
CrossBal: Data and Control Plane Cooperation for
Efficient and Scalable Network Load Balancing

Bruno L. Coelho, Alberto E. Schaeffer-Filho
Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

{blcoelho, alberto}@inf.ufrgs.br

Abstract—Load balancing network traffic through multiple
shortest-paths has become common practice to efficiently utilize
the network infrastructure. Despite widespread adoption, Equal-
Cost Multi-Path (ECMP) delivers performance far from optimal.
Several load balancing solutions utilize Weighted-Cost Multi-Path
(WCMP), splitting incoming traffic between links proportionally
to link weights. However, implementing WCMP requires the
controller to update match+action rules whenever the weights
must be changed, introducing a delay before the appropriate
traffic split can be applied. Additionally, weighted traffic splits are
applied over network flows without regard to flow characteristics
or needs. We propose CrossBal, a hybrid load balancing system
based on Deep Reinforcement Learning (DRL) that focuses its
efforts on high-impact elephant flows. The DRL agent is modeled
to be able to efficiently utilize network links while minimizing
the action space, allowing the agent to quickly learn how to
load balance. Further, CrossBal can quickly react to network
changes by monitoring and switching active routes directly in the
data plane. Our evaluation shows that CrossBal can efficiently
utilize network resources, using most available links, while also
reducing link utilization imbalance. We also evaluate the elephant
flow detection employed by CrossBal, showing how it can quickly
identify elephant flows while efficiently utilizing switch resources.

Index Terms—Load Balancing, Traffic Engineering, Deep Re-
inforcement Learning, Machine Learning, Programmable Data
Planes, Elephant Flow

I. INTRODUCTION

Current intra-domain routing solutions present limitations
in properly trying to load balance network traffic. Equal-
Cost Multi-Path (ECMP) evenly splits traffic between multiple
equal-cost paths. Due to its simplicity, ECMP is readily
available in commercial switches [1]. However, ECMP suffers
from severe performance drawbacks, being unable to achieve
adequate performance [2]. Weighted-Cost Multi-Path (WCMP)
extends ECMP by adding weights to each hop, increasing
performance and resilience to network asymmetry. Several
systems propose techniques for calculating optimal weights
for WCMP [3]–[7]. However, updating link weights during
congestion requires control plane intervention, which intro-
duces considerable delay. On the other hand, load balancing
solutions that rely entirely on the data plane are limited to
specific topologies [8], [9] or simple heuristics [10], [11].

In addition to the aforementioned deficiencies, existing load
balancing systems based on traffic splits generally do not
consider the characteristics or needs of each network flow. Ele-
phant flows are high-throughput, long-lasting flows that tend to
have a large impact on the network [12]. While elephant flows

may constitute a small portion of total flows, a few large flows
tend to contribute more to the overall network traffic than a
large amount of small flows [13], [14]. Considering the impact
that elephant flows have on the network, intelligent rerouting
of these flows can severely improve network utilization [15].
Additionally, as elephant flows are long-lived, we have more
chances to reroute them.

Given the importance of load balancing elephant flows, a
system capable of identifying and rerouting these flows is
required. However, the identification of elephant flows requires
monitoring up to terabits per second of network traffic. While
a control plane solution can enable complex techniques for
identifying elephant flows, SDN controllers cannot process
network traffic at these rates [16]. An alternative is to use the
data plane of networking devices to aid in the identification of
elephant flows. While emerging programmable switches [17]
allow us to reconfigure the packet processing pipeline, they
are still subject to limitations, as these devices tend to have
a few tens of MBs of memory, a restricted set of logical and
arithmetic operations, limitations on memory accesses, and a
strict time budget to process each packet [18].

In addition to efficiently and accurately detecting elephant
flows, a load balancer must be able to react to changes in the
network state, such as transient congestion. Considering these
requirements, we propose CrossBal, a hybrid load balancing
system that combines an intelligent control plane with a
reactive data plane. CrossBal employs a Deep Reinforcement
Learning agent in the control plane, responsible for intel-
ligently selecting routes that maximize the performance of
the network. Additionally, by having the control and data
planes collaborate to identify elephant flows, CrossBal avoids
scalability and delay issues that are introduced by performing
per-packet computation in the controller. Finally, CrossBal is
able to quickly detect and react to congestion in active paths by
employing mechanisms directly in programmable data planes.

In summary, this work presents the following contributions:
• Design and implementation of CrossBal: a hybrid

machine learning-aided load balancing system capable
of identifying and rerouting elephant flows, as well as
detecting and reacting to congestion in selected paths;

• Evaluation of a PoC prototype: using BMv21 in an
emulated environment with realistic network topologies
and workloads;

1https://github.com/p4lang/behavioral-model

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP

• Design of a deep reinforcement learning agent: which
is capable of actively load balancing network flows.

II. BACKGROUND AND MOTIVATION

This section provides necessary background information on
Deep Reinforcement Learning and programmable data planes.

A. Deep Reinforcement Learning

In Reinforcement Learning (RL), an agent interacts with its
environment in each timestep t ∈ 1, 2, In each iteration,
the agent observes a state s ∈ S and chooses an action a ∈ A
according to its policy π [19]. Afterwards, the agent receives
a reward r according to a reward function and transitions to
a new state s′ ∈ S according to a transition function. RL
algorithms can learn an optimal policy π even without any
explicit knowledge of the reward or transition functions [20].

In order to be able to efficiently utilize Reinforcement
Learning algorithms in systems with complex environments,
researchers have proposed the use of Deep Neural Networks
(DNNs) as a function approximator for RL [21] - a technique
known as Deep Reinforcement Learning (DRL).

Deep Reinforcement Learning Agent
Deep Neural Network

input 1

Observed
Raw Data

input 2

input n

Input Layer

...

Synapses

... ...

...

...

Output Layer

value of
action 1

Hidden Layers

value of
action n

Reward r
State s'Environment

update weights

Action
Selection

1

2

3 4

Optimizer

5

Action a

Fig. 1: Steps of an iteration of a Deep Learning Agent

Figure 1 illustrates the main aspects of a Deep Reinforce-
ment Learning (DRL) agent. First, (1) the DRL agent observes
raw data which describes its current state s. The agent utilizes
a DNN to identify similar states, improving scalability and
efficiency. Then, (2) the DNN outputs the expected value of
each action for the observed state as the value of each neuron
in the output layer. Next, (3) the agent selects an action a
based on its strategy. This typically involves choosing between
exploiting, i.e., choosing the action with the highest expected
value, or exploring a random action, based on its exploration
parameters. After acting, (4) the agent receives a reward r and
transitions to a new state s′. Finally, (5) the agent updates its
internal weights based on the reward received.

B. Programmable Data Planes

Programmable data planes allow network operators to re-
define the packet-processing pipeline through domain-specific
languages, such as P4 [17]. In the PISA architecture, the data
plane is mainly composed of a parser, an ingress, and an
egress processing blocks [9]. The first step in the pipeline
is the parser, responsible for parsing protocol headers. Next,
the ingress block processes packets and selects an egress port.

In this block, the network operator can define match+action
tables, matching on arbitrary keys, such as packet header
fields or custom metadata, and invoking actions defined by the
operator. Actions can be defined based on simple arithmetic
and logic primitives, as well as architecture-specific functions.
This includes reading and storing data in registers, allowing
stateful processing. The egress processing block is identical to
the ingress processing block, except the output port has already
been selected. Both blocks have an independent amount of
resources, such as SRAM and arithmetic and logic units. State-
of-the-art programmable switches have a few tens of MBs of
SRAM and a limited amount of pipeline stages [18].

III. CROSSBAL: CROSS-PLANE LOAD BALANCING

CrossBal is a hybrid load balancing system that combines
an intelligent control plane with reactive data plane processing.
In this section, we present CrossBal, starting with an overview
of the approach (§III-A), followed by the key design elements,
including elephant flow detection (§III-B), DRL agent (§III-C)
and how to react to short-lived network congestion (§III-D).

Control Plane

DRL Agent

Network
Metrics

Data Plane

ECMP

Routing
Strategy

O
U
T
P
U
T

Network
Monitoring

Positive

Negative

Elephant Flow
Detection

Report
Network State

Forwarding
Rules

Fig. 2: CrossBal employs cross-plane collaboration.

A. Approach Overview

Figure 2 presents an overview of our approach. CrossBal
relies on two key principles to balance network utilization in
an efficient and scalable manner: (i) cross-plane cooperation
for combining line rate reaction to network changes at the data
plane with more intelligent decisions at the control plane; and
(ii) scalable traffic rerouting for flows that have the highest
impact on the network (e.g., elephant flows and heavy hitters)
as opposed to dealing with every flow in an equal manner.

The workflow starts with each programmable data plane
device monitoring the state of the network. Simultaneously,
the data plane is also responsible for performing elephant flow
detection at line rate. Both the network status and detected
elephant flows are reported to a logically centralized controller,
with a global view of the network. The controller employs
a Deep Reinforcement Learning (DRL) agent to actively
compute the new top-n optimal routes to forward these flows
of interest, and reconfigure the data plane devices.

CrossBal employs two control-loops that work together
for performing load balancing. There is a slower, but more

2023 19th International Conference on Network and Service Management (CNSM)

intelligent, control-loop at the control plane, which is fed
with network monitoring data and is used by the DRL agent
to compute the optimal routes. However, programmable data
plane devices also apply a faster, but simpler, control-loop to
probe, monitor, and rapidly switch between a subset of active
routes selected by the DRL agent. By having the data plane
cooperate with the control plane in multiple aspects, CrossBal
achieves intelligent and reactive load balancing of the network.

There are several challenges that directly influenced the
following design aspects of CrossBal: the identification of ele-
phant flows, the modeling of a Deep Reinforcement Learning
agent, and allowing data plane devices to actively participate
in route selection. These will be discussed next.

X

Tiny Flow
Small Flow

Medium Flow
Large Flow

X

Elephant
Flow
X

Control Plane
Data Plane

Machine Learning
Classifier

Medium Flow Large Flow

Preliminary
Filtering

Refined
Detection

Deep
Reinforcement
Learning Agent

Active
Elephant Flows

<5-tuple>

...

Fig. 3: Overview of the cross-plane elephant flow detection.

B. Identifying Elephant Flows at Line-Rate

Identifying elephant flows at line-rate is challenging in high-
throughput networks, where network traffic rates can reach
terabits per second [16]. Despite its flexibility, a central-
ized controller is incapable of performing per-packet classi-
fication without incurring latency overheads. Programmable
switches [17] can be used to offload part of this task.

CrossBal decomposes the detection of elephant flows into
three levels of complementary mechanisms, balancing the
tradeoffs between fast and lightweight detection in the data
plane with more accurate and heavyweight detection in the
control plane (Figure 3):
• Preliminary filtering: the data plane implements a

threshold-based detection that tracks the number of bytes,
number of packets, and duration for each active flowlet2.
The main aspect of this mechanism is that it must handle
a large number of flows, thus limiting the amount of
processing and storage available for each flow. Therefore,
as shown in Figure 3, this step acts as an early filtering of
low-throughput and short flows in order to save hardware
resources. A further optimization is proposed and evalu-
ated (§V-D), where only packets larger than a threshold
are accounted for. By utilizing this strategy, the number
of packets of a flowlet can be seen as a lower bound of
the number of bytes transmitted by the flowlet. This can
lower the number of bits utilized to store this information,
saving precious on-board memory. The same reasoning
can be applied to track the number of flowlet timeouts of
a flow rather than the entire duration.

2Flowlets are bursts of packets of a flow separated by an idle interval.

• Refined detection: While the threshold-based mechanism
mentioned above can exclude a large number of small
and short flows, it may lead to a high number of false
positives if used by itself. To address this, CrossBal
employs further mechanisms to detect elephant flows. The
intuition is that because the preliminary threshold-based
filtering already excluded a large number of unimportant
flows, it is now possible to implement a slightly refined
detection mechanism over the remaining flows of interest,
as shown in Figure 3. In particular, CrossBal implements
a classification tree in the form of if-else statements in the
programmable data plane. As there is a smaller number of
flows to consider, it is possible to dedicate slightly more
on-board memory to track features of each flowlet. In
our PoC prototype, we track simple statistics of the inter-
arrival-time and packet size of each flowlet. We leave a
more thorough feature selection as future work.

• Cross-plane detection: Although CrossBal implements
multiple mechanisms for the identification of elephant
flows directly in the data plane, ensuring line-rate pro-
cessing requires sacrificing accuracy for efficiency. In
order to provide a more accurate detection of elephant
flows, CrossBal employs cross-plane collaboration, as
shown in Figure 3. This builds upon the preliminary
filtering (which reduces the amount of flows of interest)
and upon the refined detection (which tracks additional
features for relevant flows). Therefore, CrossBal imple-
ments a classifier in the control plane that receives the
information tracked by the data plane. As the controller
provides a more flexible programming model, and con-
sidering the features extracted by the data plane, we im-
plement a Random Forest in the control plane, providing
higher accuracy than a single classification tree.

CrossBal utilizes hash tables to implement the preliminary
filtering and the refined detection. Since onboard memory is
a scarce resource, collisions in the hash tables are unavoid-
able. However, due to the multi-stage elephant flow detection
spanning both the data and control planes, hash collisions
do not cause elephant flows to pass undetected. Figure 4
shows examples of hash collisions that may happen during the
detection of elephant flows in the data plane. Particularly, when
one of the colliding flows is a short-lived flow (Figure 4a),
this flow tends to complete while the elephant flow is still
active. This means that the elephant flow will eventually be
able to utilize the hash table entry once the short-lived flow
expires. In another scenario (Figure 4b), when the hash of two
(undetected) elephant flows lead to the same table entry, the
first flow (A) will occupy the slot. Eventually, the preliminary
filtering will recognize flow A as being a potential elephant
flow, inserting it in the list of flows tracked by the refined
detection. This way, flow A will be removed from the first
hash table, freeing the slot for the second flow (B). This
same reasoning is applicable to hash collisions in the refined
detection, as flows are eventually exported to the controller,
freeing the occupied slot.

2023 19th International Conference on Network and Service Management (CNSM)

Flow D
Flow A

...

Hash Table

Arriving Flow A

Arriving Flow B
Hash Function

Hash collision

(Flow A ends)

Flow A ends, freeing the entry
in the hash table for Flow B

Time = t

Flow D
Flow B

...

Hash Table

Arriving Flow B
Hash Function

Time = t+1

(a) Hash collision between a mice flow and an elephant flow.
Both flows are long-lasting, but

Flow A is occupying the slot

Hash Table

Arriving Flow A

Arriving Flow B
Hash Function

Hash Table

features[Flow A]

insert(Flow A)

Thresholds

Refined
Detection

Flow A is stored in a different Hash Table,
freeing the slot for Flow B

Hash Table

Arriving Flow A

Arriving Flow B
Hash Function

Refined
Detection

Time = t

Time = t+1

Time = t+2

Flow D
Flow A

...

Flow D
Flow A
Flow C

...

Flow D
Flow B

...

(b) Hash collision between two elephant flows.

Fig. 4: Relevant scenarios where hash collision may happen.

The control plane is responsible for the final classification
of potential elephant flows. Hardware limitations of data plane
devices impose restrictions on the complexity of the classifi-
cation models implemented, and as such the control plane is
a more advantageous place to implement a complex machine
learning classifier with high accuracy. Once an elephant flow is
identified, it is inserted in a list of flows to be actively rerouted
by the DRL agent that executes in the controller (next section).

C. Deep Reinforcement Learning Agent

The Deep Reinforcement Learning (DRL) agent is respon-
sible for selecting routes for active elephant flows, with the
objective of improving network utilization. In particular, the
modeling of the state, action space, and rewards impact how
well the agent can achieve its goal.

State Space. The state must include all the information the
agent needs in order to take an appropriate decision at a given
time, but real time data collection poses several scalability
challenges. In particular, switches must refrain from exporting
unnecessary information and, at the same time, must minimize
the amount of redundant information, which may negatively
impact the learning rate of the DRL agent.

Our approach: In order to avoid the aforementioned prob-
lems, we model the state based on the utilization of each link
in the network. More formally, the state S observed by the

agent is a vector of the utilization Ui, j of each link i of
every switch j:

S = (U1,1, U1,2, ..., U1,n, U2,1, ..., U2,n, ..., Un,m)

The link utilization of the ports of each switch in the
network is enough for the agent to understand the current state
of the available network resources. Further, the agent is able
to learn the relationship between routes and links by observing
how each action taken affects the utilization of links.

As the agent is used to reroute active elephant flows, the
state must also consider the endpoints of the flow. However,
using the 5-tuple of the flow requires the agent to learn the
mapping of IP addresses, leading to slower learning. Instead,
we map the source and destination IP addresses to one-hot
vectors representing the source and destination edge switches.

Action Space. The action space must allow the agent to
make decisions on how to reroute active (elephant) flows.
A naïve approach would be to map each possible route
to an action. However, this would generate a large number
of possible actions, leading to slow learning. An alternative
would be to model each action as one hop, as shown in
Figure 5. In this approach, an end-to-end route would require
several hops, i.e., several actions being taken in a sequence.
This leads to the problem of reward assignment, as a sequence
of actions would be required to obtain a single reward.

Expected value
of each port

State(i) = (
 utilization[...],
 hops[<empty>])

1
Update

Loss
Function

Which action/neuron to
assign reward to?

Extending state to include
hops makes it more complex,

leading to slower learning

Neural
Network

Action
Selection A = hops[2, 1, ...]

R = 10
S' = utilization[...],
 hops = [<empty>]

State(i) = (
 utilization[...],
 hops[2])

2

3

4

5

Fig. 5: Mapping actions to hops leads to reward assignment
issues.

Our approach: We model the action space based on a
set of predefined end-to-end routes for each pair of source-
destination edge switches. First, this design eliminates the need
for multiple actions per end-to-end route. Instead, the agent
can observe the correlation between choosing a route (taking
an action) and changes in the utilization of the links in the
network (observing the next state). Additionally, restricting
the action space to a set of predefined routes results in a
well-defined number of possible actions. This avoids potential
issues that might arise if the agent had to consider every single
possible end-to-end route in the network. Finally, the set of
end-to-end routes for each source-destination pair should re-
main the same throughout the life of the DRL agent, i.e., from
training to the end of its use in load balancing. Computing
short paths with diversity can be done with algorithms such
as KSPD [22]. The computed paths can be used by the agent
to effectively distribute the load over the network links while

2023 19th International Conference on Network and Service Management (CNSM)

keeping the number of possible actions small. While topology
changes require recomputing the static routes and retraining
the agent with the new routes, Graph Neural Networks (GNNs)
could make the agent robust to topology changes [23]. We
leave this as future work.

Reward. In the context of network load balancing, the re-
ward is linked to the utilization of network resources. Although
in traditional DRL the impact of an action in the environment
is reflected immediately, for load balancing the state of the
links may take some time to update. If the utilization of the
network links is queried immediately after the action is taken,
it will not properly reflect the impact of the selected action.

Our approach. Considering the main objective of load
balancing the network, we model the reward R(s, a) after
the max link utilization of the network. After comparing
different formulas based on the link utilization to compute
the reward (§V-C), we observed that (1) produced the best
results. Additionally, in order for the new state to reflect the
consequences of the action taken, we poll link statistics from
switches t milliseconds after an action is taken.

R(s, a) =
1

MaxLinkUtilization(s′)
(1)

D. Reacting to Short-Lived Network Congestion

The DRL agent is used to reroute elephant flows as soon
as they are detected. As explained above, the agent takes into
consideration the current utilization of the links in the network
to select an optimal route with respect to network load balanc-
ing. Additionally, when no new elephant flows are detected,
the agent is used to periodically select new routes for already
active elephant flows. This is useful when the utilization of
certain links in the network changes considerably, causing
alternative routes to become more favorable. However, due
to the fact that this control loop is only executed periodically,
it may not be capable of reacting to short-lived congestion.

Thus, in order to be able to quickly react to network
changes, CrossBal implements mechanisms for switching ac-
tive paths directly in the data plane. Figure 6 presents an
overview of this mechanism, where (i) the programmable data
plane actively monitors the quality of the installed routes,
and (ii) upon detecting congestion, (iii) the forwarding device
switches to a less congested pre-computed route without
control plane intervention.

CrossBal achieves this by having the controller install
multiple routes for each active elephant flow. As the DRL
agent computes the expected value of each route, we select
the N routes with highest expected value. Also, the data
plane devices are responsible for periodically probing each
of the installed routes. By calculating the RTT of each route,
the programmable switch is capable of detecting congestion
along paths and selecting an alternate route. Spraying a flow’s
data packets through paths we wish to probe could lead
to packet reordering at the destination end-host. This can
negatively affect the performance of transport protocols such
as TCP [24]. Instead, CrossBal periodically creates probe

Path B

Path
 A

Path C

Active route

Path B

Path
 A

Path C

Active route
worsens

Congestion

Path B

Path
 A

Path C
Congestion

Switch
Active route

Active Routes
Flow ID Path ID RTT

Flow X Path A 20

Flow X Path B 43

Flow X Path C 31

...

Active Routes
Flow ID Path ID RTT

Flow X Path A 75

Flow X Path B 43

Flow X Path C 31

...

Active Routes
Flow ID Path ID RTT

Flow X Path A 75

Flow X Path B 43

Flow X Path C 31

...

Fig. 6: Mechanism for switching active paths

packets to measure the RTT of active paths. Probe packets
are created using the clone feature of programmable switches
when it has been longer than t ms since the last probing
for this elephant flow. The cloned packets have their payload
removed and a custom probing header inserted. Each active
route is probed in order to measure its RTT. As the control
plane is only required initially to install the multiple routes,
we can quickly detect and react to short-lived congestion. An
elephant flow is rerouted when there is a noticeable increase
in measured RTT in the active route. Therefore, even if every
route is experiencing congestion, CrossBal will only reroute
once per probing interval.

IV. ARCHITECTURE

CrossBal comprises a series of modules divided in the con-
trol and data planes. The architecture of our system is shown
in Figure 7. The data plane of programmable devices includes
modules for monitoring network links, routing elephant flows,
detecting new elephant flows, monitoring active end-to-end
routes, and switching active end-to-end routes. Algorithm 1
provides the pseudo-code of the packet processing pipeline of
the P4 switches used by CrossBal.

Upon receiving a packet that does not belong to an elephant
flow, the programmable switch applies a Preliminary
Filtering to exclude short-lived and small flows (lines
14-23 of Algorithm 1). For each flowlet, we use registers
to track a few simple features, such as the number of bytes,
packets, and flowlet duration. When the features of a flowlet
exceed predefined thresholds, the flowlet is set to be pro-
cessed by a second module, responsible for refined detection.
The Refined Detection is only applied over a smaller
subset of flows, enabling the data plane to keep track of
more complex features for each tracked flow (lines 10-13 of
Algorithm 1). The features tracked in this module include the
minimum, maximum, and total inter-arrival-time and packet
length of each flow. These features are tested against a set
of chained conditions in order to identify potential elephant

2023 19th International Conference on Network and Service Management (CNSM)

Elephant Flows
<5-tuple> <index>

... ...

(hit)
bytes[port_1,

port_2, ...]

Statistics Tracker
<port> <bytes> <packets>

...

link_utilizations[port_1, port_2, ...]

pull_bytes()

(every t
seconds)

Statistics
Monitor

Reward r

State s
Environment(FIFO Queue)

insert()

Arriving
Elephant Flows

<5-tuple>
...

(RR scheduling)
Active

Elephant Flows
<5-tuple>

...

(empty)

<src_switch_id,
dst_switch_id>IP-to-Switch

Mapper
map(action, src_switch,

 dst_switch)

Deep
Reinforcement
Learning Agent

(miss)

Arriving
Packet

O
U
T
P
U
T

ECMP

(hit)

Control Plane

Data Plane

ML
Classifier

Tracked Flows

Path Monitoring
& Switching

Preliminary
Filtering

Refined
Detection

Elephant Flow
Detection

(miss)
(hit)

Action-to-Route
Mapping

for each path in selected_paths:
 for each hop in path:
 insert_entry(switch,
 5_tuple, egress_port)
 end
end

Fig. 7: Architectural implementation of CrossBal.

Algorithm 1: Data plane packet processing pipeline
Data: pkt← Packet In
Data: flow ← pkt.5_tuple

1 if flow is in elephant_flows then
2 rtt_diff ← active_route.curr_rtt− active_route.prev_rtt;
3 if rtt_diff ≥RTT Threshold then
4 active_route[flow]← min(installed_routes[flow]);
5 time_since_probing ← curr_time− last_probe[flow];
6 if time_since_probing ≥Probing Interval then
7 create_probes(installed_routes[flow]);
8 egress_port← active_route[flow].egress_port;
9 else

10 if flow is in refined_detection.tracked_flows then
11 features[flow]← compute_features(flow);

// If statements are automatically generated
12 if feature_1[flow] ≥ Feature 1 Threshold AND

feature_3[flow] < Feature 3 Threshold then
13 notify_controller(flow, features[flow]);
14 else
15 if Bytes Optimization is enabled then
16 if pkt.length > Length Threshold then
17 packets[flow] ← packets[flow] + 1;
18 bytes[flow] ← packets[flow]∗Length Threshold;
19 else
20 bytes[flow] ← bytes[flow] + pkt.length;
21 flow_duration ← curr_time− flow_start[flow];
22 if bytes[flow] ≥ Bytes Threshold AND flow_duration ≥

Duration Threshold then
23 refined_detection.track(flow);
24 egress_port ← ecmp(pkt.5_tuple);

flows (line 12 of Algorithm 1). This is achieved by converting
a Classification Tree to a series of conditions. If the flow
is labeled as a potential elephant flow, it is exported to the
controller for a final classification, along with the computed
features of that flow (line 13 of Algorithm 1).

The data plane further implements the Statistics
Tracker, which is responsible for monitoring statistics of
each switch port. Each switch exports this local information
to the controller, which computes the link utilization of every
link in the network. The Environment utilizes the computed
link utilization, along with a FIFO queue and a Round-Robin

list of detected Elephant Flows, to produce the State observed
by the DRL Agent. The agent is queried to compute the
expected value of the top-k routes for a given elephant flow.
Among these, the N actions with highest expected values are
translated into routes, which can be efficiently achieved by
looking up the Action-to-Route Mapping table3. The
N routes are then installed in each forwarding device.

The controller periodically queries the DRL agent to select
routes for active elephant flows. However, this control loop
may not be able to quickly react to short-lived congestion.
Therefore, the data plane implements mechanisms for Path
Monitoring and Switching (lines 1-8 of Algorithm 1).
Each active elephant flow has N routes installed in the data
plane, which can freely switch between them. Each route has
a different register array4 to keep track of its two last observed
RTTs. The route selection happens by electing an active route,
which remains selected until the RTT of that route worsens by
a certain threshold (e.g., 200%). Upon detecting a degradation
in the selected route, the data plane picks the route with the
lowest last measured RTT (lines 2-4 of Algorithm 1).

V. EVALUATION

We implemented and evaluated a prototype of CrossBal in
order to validate its design. Our experiments aimed to evaluate
how well CrossBal could perform load balancing, as well as
understand how key parameters might impact its performance.

A. Prototype

The prototype includes data plane software written in P4 and
control plane software written in Python 3. The P4 source-code

3The mapping of actions to routes is computed offline for each pair of
Source-Destination switches.

4The index used for each active elephant flow is configured by the controller
upon installing new routes, allowing the controller to avoid any collisions.

2023 19th International Conference on Network and Service Management (CNSM)

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	50 	100 	150 	200 	250 300Ac
tiv

e	
Ne

tw
or
k	
In
te
rfa

ce
s	(

%
)

Time	(s)

1/max(LinkUtil) 1/stdev(LinkUtil) 1/InactiveNICs ECMP

	0
	2
	4
	6
	8

	10
	12
	14
	16
	18

	0 	50 	100 	150 	200 	250 300

Lin
k	
Ut

iliz
at
io
n	
Im

ba
la
nc

e

Time	(s)

(a) Link analysis for workload 1.

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	50 	100 	150 	200 	250 300Ac
tiv

e	
Ne

tw
or
k	
In
te
rfa

ce
s	(

%
)

Time	(s)

1/max(LinkUtil) 1/stdev(LinkUtil) 1/InactiveNICs ECMP

	4

	6

	8

	10

	12

	14

	0 	50 	100 	150 	200 	250 300

Lin
k	
Ut

iliz
at
io
n	
Im

ba
la
nc

e

Time	(s)

(b) Link analysis for workload 2.

Fig. 8: Link Utilization Imbalance and Active NICs.

was written for the BMv25 software switch. We used graph-
tool v2.45 to compute ECMP routes and the top-k routes that
constitute the action space of the agent. We also used Scapy
v2.5.0 to send and receive packets between the controller
and the software switches6. In order to facilitate and speedup
some of the computing, we used NumPy v1.23.4. Finally, to
implement the Deep Reinforcement Learning agent, we used
PyTorch v1.12.1 for the DNN and Gym v0.26.2 to create
a custom Reinforcement Learning environment. We used a
DNN with 2 hidden layers with 512 neurons each. The layers
are connected by ReLU activation functions, except for the
output layer. We leave a more thorough exploration of the
configuration of the DNN as future work.

B. Methodology
We emulated a network topology using Mininet. Inspired

by [25], we used iGen to generate a “two-trees” intradomain
mesh, obtaining a Hub & Spokes topology. This realistic
class of topology is characterized by nodes with aggregation
function (high degree of connectivity) [25]. Due to hardware
limitations in the setup used in our experiments, we restricted
the topology to 15 switches and the link speeds to 50 Mb/s.
Similarly to [25], the workload used was also inspired by [8]
[10]. Considering the restrictions on the topology used, we
also reduced the flow sizes in the original workload. The flow
size distribution of the workloads used in our experiments is
described in Table I. Each switch in the topology has one host
connected directly to it. Each host independently generates
requests according to a Poisson distribution based on the
workload and the desired network load. In our experiments,
we had the DRL agent select N=3 out of K=10 precomputed
routes for each elephant flow. N and K are parameters
that should be set by the network operator based on the
characteristics of the respective network topology, such as the
average number of redundant paths between endpoints. Our
prototype uses a simple greedy heuristic to compute routes,
but algorithms such as KSPD [22] can be used to efficiently
compute the shortest routes with diversity.

5BMv2 is the most recent version of the reference P4 software switch.
Accessible at: https://github.com/p4lang/behavioral-model

6BMv2 switches currently do not support the full set of operations defined
by P4Runtime, such as reading and writing to registers.

Workload A Workload B
Flow Size Distribution Flow Size Distribution
20 KB 0.5 10 KB 0.2
200 KB 0.3 100 KB 0.4
2 MB 0.1 1 MB 0.2
20 MB 0.1 10 MB 0.2

TABLE I: Workloads used in our evaluation.

C. Link Utilization Analysis

We implemented and compared three different reward func-
tions for the DRL agent (§III-C): (A) 1

max(link_util) , (B)
1

stdev(link_util) , and (C) 1
inactive_nics , where link_util is an

array with the utilization of every link in the network and
inactive_nics is the proportion of NICs not being utilized.

Figure 8a shows an analysis of the ratio of active links dur-
ing our experiments. We can observe that CrossBal effectively
utilizes nearly all available links in the network, while ECMP
is incapable of utilizing as many links concurrently. Further,
we can observe that the agent trained with Reward Function A,

1
max(link_util) , quickly learns how to actively use nearly every
link in the network, effectively distributing the workload. Ad-
ditionally, Figure 8a compares the Link Utilization Imbalance7

attained by each approach. CrossBal performs a better job at
balancing link utilization across network links compared to
ECMP. As before, we can observe that the agent trained with
Reward Function A, 1

max(link_util) , outperforms the agents
trained with the other reward functions. Figure 8b shows
the ratio of active NICs and the link utilization imbalance
when running the same experiments with a different workload,
where a similar behavior was observed.

D. Elephant flow detection optimizations

The preliminary filtering mechanism (§III-B) in the data
plane must be able to filter a small number of possible elephant
flows out of a large number of flows. Therefore, it is crucial to
optimize the per-flow processing and storage requirements as
much as possible. An optimization mentioned in Section III-B
is to filter packets according to a specific threshold, only
accounting for packets that are not too small. This way, rather

7Link Utilization Imbalance is a metric that takes into account the maxi-
mum, minimum, and average link utilization [8].

2023 19th International Conference on Network and Service Management (CNSM)

	0
	100
	200
	300
	400
	500
	600
	700

	200 	400 	600 	800 	1000 	1200

Pa
ck

et
s	

to
	D

et
ec

tio
n

Packet	Length	Threshold	(Bytes)

Optimization	Disabled

(a) Packets required for preliminary filtering.

	5
	10
	15
	20
	25
	30
	35
	40

	200 	400 	600 	800 	1000 	1200

Bi
ts
	p
er
	F
lo
w

Packet	Length	Threshold	(Bytes)

Packet	Length	Threshold	x1 Packet	Length	Threshold	x2

(b) Bits required per flow.

	0

	20

	40

	60

	80

	100

	200 	400 	600 	800 	1000 	1200Fl
ow
s	
co
rre
ct
ly
	fi
lte
re
d	
(%
)

Packet	Length	Threshold	(Bytes)

Packet	Length	Threshold	x3

(c) Filtering accuracy.

Fig. 9: Analysis of parameters for elephant detection optimization with a 30KB threshold.

than counting bytes, it becomes possible to count packets,
while still having a lower bound of the size of the flow.

However, only accounting for the lower bound of the size of
a flow may cause detection to take longer. For instance, with a
packet length threshold of 500 bytes, it would take 20 packets
(of at least 500 bytes) to reach a threshold of 10KB. However,
by counting bytes, 7 packets of 1500KB (typical MTU value)
would be enough to reach that same threshold. Therefore, a
further optimization would be to adjust the assumed size of
the packets without changing the packet length threshold.

Figure 9a shows the number of packets required for
the Preliminary Filtering to forward a flow to the
Refined Detection according to different thresholds for
packet length, considering a detection threshold of 30KB8. We
can observe that, by increasing the packet length threshold, we
also require less packets to detect possible elephant flows. Ad-
ditionally, Figure 9b shows that we increase memory efficiency
with a larger packet length threshold as the number of bits
required for each flow decreases. However, Figure 9c shows
that increasing the packet length threshold also decreases the
filtering accuracy, i.e., flows incorrectly reported as possible
elephant flows and forwarded to the next step, the Refined
Detection module. Therefore, with different parameters,
we can choose a trade-off between detection speed, memory
efficiency, and detection accuracy.

VI. RELATED WORK

Several network load balancing systems have been pro-
posed in the literature. Table II compares the related work,
highlighting some of their main characteristics, such as the
plane responsible for the routing decision and the technique
employed to generate paths.

Firstly, data plane load balancers rely exclusively on
data plane processing to implement their routing strategy.
Due to the limitations of the programmable hardware, these
systems typically employ simple heuristics to generate routes.
Generally speaking, heuristic-based route generation (and se-
lection) can lead to suboptimal network utilization. Further,
per-hop (decentralized) path selection [9], [10], [26] can lead
to worse routes than fine-grained, end-to-end (centralized) path
selection [8], [11]. Finally, some data plane load balancers are
limited to datacenter topologies [8], [9], [26].

8We configured the threshold to this value after an analysis based on
our workloads and parameters. We expect network administrators to select
appropriate parameters based on knowledge of their network.

Secondly, control plane load balancers implement a variety
of path generation and path selection strategies. Path gen-
eration based on heuristics may lead to suboptimal network
utilization when compared to sophisticated machine learning
strategies. Fine-grained end-to-end path selection [15], [27],
[28] may lead to better routes at the cost of greatly reduced
responsiveness to transient congestion and scalability due to
control plane involvement. On the other hand, load balancers
that implement link weights (WCMP) path selection [3]–[7],
[31] are generally more scalable, as the control plane is not
included in the path selection of each flow. However, WCMP
requires control plane intervention to change link weights,
which limits responsiveness to transient congestion.

Thirdly, end-host load balancers [29], [30] are highly
scalable and responsive to transient congestion, as each host
is only responsible for its own flows. However, decentralized
(and often heuristic-based) path generation and selection can
lead to suboptimal link utilization. Further, these types of load
balancers require modifying end-hosts, which limits deploya-
bility to specific cases, such as datacenters or cloud.

Finally, an emerging class of hybrid load balancers com-
bine reactive data plane processing, enabling high responsive-
ness to transient congestion, with superior path generation
by the control plane, leading to efficient network utilization.
However, we believe existing work can be improved upon, as
current strategies are limited to heuristic-based path generation
and selection [25]. By employing a Deep Reinforcement
Learning agent, CrossBal can select the best routes for each
rerouted flow. Further, by focusing its efforts on elephant
flows, CrossBal minimizes the number of flows to be actively
rerouted. Finally, the fast decision loop in the data plane can
quickly react to transient congestion on installed paths.

VII. CONCLUSION

We have presented CrossBal, a hybrid load balancer that
combines an intelligent decision loop based on a Deep Rein-
forcement Learning agent in the control plane, with a reactive
decision loop in the programmable data plane. We highlighted
key aspects of the modelling of the agent, comparing the
performance of CrossBal with different reward functions.
Our evaluation shows that CrossBal outperforms ECMP at
balancing the workload over available network links. Finally,
of the related work highlighted, only a few [15], [27] focus
their efforts on elephant flows. As elephant flows are large
and long-lasting flows that tend to have a high impact on the

2023 19th International Conference on Network and Service Management (CNSM)

TABLE II: Comparison of related work

Decision
Plane

Path
Generation

Path
Selection Examples Benefits Limitations

Data
Plane Heuristics

Per-hop HULA [9], LetFlow [10]
BurstBalancer [26]

Data plane decision-making and per-hop selec-
tion lead to high scalability and responsiveness.

Heuristic-based path generation and per-hop selection can lead
to suboptimal network utilization.

Fine-
grained

CONTRA [11]
CONGA [8]

Data plane decision-making leads to high respon-
siveness.

Path generation and selection is based on heuristics, while fine-
grained path selection limits scalability.

Control
Plane

Heuristics

Fine-
grained

Hedera [15], Mahout [27]
Chameleon [28]

Controller has a global view of the network,
leading to better path selection.

Control Plane involvement compromises scalability and re-
sponsiveness. Heuristic-based path generation and selection.

Link
Weights

Le at al. [3], DOTE [4]
Magnouche et al. [6]

Path selection based on link weights is highly
scalable.

Path selection based on WCMP can lead to suboptimal network
utilization. Controller involvement limits responsiveness.

Machine
Learning

Link
Weights

DRL-TE [5]
Valadarsky et al. [7]

Machine Learning-based approach can lead to
better link weights.

Path selection based on WCMP can lead to suboptimal network
utilization. Controller involvement limits responsiveness.

End
Host Heuristics Fine-

grained
Hermes [29]

PLB [30]
End-host decision-making is highly scalable and
generally responsive.

Requires modifying end-hosts, severely limiting deployability.
Heuristic-based approach can lead to suboptimal path selection.

Hybrid Heuristics Fine-
grained Pizzutti et al. [25] Combines data plane responsiveness with control

plane visibility and path generation.
Heuristic-based path generation with controller involvement,
limiting scalability and causing suboptimal network utilization.

network, focusing on these flows can improve control plane
scalability, as there are significantly fewer flows to reroute.

ACKNOWLEDGMENTS

This work was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
- Finance Code 001, CNPq (grant #311276/2021-0) and
FAPESP (grant #2020/05152-7 - PROFISSA).

REFERENCES

[1] V. Gavriluţ, A. Pruski, and M. S. Berger, “Constructive or optimized: An
overview of strategies to design networks for time-critical applications,”
ACM Comput. Surv., vol. 55, no. 3, feb 2022.

[2] J. Zhang, F. R. Yu, S. Wang, T. Huang, Z. Liu, and Y. Liu, “Load
balancing in data center networks: A survey,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 3, pp. 2324–2352, 2018.

[3] V. A. Le, T. T. Le, P. L. Nguyen, H. T. T. Binh, and Y. Ji, “Multi-
time-step segment routing based traffic engineering leveraging traffic
prediction,” in IM ’21, 2021, pp. 125–133.

[4] Y. Perry, F. V. Frujeri, C. Hoch, S. Kandula, I. Menache, M. Schapira,
and A. Tamar, “DOTE: Rethinking (predictive) WAN traffic engineer-
ing,” in NSDI ’23. USENIX, Apr. 2023, pp. 1557–1581.

[5] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM 2018. IEEE, 2018, p. 1871–1879.

[6] Y. Magnouche, P. T. A. Quang, J. Leguay, X. Gong, and F. Zeng,
“Distributed utility maximization from the edge in ip networks,” in IM
’21, 2021, pp. 224–232.

[7] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning to
route,” in HotNets-XVI. ACM, 2017, p. 185–191.

[8] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“Conga: Distributed congestion-aware load balancing for datacenters,”
in SIGCOMM ’14. ACM, 2014, p. 503–514.

[9] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula:
Scalable load balancing using programmable data planes,” in SOSR ’16.
ACM, 2016.

[10] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it flow:
Resilient asymmetric load balancing with flowlet switching,” in NSDI
’17. USENIX, Mar. 2017, pp. 407–420.

[11] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, and D. Walker, “Contra:
A programmable system for performance-aware routing,” in NSDI ’20.
USENIX, Feb. 2020, pp. 701–721.

[12] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” in SIGCOMM ’11. ACM, 2011, p. 254–265.

[13] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
SIGCOMM ’10. ACM, 2010, p. 63–74.

[14] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible
data center network,” in SIGCOMM ’09. ACM, 2009, p. 51–62.

[15] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vah-
dat, “Hedera: Dynamic flow scheduling for data center networks,” in
NSDI’10. USENIX, 2010, p. 19.

[16] P. Jurkiewicz, “Boundaries of flow table usage reduction algorithms
based on elephant flow detection,” in IFIP Networking ’21. IEEE,
2021, pp. 1–9.

[17] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, jul 2014.

[18] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-
network computation is a dumb idea whose time has come,” in HotNets-
XVI. ACM, 2017, p. 150–156.

[19] Y. Zhan and J. Zhang, “An incentive mechanism design for efficient edge
learning by deep reinforcement learning approach,” in IEEE INFOCOM
2020. IEEE, 2020, pp. 2489–2498.

[20] F. Restuccia and T. Melodia, “Deepwierl: Bringing deep reinforcement
learning to the internet of self-adaptive things,” in IEEE INFOCOM
2020. IEEE, 2020, pp. 844–853.

[21] T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira, “Verifying learning-
augmented systems,” in SIGCOMM ’21. ACM, 2021, p. 305–318.

[22] H. Liu, C. Jin, B. Yang, and A. Zhou, “Finding top-k shortest paths
with diversity,” IEEE Transactions on Knowledge and Data Engineering,
vol. 30, no. 3, pp. 488–502, 2018.

[23] K. Rusek, J. Suárez-Varela, A. Mestres, P. Barlet-Ros, and A. Cabellos-
Aparicio, “Unveiling the potential of graph neural networks for network
modeling and optimization in sdn,” in SOSR ’19. ACM, 2019, p.
140–151.

[24] Y. Geng, V. Jeyakumar, A. Kabbani, and M. Alizadeh, “Juggler: A
practical reordering resilient network stack for datacenters,” in EuroSys
’16. ACM, 2016.

[25] M. Pizzutti and A. E. Schaeffer-Filho, “Adaptive multipath routing based
on hybrid data and control plane operation,” in IEEE INFOCOM 2019.
IEEE, 2019, p. 730–738.

[26] Z. Liu, Y. Zhao, Z. Fan, T. Yang, X. Li, R. Zhang, K. Yang, Z. Zhong,
Y. Huang, C. Liu, J. Hu, G. Xie, and B. Cui, “Burstbalancer: Do less,
better balance for large-scale data center traffic,” in ICNP ’22, 2022, pp.
1–13.

[27] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
in IEEE INFOCOM 2011. IEEE, 2011, pp. 1629–1637.

[28] A. Van Bemten, N. Ðerić, A. Varasteh, S. Schmid, C. Mas-Machuca,
A. Blenk, and W. Kellerer, “Chameleon: Predictable latency and high
utilization with queue-aware and adaptive source routing,” in CoNEXT
’20. ACM, 2020, p. 451–465.

[29] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
datacenter load balancing in the wild,” in SIGCOMM ’17. ACM, 2017,
p. 253–266.

[30] M. A. Qureshi, Y. Cheng, Q. Yin, Q. Fu, G. Kumar, M. Moshref, J. Yan,
V. Jacobson, D. Wetherall, and A. Kabbani, “Plb: Congestion signals are
simple and effective for network load balancing,” in SIGCOMM ’22.
ACM, 2022, p. 207–218.

[31] M. Parham, T. Fenz, N. Süss, K.-T. Foerster, and S. Schmid, “Traffic en-
gineering with joint link weight and segment optimization,” in CoNEXT
’21. ACM, 2021, p. 313–327.

2023 19th International Conference on Network and Service Management (CNSM)

