, the arrival rate of high-priority container jobs
may change while previous batch jobs are still being executed,
leading to poor container job performance. Specifically, Table
I demonstrates the case where even an oracle predictor may
be outperformed by a naive method if the scheduling policy
is poorly configured.

TABLE I: A Motivating Example

Sim1 Sim2

JCTaverage 3405.7 1596.2

JCT 95%ile 21746.5 3542.2
CPU Usage 0.956 0.908
Prediction Model RNN Markovian Model (Two State)

Prediction Target CPUaverage CPU95%ile

In particular, this motivating example demonstrated the gap
between resource demand prediction and system performance
using a real data trace from a warehouse-scale cloud data-
center. The left column gives the performance metrics of a
one-day simulation, Sim1, a prediction-based job scheduling
implementation that uses an oracle predictor. It divides the
trace into 96 separate intervals (15 min) and returns the ground
truth average CPU utilization for each interval. During the
simulation, it aggressively schedules batch jobs according to
the known average CPU utilization levels. The right column
shows another simulation trace, Sim2 a naive approach which
divides the day into only two intervals and uses the previous
day’s measurements in lieu of making future predictions.
However, the naive approach is more conservative, since it uses
the 95th percentile of the CPU usage as its target for container
job reservations. Although Sim1 exhibits slightly higher CPU
utilization, its scheduling performance is poor because both
the average and 95th percentile of job completion times are
much worse than the baselines of 1000 and 3000 milliseconds
respectively. This demonstrates that the prediction target can
have more importance than the prediction accuracy.

It is important to note that for our simulations there will
always be a trade-off between CPU usage and container job
completion time. The only time the job completion time
will increase beyond random noise is when the job has to
wait in the queue for resources to become available. Under
our simulation conditions, these queue waits will only occur
when non-preemptable batch jobs are consuming too many

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP



resources. Thus, accurate predictions are only useful insofar
as they lead to appropriately conservative batch job scheduling
decisions. This observation suggests that not only prediction
models but also prediction targets can impact the cloud system
performance.

Motivated by this, our paper propose a generic workflow to
study the relationship between resource prediction and system
management(specifically in terms of CPU utilization).

III. OUR APPROACH

A. Workload Datasets

Our investigation is conducted using the Alibaba Cluster
Trace dataset [3] , one of the most popular benchmarks as
large-scale cloud systems for its extensive coverage of machine
resources and temporal duration. Specifically, this dataset has
a substantial infrastructure, comprising 4,000 machines, 9,000
online services, and an impressive volume of 4 million batch
jobs. The dataset offers comprehensive insights by providing
both static and runtime information, collected over a span of
8 days. Notably, the dataset is organized into three distinct
traces, namely, servers, online services, and batch jobs. Each
of these traces is comprised of a pair of files: the meta file,
which presents fundamental information, and the usage file,
which presents runtime data.

B. System Workflow

In this section, we describe the overall workflow of the
proposed approach, as illustrated in Figure 1.
Scheduler. In particular, the cluster management system
(CMS) adopted in Alibaba data traces considers two types
of schedulers: Sigma and Fuxi. These schedulers, Sigma and
Fuxi, operate autonomously while sharing memory resources.
This architectural configuration emerged before the initiative
to co-locate container and batch jobs on the same hardware.
Sigma served as the scheduler for time-sensitive container
tasks associated with user-facing applications, whereas Fuxi
handled lower-priority internal batch jobs, assigned to separate
hardware resources. In the initial setup, the container job
cluster exhibited only a 10% CPU utilization [4]. To address
this under-utilization, both workloads were co-located on the
same machines. This new arrangement enables the preemptive
execution of batch jobs when a container job arrives, consis-
tently prioritizing the performance of container jobs regardless
of the batch job status.
Data Preprocessing. Since our goal is to increase the cluster
CPU usage by modifying the batch job scheduling policy, we
must filter out CPU utilization from batch jobs from the trace.
We create the container-only CPU trace by using the container
usage data of the Alibaba trace, matching each container to the
host machine it was run on, and aggregating the total usage
for each machine at each 10 second time step.

Since the workload trace is highly correlated at the one
day level, and we intend to use predictions to schedule long
running batch jobs, our predictor model uses a full day’s trace
from a specific machine and outputs its predicted trace for
the next day. We split the trace into 3 sections: one day for

validation, one day for simulation testing, and the remaining
four days for training. Although we filter out machines with
less than 2% container CPU utilization because their usage
curves are very flat in absolute terms, our dataset still includes
machines with average values ranging from 2% to 30%. It is
more difficult for the same model to handle data of greatly
different scales. For this reason, the CPU usage levels are
normalized for each machine according to the mean and
standard deviation observed in the training portion of the data.
For all experiments, the RNN is trained for 25 epoches and
optimized using Adam [5] with L1 loss, i.e. mean absolute
error across all points in a minibatch.
Performance Prediction Model. In our study, as illustrated
in Section II, we consider two models for CPU demand
prediction: RNN based (denoted as λ1 and Markov based
(denoted as λ2) model prediction. Next, we details those two
models.

Recurrent Neural Networks (RNNs) are a class of artificial
neural networks where connections between nodes form a
cycle, allowing them to maintain state across sequences of
data. This makes them well-suited for time series data, such
as predicting CPU demand in cloud systems. In our work,
we adopt Gated Recurrent Units (GRUs) [6] which are a
variant of RNNs designed to capture long-term dependencies.
Specifically, in our study, for each element in the input vector,
which is a time serial data to capture CPU usage

In this paper, we also consider the evaluation of adopting
Markov-based prediction model in system resource manage-
ment, specifically focusing on CPU utilization. Specifically,
we consider a two-state Markov model, which is a simple
yet efficient stochastic model that can transition between two
states based on certain probabilities. We denote this prediction
model as λ2. Specifically, in our context, two-state captures
the strong daily pattern of the resource demand series, i.e.,
high resource demands (called high state) during the daytime
while low volume (called low state) at night, and splits the time
series into two states based on the previous days’ observations.
The two-state method has been widely used in the real-world
capacity planning. In the model λ2, we use two statesS1 and
S2 to model high state and low state. At each transition, the
system can either remain in its current state or switch to the
other state.
Resource Demanding Targets. The next step in our study
is identifying resource demanding targets. Specifically, in our
setup, we consider two types of resource demanding targets:
the average resource utilization or the maximum resource
utilization. We argue that our approach can be customized to
predict the availability of a variety of resources (e.g., CPU,
memory, network I/O), in this work, we focus on CPU for
the following reasons. First, the computation of container
and batch jobs is typically CPU intensive, which can easily
form a bottleneck in the data center. Second, batch jobs
are mostly internal jobs, which yields minimal network I/O
overhead. Third, although both container and batch jobs may
require memory access, the contention on memory resource is
typically relatively low thanks to the highly efficient memory

2023 19th International Conference on Network and Service Management (CNSM)



Fig. 1: The Workflow of Our Approach

management schemes adopted by servers. For example, in the
Alibaba cluster trace, over 90% of the containers are used
to run Java applications on the Java Virtual Machine (JVM)
[7], which manages memory with a garbage collector that
automatically frees memory not in use.

C. Results

Most of literature assumes that finer prediction granularity
leads to better control on resource management. Through ex-
tensive simulations, we do observe in some circumstance, the
most accurate and fine-granularity resource demand prediction
can guarantee the performance SLA of container jobs, while
greatly improving resource utilization. For demonstration, one
representative machine is selected from Alibaba data centers.
In this experiment, we have the batch job size set as 15 min,
and reserve a 20% CPU buffer relative to the actual prediction
for the container jobs. For comparison purpose, our study in
this paper consider two types of CPU demanding prediction
models: (1) RNN-based prediction, denoted as λ1 and (2)
Markov-based prediction, denoted as λ2.

Prediction Latency SLA CPU Usage Latency P95
λ1 RNN Based 0.950701 0.893451 2987.0
λ2 Markov Based 0.950739 0.780512 2987.0

TABLE II: Performance summary for machine 1636. The
percent of container jobs with SLA satisfaction, P95 latency,
and overall CPU utilization are reported.

Figure 2 presents an overview of general prediction per-
formance using one representative machine for illustrating
purpose. Specifically, from Figure 2, we can clearly observe

Fig. 2: Prediction overview: Comparison of container job per-
formance and resource utilization for machine 1636 between
(Markov/Two State Based: λ1 and RNN based: λ2.)

that scheduling with assistance from RNN-based prediction
model achieves much higher prediction accuracy, with 8.3%
error compared with 54.3% error from the one with Markov-
based prediction. In Figure 3 and Figure 4 , the container job
performance and overall CPU utilization series are reported
for the prediction model λ1 and λ2, respectively.

In particular, the performance details with data in terms of
Latency SLA, CPU usage and Latency P95 is presented in
Table II. Note that P95 denotes the 95th percentile response
time. It refers to the response time that is slower than 95%

2023 19th International Conference on Network and Service Management (CNSM)



Fig. 3: Markov/Two State Based Prediction λ1: Comparison
of container job performance and resource utilization for
machine 1636

Fig. 4: RNN based Prediction λ2: Comparison of container
job performance and resource utilization for machine 1636

of all requests. In other words, if you have 100 requests,
the 95th percentile response time would be the response
time for the 95th slowest request. In terms of the container
jobs, scheduling with prediction model λ2 ensures relatively
smoother performance overtime. Specifically, we can observe
that with λ2, 95.1% of container jobs meet the SLA and P95
of latency in 2989 ms. Compared to that, scheduling with the
prediction model λ1 achieves very close performance for the
container jobs. In particular, we could observe that 94.5% of
container jobs satisfy SLA and P95 of latency equal to 3105
ms around the second hour.

However, the result is different when we evaluate the
performance in terms of CPU utilization in the machine-level.
The experiment results have demonstrated that scheduling with
the prediciton model λ2 is able to boost the CPU utilization
from originally 20% to 95.7%, significantly outperforming the
one with λ1 with 86.6% CPU usage.
Observation: Our experiment results have demonstrated that
the accurate and fine-grained prediction helps to achieve a
more reliable and efficient system performance in terms of

CPU utilization rate.

IV. RELATED WORK, DISCUSSION AND FUTURE WORK

Job Scheduling. Prior works such as Paragon [8] and Quasar
[9] are cluster scheduling approaches that use collaborative
filtering and user-made constraints to match jobs to different
classes of machines which are tuned specifically for certain
workloads. This is a valid approach, however our work mainly
focuses on data clusters with homogeneous machines and co-
located workloads. Specifically, our work consider the scenario
where do not pre-assignment of jobs to the machines.

Peng et al. [10] [11] utilize reinforcement learning to
optimize cluster schedulers for training machine learning and
deep learning models. Like our work, these are concerned
with scheduling long-running computational tasks, but they
do not focus on collocating these jobs with additional latency-
sensitive jobs. One of our future work is to develop a strategy
to support optimizing the balance between scheduling batch
jobs and maintaining container job performance. Metis [12],
George [13], and Decima [14] use reinforcement learning to
optimize job throughput in clusters. Decima [14] learns the or-
der in which batch jobs and their subtasks should be scheduled.
Metis [12] and George [13] learn where containers should be
placed in the cluster in order to optimize performance. We
argue that these works are complementary to our target work.
Resource Co-location. While our work focuses on prediction-
based scheduling, an alternative is to perform profile-guided
scheduling. Scavenger [15] optimizes the CPU usage of ma-
chines by allocating buffer for latency-sensitive jobs based
on past usage. In contrast, we explicitly perform long-term
predictions to more adequately handle long-running batch jobs,
and benchmark this target against similar alternatives during
both prediction and simulation.

SmartHarvest [16] uses online learning to predict the buffer
size for latency-sensitive jobs in a collocated data center.
Compared to this work, our future work will focus on adjusting
the prediction granularity when making scheduling decisions
for long-running batch jobs. Because of the increased duration
of batch jobs, we train predictors with longer prediction
windows. Unlike SmartHarvest, to capture long-term trends
in the data, we train more powerful RNNs instead of linear
models. We also train these models in an offline manner.

Zhang et al. [17] first classify machines in the cluster
based off their workload periodicity before determining where
to schedule batch jobs. For long batch jobs they prioritize
machines with a relatively constant workload, followed by
machines with periodic workloads, and then finally machines
with unpredictable workloads. Rather than assigning batch
jobs to specific machines, our future work will focus on setting
safe batch job limits for each machine which is considered in
the large scale industry setting.

Ambati et al. [18] utilize a similar collocation strategy
for virtual machine (VM) instances in public clouds: they
collocate lower cost, evictable spot instance VMs with higher
priority VMs. Rather than predicting the CPU usage trace and
then determining the resource limit for low priority jobs as in

2023 19th International Conference on Network and Service Management (CNSM)



our work, they instead predict the probability that the VMs
will be interrupted at different time windows. Compared to
that, we will consider batch jobs to be scheduled internally
within the cluster and not user-facing. This means computing
SLA guarantees for each batch job not a priority for our work.
Additionally, because we have full control over batch job
creation and execution we can schedule resources at a finer
granularity in our work.

Cusack et al. [19] proposed limiting automated resource
allocation in container environments through a fine-grained,
event-based resource allocation scheme. In comparison, we
will develop a generic framework which goes beyond ad-
dressing the performance and efficiency trade-off and provides
a generic framework for generating customized recommen-
dations for resource allocation management based on user
specifications for both prediction models and resource demand
targets.

ACKNOWLEDGMENT

Research reported in this publication was supported
in part by funding provided by the National Aeronau-
tics and Space Administration (NASA), under award num-
ber 80NSSC20M0124, Michigan Space Grant Consortium
(MSGC).

REFERENCES

[1] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory based
recurrent neural network architectures for large vocabulary speech
recognition,” CoRR, vol. abs/1402.1128, 2014. [Online]. Available:
http://arxiv.org/abs/1402.1128

[2] H. Hewamalage, C. Bergmeir, and K. Bandara, “Recurrent neural net-
works for time series forecasting: Current status and future directions,”
International Journal of Forecasting, vol. 37, no. 1, pp. 388–427, 2021.

[3] Alibaba, “Alibaba cluster trace program,” 2018. [Online]. Available:
https://github.com/alibaba/clusterdata

[4] A. Cloud, “Evolution of alibaba large-scale colocation technology,”
2018.

[5] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
presented at the CorRR, https://arxiv.org/abs/1412.6980, 2014.

[6] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” 2014. [Online].
Available: https://arxiv.org/abs/1406.1078

[7] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, and Y. Bao,
“Who limits the resource efficiency of my datacenter: An analysis
of alibaba datacenter traces,” in Proceedings of the International
Symposium on Quality of Service, ser. IWQoS ’19. New York, NY,
USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3326285.3329074

[8] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters.” presented at the ACM SIGPLAN Notices,
2013.

[9] C. D. and C. K., “Quasar: Resource-efficient and qos-aware cluster
management,” no. 4, 2014.

[10] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An efficient
dynamic resource scheduler for deep learning clusters,” in Proceedings
of the Thirteenth EuroSys Conference, ser. EuroSys ’18. New York,
NY, USA: Association for Computing Machinery, 2018. [Online].
Available: https://doi.org/10.1145/3190508.3190517

[11] Y. Peng, Y. Bao, Y. Chen, C. Wu, C. Meng, and W. Lin, “Dl2: A
deep learning-driven scheduler for deep learning clusters,” ArXiv, vol.
abs/1909.06040, 2019.

[12] L. Wang, Q. Weng, W. Wang, C. Chen, and B. Li, “Metis: Learning to
schedule long-running applications in shared container clusters at scale,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2020, pp. 1–17.

[13] S. Li, L. Wang, W. Wang, Y. Yu, and B. Li, “George: Learning
to place long-lived containers in large clusters with operation
constraints,” in Proceedings of the ACM Symposium on Cloud
Computing, ser. SoCC ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 258–272. [Online]. Available:
https://doi.org/10.1145/3472883.3486971

[14] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in Proceedings of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 270–288. [Online].
Available: https://doi.org/10.1145/3341302.3342080

[15] S. A. Javadi, A. Suresh, M. Wajahat, and A. Gandhi, “Scavenger: A
black-box batch workload resource manager for improving utilization
in cloud environments,” in Proceedings of the ACM Symposium on
Cloud Computing, ser. SoCC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 272–285. [Online]. Available:
https://doi.org/10.1145/3357223.3362734

[16] Y. Wang, K. Arya, M. Kogias, M. Vanga, A. Bhandari, N. J.
Yadwadkar, S. Sen, S. Elnikety, C. Kozyrakis, and R. Bianchini,
“Smartharvest: Harvesting idle cpus safely and efficiently in the cloud,”
in Proceedings of the Sixteenth European Conference on Computer
Systems, ser. EuroSys ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 1–16. [Online]. Available:
https://doi.org/10.1145/3447786.3456225

[17] Y. Zhang, G. Prekas, G. M. Fumarola, M. Fontoura, I. n. Goiri, and
R. Bianchini, “History-based harvesting of spare cycles and storage in
large-scale datacenters,” in Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’16. USA:
USENIX Association, 2016, p. 755–770.

[18] P. Ambati, I. n. Goiri, F. Frujeri, A. Gun, K. Wang, B. Dolan, B. Corell,
S. Pasupuleti, T. Moscibroda, S. Elnikety, M. Fontoura, and R. Bianchini,
Providing SLOs for Resource-Harvesting VMs in Cloud Platforms.
USA: USENIX Association, 2020.

[19] G. Cusack, M. Nazari, S. Goodarzy, E. Hunhoff, P. Oberai, E. Keller,
E. Rozner, and R. Han, “Escra: Event-driven, sub-second container re-
source allocation,” presented at the IEEE 42nd International Conference
on Distributed Computing Systems (ICDCS), 2022.

2023 19th International Conference on Network and Service Management (CNSM)


