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Abstract— Being able to predict link failures in advance would be 
of great benefit to network operators. We use Machine Learning 
(ML) techniques to extract temporal and spatial relations from 
real network data and use them to predict link failures. We use 
Interior Gateway Protocol (IGP) configuration changes as a 
guide to achieve this.  We predict link failures in the next five days 
based on data collected from the previous five days. We propose a 
modified Variational Auto Encoder (VAE) model to compress the 
higher dimensional dataset into a latent space that captures time-
based relations in the data. We demonstrate that five days is the 
smallest look-back window of time required to get satisfactory 
prediction results. Using feature importance plots, we learned that 
the VAE model was able to capture intricate time-based 
dependencies in the error counter features to achieve good 
performance. In addition, using a Graph Convolutional Network 
(GCN), we were able to aggregate data from neighboring links to 
improve the model’s performance. Neighbors up to two hops away 
carried relevant information in IGP metric settings and in traffic 
metric counter features. The relevance of the correlation of the 
features in time and space is confirmed using standard feature 
importance wrapper methods. Finally, by combining the VAE and 
GCN components, we were able to extract spatial and temporal 
features in conjunction, leading to further improvements. These 
ML approaches significantly improve existing manual methods of 
tracking metrics in time and space currently followed by the 
operator. 
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I. INTRODUCTION 
In this work, we focus on predicting network failures 
guided by Interior Gateway Protocol (IGP) configuration 
changes. Links that exhibit frequent IGP configuration 
changes are called “flapping links”. Flapping links go 
down multiple times a day, causing reroutes and, 
ultimately, noticeable delays by the users. To avoid such 
reroutes, the operator sets high IGP metrics. This results 
in a purposely high cost for the links, which causes the 
networking devices to pick other less costly paths, 
effectively diverting traffic away from the flapping links 
[1]. Once the issue is resolved, the operator resets the IGP 
configuration metrics to reopen traffic flow through the 
link. This cycle is frequently repeated for flapping links. 
As such, we use IGP configuration changes as a guide for 
detecting network failures caused by flapping links.  
 

Although most of the data normally collected during link 
failure resolutions is time and space-dependent, limited 
time series datasets exist for exploring spatiotemporal 
characteristics in the network management field. By using 
data from a real production network, this study expands 
on the limitations of other studies available in the 
literature that often use either simulated environments or 
topologies with simple connections. This is observed in 
optical [2] and IP [3] network studies. There are some 
existing studies, like [4], that use time series forecasting 
algorithms and deep learning models for network traffic 
prediction. However, the success of these models is yet to 
be validated in real scenarios at a scale representative of a 
real service provider. This paper finds useful insights from 
spatiotemporal relations of metrics reported from the IP 
and the underlying optical layer. The fact that the datasets 
are collected from an actual production network means 
that it comes with a set of non-trivial challenges like data 
size, data drift, and lack of samples for the link failure 
scenarios we are interested in. 

II. BACKGROUND 
The data in this study is collected from a 400Gbps 
optimized intelligent network interconnecting thousands 
of data centers and carriers worldwide, spreading out over 
four continents and 32 countries. With over 150K Kms of 
fiber coverage, it comprises thousands of IP and optical 
devices from different vendors. The primary data sources 
are OneControl, Cisco WAN Automation Engine (WAE), 
and IOS XR Traffic Controller (XTC): WAE collects data 
for all IP interfaces, while OneControl collects data for 
Ethernet and Optical Interfaces on the optical devices. 
XTC is the controller that reports the IGP configuration 
metrics of interfaces on the IP layer. 

In a previous study [1], the features in the five day window 
were flattened into a single row, resulting in five times 
more feature columns. This was done to conform the 
shape of the input data into two dimensions, as required 
by the ML model we used. However, this method erodes 
the dependencies in the dataset in the time and space axis. 
Hence, the models used in the previous study did not 
leverage the spatiotemporal based dependencies in the 
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intrinsic nature of the data. In this study, we explore 
different approaches to leverage spatiotemporal 
dependencies of the data. These include XGBoost [5] with 
time-based difference features and using out-of-the-box 
time-series classification models like ROCKETS 
(RandOm Convolutional KErnel Transform) [6], 
Transformers [7], and Variational Auto Encoders (VAE) 
[8]. A Graph Convolutional Network (GCN) is used for 
spatial feature extraction [9]. 

III. RELATED WORK 
Multivariate time series data used by LSTM models for 
predicting faulty links is discussed in [10]. They use a 
single link and six features to train an LSTM model, such 
as laser bias current, input optical power, output optical 
power, temperature in the model, and detection point 
temperature. They claim that they increased fault 
detection efficiency by 98.41%. This paper expands their 
work by extending the topology and feature set. Even 
though we are dealing with a harder problem, we use a 
more sophisticated VAE model for temporal feature 
extraction and achieve similar results. 

Studies like [11] and [12] show the importance of 
analyzing temporal and spatial relations in data with both 
time and space dimensions. From a survey of the available 
literature in [13], most ML models use vanilla GCNs for 
spatial feature extraction and either LSTMs, GRUs, or 
Transformer models for temporal feature extraction. This 
paper uses a unique implementation of a combination of 
GCNs with VAE after finding that we can train more 
purposed VAE models for temporal extraction by 
combining it with XGBoost.  

We have identified that most existing work is limited by 
either using simulated data that does not reflect real 
network topologies or addressing a simplified problem 
using real data. We are expanding on these limitations by 
using data collected for a real topology and identifying 
link failures that any issue in the network could cause. We 
are also proposing a modified VAE model for better 
extraction of temporal features. 

IV. METHODOLOGY 

A. Data Collection 
The data collected from the three sources mentioned 
earlier (WAE, XTC, and OneControl) contain features 
from IP and optical devices. These features represent the 
various Performance Metrics (PMs) reported by the 
constituent interfaces of the links. In this study, we focus 
on the time series features. The following table gives an 
overview of some of the important features available in 
the dataset for temporal study. The FLR metric (Eq. 1) is 
a custom metric introduced by the client.  
 

FLR =	 !""#"	%&'()*+	[--+]
(!""#"	%&'()*+	[--+]	0	%&'()*+	12	[--+])	

∗ 	104      (1) 
 

Table 1: Dataset Features 
Feature Name Description 

Traffic Traffic In/Out Mbps                          
(Min, Max, Avg) 

Packets Packets In/Out Per Second               
(Min, Max) 

Error Packets Error Packets In/Out Count 
FLR Packets Transmission Failure Rate 

Uni-Directional Min 
Delay (UMD) 

The forward path latency between 
two neighboring interfaces on a 

link 
 

B. Data Cleaning and Data Preprocessing 
After data collection, we fill in missing values for the time 
series features we are interested in. The final dataset is 
partitioned into five day sliding window frames with a 
stride value of 1 day. The label for the current window 
will be one if there are any IGP configuration changes in 
any of the days in the following window and zero if not. 
Table 2 below gives important statistics about the data. 

Table 2: Important Statistics 
Statistic Value 

Number of Links 215 
Number of IP Interfaces 430 
Number of optical Interfaces 252 
Number of optical Links  63 
Total Number of Windows 47085 
Windows with Link Failures 963 
Class Imbalance 1.5% 
Training Months 5 
Test Months 3 

 

C. Model Training and Inference 
We train various supervised classification ML models on 
the final preprocessed dataset and use precision-recall 
curves to measure the model’s actual performance in our 
model evaluation. F1 score and Average Precision (AP) 
are used to determine the performance of the models 
trained in this paper. F1 generalizes recall and precision 
via harmonic mean computation. AP summarizes a 
precision-recall curve as the weighted mean of precisions 
achieved at each threshold, with the increase in recall from 
the previous threshold used as the weight. Finally, we use 
paired two-tailed t-tests to calculate statistical 
significance when comparing the distribution of 
performance scores models. 
 
We have modified the standard VAE architecture by 
adding an ML classifier between the encoder and the 
decoder. The architecture of this temporal-based system 
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may be considered to be a VAE solution with built-in 
classification functionality. In this approach, we use a loss 
function where, for a given sample 𝑆5(𝜃, ∅), the loss is: 
 

𝔼6	~8!(9|;")[log	𝑝∅(𝑥5 	|	𝑧)]					(2) 
+ 

𝕂𝕃;𝑞∅(𝑧	|	𝑥5)=	||	𝑝(𝑧)	    (3) 
+ 

−𝑦5 log(𝑝5) − (1 −	𝑦5)log	(1 −	𝑝5)   (4) 

The first term (2) is the expectation taken with respect to 
the encoder’s distribution, 𝑞∅(𝑧	|	𝑥"), as parametrized by 
θ. log	𝑝∅(𝑥" 	|	𝑧) is the reconstruction loss. This is the log-
likelihood of the reconstructed features against the 
original features. The second term (3) gives the Kullback-
Leibler divergence [8] between the encoder’s distribution 
and 𝑝(𝑧) . 𝑝(𝑧)  is specified as a standard normal 
distribution with zero mean and variance of one. This is 
called the regularization term and is put in place to ensure 
that the representation (z) of each group of features is 
sufficiently diverse and that similar feature 
representations have similar latent space representations. 
The above terms are standard parameters to capture VAE 
loss. We add an additional classifier loss term (4), which 
gives the binary cross entropy loss (log loss). The total 
loss is then summed up for each sample in the batch, and 
backpropagation is used to update the weights. This 
helped the encoder’s training process as it will try to 
encode the input samples into the latent space optimally 
so that they can be decoded and used for classification in 
parallel.  

 
V. EXPERIMENT DESIGN AND RESULTS 

A. Temporal Relation Detection with Autocorrelation 
We used statistical correlation functions to determine the 
relation of the time series features in time with itself. The 
autocorrelation function can be used to calculate the 
correlation of a time series observation with data points 
from the same observation in a previous time step. Studies 
like [14] have shown the use of Autocorrelation and 
Partial Autocorrelation functions to improve the 
performance of neural network models on time series 
forecasting tasks. In this study, we use them to show the 
correlation of some important features in time. The results 
of the autocorrelation computation are shown in Figure 1. 
Most of the time series features in the dataset exhibit plots 
like the ones shown in the figure. The blue area depicts 
the 95% confidence interval, indicating the significance 
threshold. From this, we can determine that the 
correlations in day lags become less significant after lag 3 
to lag 5. We deduce that this dataset has a significant 
relation in time, which is significant up to 3 to 5 days. This 
is one of the reasons we are using 5-day windows. 

 
Figure 1: Autocorrelation Plots 

We have also used Pearson cross-correlation plots to see 
interesting correlations across the time series features. 
Some are obvious, like packet in and out counters for 
source and remote interface, while others are not, like the 
correlation between uni-directional min delay and link 
bandwidth. A grid search on the window size confirmed 
the above statistical inference. A training set was prepared 
for each window size, and an XGBoost model was trained. 
Training the model with a window size of more than five 
days did not yield further improvements in performance.  

B. Detection and Use of Temporal Relation with 
XGBoost 

This this sub-section and the next, we cover the steps 
taken for detection and use of spatiotemporal relation by 
various approaches. We the plot subsequent results 
achieved. Finally, we will provide a generalized overview 
of our recommendations and lessons learned. The F1 and 
AP scores of these approaches, along with the Precision-
Recall Curve, are shown collectively in Figure 2.  
 

 
Figure 2: Model Performance Chart 

To detect the relevance of temporal relations, we shuffled 
the data features to disarrange the sequence randomly for 
each link. This is very different from shuffling the dataset 
consistently across the entire dataset. Shuffling the dataset 
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consistently will keep the performance the same since the 
order of the columns in the dataset is not used to make 
decisions. But if we randomly shuffle the columns for 
each row, the built-in temporal relation in the dataset is 
lost. This must be done only for the training dataset. An 
experiment conducted on the randomized dataset showed 
statistically significant degradation in performance hence 
showing the value of temporal relation. 
 
In addition, by adding difference features between 
consecutive days as additional features to the dataset, we 
were able to significantly improve the XGBoost 
performance. In the remainder of this paper, we will refer 
to the difference features as "diff features". Adding these 
diff features increases the dataset with 745 features. We 
have used feature importance plots to confirm that the diff 
features are amongst the top of the feature importance list, 
meaning that the trend information encoded in them is one 
of the most important features.  

C. Leveraging Temporal Relation with Time Series 
Classification Models 

For a neural network approach of time series 
classification, we tried ROCKETS, Transformers, and the 
modified VAE approach. From the results shown in 
Figure 2, we see that the ROCKETS model does not train 
as well as the XGBoost model with the diff features. This 
could be due to the intrinsic nature of the model to work 
with univariate datasets. It has been modified to work with 
multivariate time series datasets via column concatenation 
method. This dataset is a sparse multivariate, and hence it 
may not be well suited for models designed for univariate 
datasets. The same is true for the Transformer model. It 
could be too complex of a model for our heavily 
imbalanced dataset. Although we think that further 
configuration of Transformers may lead to better results. 
 
The result also shows that the modified VAE model could 
encode temporal relations more effectively. We can see 
that this model has an even higher average precision, 
which is 7 percentage points more than the XGBoost 
model with diff features. This shows that the VAE model 
can capture more of the temporal relations than what is 
achieved by adding diff features. Now that we have a 
model performing well, we can use SHAP (SHapley 
Additive exPlanations) as shown in [15] to plot the feature 
importance plots for each time step to expand the 
interaction of feature values across the days of the 
window. The top SHAP values for the above model are 
given in Figure 3. We can see that the VAE model 
extracts valuable information from more sparse features 
like FLR rates not previously seen as important by the 
XGBoost model. This is confirmed by looking at the raw 
metric windows from the dataset for specific links.  

 

 

 
Figure 3: Modified VAE Model SHAP Importance Plot 

D. Leveraging Spatial Features using Graphical 
Convolutional Networks 

Before using GCNs, we confirmed the relevance of 
adding neighboring node information by expanding the 
window data frames with information from the neighbors 
of a given node. The best neighbor was picked from all 
available neighbors to a link based on the amount of data 
on the neighbor. If the neighbor has fewer missing 
features, it presumably has more relevant information. 
Based on this heuristic, the trained XGBoost model with 
the additional features shows improved performance. 
Figure 4 shows that the neighboring metrics (the ones in 
blue) are amongst the more important features for 
prediction, contributing up to 20% to the performance. It 
tells us that a neighbor’s IGP metric configuration and 
traffic metric details carry significant information for 
predicting link failures. 

 
Figure 4: Feature Importance for Data from Neighbor  

Next, using GCNs, were able to train a model that 
leveraged the graph topology structure built with node 
data, neighboring indices, and edge weights. The edge 
weights were kept static as we did not need to differentiate 
between neighbors based on importance as we did not 
have domain knowledge for prioritizing links. The GCN 
model had a better performance than the XGBoost model 
with the expanded feature set. This is shown by the model 
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performance of the GCN model in Figure 2. Given that 
the number of hops in the construction of layers for the 
GCN model is a hyperparameter, fine turning it on this 
dataset showed that the optimal number of hops is two. 
Adding more hops has negative return as it could add 
more noise from links that do not carry relevant 
information.  

E. Combining Temporal and Spatial Models 
We discussed that there are alternatives to combine 
temporal extraction models with graphical models for 
spatial extraction as shown in [13]. In this paper, we 
designed an architecture for the combination of the two 
components by adding the VAE temporal component 
right after the aggregation of data from neighboring links 
in the GCN component. Using this architecture, we were 
able to further improve the resultant model as 
demonstrated in Figure 2. This signifies that when 
extracting both spatial and temporal components via 
complex ML neural networks, we are able to outperform 
all standard models trained so far.  

VI. CONCLUSION 
From this study, two conclusions can be drawn. First, the 
dataset's significance in temporal relations is discovered 
through autocorrelation and randomization techniques. 
Second, using the existing spatial and temporal relations, 
we can train better models by adding features that encode 
differences between features across days for temporal 
features and neighboring metrics for spatial features. 
However, even better models can be trained that, by 
design, can extract meaning from sequences like VAEs 
for temporal features and GCNs for spatial features.  
 
Using feature importance plots, we see that the sequence 
models could leverage more abstract temporal relations in 
the dataset that lay in the error counters like FLR rate, 
while the GCN model leveraged IGP configuration and 
traffic counter metrics from neighboring links. Finally, a 
combination of the temporal and spatial neural networks 
gave the best performance when predicting IGP changes. 
These spatiotemporal correlations are currently not used 
by NOC operators for root cause identification of flapping 
links.  
 
For future work, we suggest performing a similar study on 
dynamic networks. This is because, in reality, network 
operators are constantly adding and removing links. This 
issue must be accounted by ML algorithms for them to 
succeed more in the field. Another expansion is a closer 
study of the different ways the spatial and temporal 
components can be combined to extract more optimized 
features for ML models. Finally, more studies could be 
conducted to see if similar ML approaches could be 

applied to other relevant network issues like network 
congestion detection, base stations crash detection, and 
router reset issues. 
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