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Abstract—While the popularity of cryptocurrencies and the
whole industry’s value are rising, the number of threat actors
who use illegal “coin miner malware” is increasing as well.
The threat actors commonly use computational resources of
companies, research and educational institutions, or end users. In
this paper, we analyzed the long-term periodic behavior of the
cryptocurrency miners communicating in computer networks.
We propose a novel method for cryptominers detection using
specially designed periodicity features. The detection algorithm
is based on the mathematical detection of periodic Flow time
series (FTS) and feature mining. Altogether with the Machine
Learning technique, the resulting system achieves high-precision
performance. Furthermore, our approach enhances a flow-based
cryptominers detection system DeCrypto to further improve its
reliability and feasibility for high-speed networks.

Index Terms—cryptocurrencies, cryptocurrency miners, net-
work traffic, network traffic analysis, periodicity, Lomb-Scargle
periodogram, network traffic classification, Machine Learning

I. INTRODUCTION

Cryptocurrencies firstly occurred in 2008, when Satoshi
Nakamoto published Bitcoin’s whitepaper [1]. Since then,
many cryptocurrencies have been created. A decentralized sys-
tem of money, where transactions are verified by individuals
called miners and mutual trust is built on cryptography, quickly
became very popular.

Many cryptocurrencies are based on Proof-of-Work (PoW)
mechanisms, which consume a lot of electricity and processing
power. Today, Proof-of-Stake (PoS) mechanisms, which do
not require demanding computations, are becoming popular —
Ethereum switched to the PoS mechanism in 20221. However,
PoW is still used dominantly2. Miners use electricity and
processing power to verify transactions (mining), which is
rewarded in the form of crypto coins3.

However, mining can be easily exploited by attackers to
gain money and therefore remains in high positions on lists of
cybersecurity threats. The Cisco Umbrella Academy Report
from 20214 showed that 69% of organizations experienced
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1https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
2https://www.forbes.com/advisor/investing/cryptocurrency/proof-of-work/
3https://developer.bitcoin.org/devguide/mining.html
4https://learn-cloudsecurity.cisco.com/umbrella-library/
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some level of unsolicited cryptomining. Attackers use “abu-
sive cryptomining” to mine cryptocurrencies on the victims’
computers. As a result, attackers get new crypto coins for
free, and victims get high electricity bills and sometimes even
broken devices. Furthermore, Cryptojacking [2] is a technique
in which mining code (written in JavaScript) is embedded into
a website and all who visit such a website will become victims
of abusive mining. And they can never know! The second
way to perform abusive mining is directly through binary-
based mining malware [3]. Such binaries can be delivered in
a phishing mail or as part of a regular downloaded file.

Abusive cryptomining is still an active and commonly
used attack. Therefore, highly accurate and effective detection
methods are still needed to protect users around the world.
Existing detection methods utilize Machine Learning (ML)
with basic statistical features derived from flow-based network
telemetry. Nevertheless, actions performed by cryptocurrency
miners repeat periodically and time-related features such as
periodicity are essential in the network classification as shown
by Koumar et al. [4] and MontazeriShatoori et al. [5]. How-
ever, we were unable to find a method to detect cryptocurrency
miners based on their periodic behavior. Therefore, we propose
and evaluate a novel approach based on the time series analysis
of Flow Time Series (FTS) [6]. Our work focuses on the
detection of periodic behavior, which is applied as an extension
of DeCrypto system [7]; with the goal to make its reliability
even higher.

Our contributions can be summarized as follows:
– We propose a novel technique for cryptominers detection

using ML and periodic behavior feature set achieving
100 % precision

– We create a novel network traffic analysis approach for
the detection of periodic behavior based on FTS, resulting
in 43 input features for ML

– We present experiments with different lengths of FTS for
the purpose of finding the best settings for deployment
into high-speed ISP-level networks

– Our approach can be used as an extension of the De-
Crypto system [7] and improve its accuracy by 2.95%,
recall by 7.74%, and F1-score by 4.37% enhancing its
overall reliability

– We created datasets of FTS and periodic behavior features
based on the CESNET-MINER22 datasets [8], which we
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made publicly available on Zenodo [9].
This paper is organized as follows: Section II summarizes

the related works. Section III describes the periodic behavior
of mining activity. Section IV provides information about time
series analysis concepts and describes a novel detection ap-
proach to periodic cryptocurrency mining behavior. Section V
provides a complete description of features used for detection.
Section VI describes the entire classification pipeline and
its results. Section VII describes the cooperation with the
DeCrypto system and shows the achieved improvement of the
system. Section VIII concludes this paper.

II. RELATED WORKS

Basic principle for network detection are block-lists, for
example [10] for cryptomining. However, each domain or
IP address can host multiple services, making block-list-
based detection unreliable [11], [12]. Moreover, block-lists can
never be complete and suffer from a high false-positive rate.
Therefore, multiple studies have proposed mining detection
using various other approaches.

Swedan et al. [13] proposed Mining Detection and Pre-
vention System (MDPS). Their system uses URL block lists,
Man-In-The-Middle proxy, and Deep Packet Inspection (DPI).
Decrypted payloads are inspected by mining code detectors
and VirusTotal5 is used for detection of malicious JavaScript
libraries. Unfortunately, it is impossible to use MITM proxies
and DPI on high-speed ISP-level networks due to technical
difficulties. Moreover, concerns about users’ privacy may rise.

Žádnı́k et al. [14] proposed a detection solution that uses
flow-based features and ML for primary cryptominers identifi-
cation and active probing as a secondary verification to remove
false positives. In addition, Žádnı́k et al. [14] introduced an
overview and statistical properties of cryptomining commu-
nication. Even though the proposed solution achieves good
accuracy, utilization of active probing brings performance
limitations and makes it unsuitable for high-speed networks.

Another flow-based ML detector was proposed by Muñoz et
al. [15]. They generated a cryptocurrency miners traffic dataset
and analyzed its characteristics. Used features were mainly
describing the amount of data transferred and data through-
put. However, real-world deployment was not considered and
evaluated. The accuracy of their model in real deployment
can be significantly lower due to usage of a small portion
of lab-created cryptomining traffic that represents only 0.03%
(approx. 700 flows) of the whole dataset.

Plný et al. [7] proposed DeCrypto — a system based on
multiple data sources and classifiers, which achieves high
accuracy and minimal false-positive rate. They utilize ML,
keywords detection in TLS SNI6 and detection of Stratum
mining protocol. DeCrypto was deployed on a nation-wide
ISP-level network and was thoroughly evaluated.

Compared to related works, DeCrypto is the only system
which was deployed and evaluated on such large network.

5https://virustotal.com
6Server Name Indication of the TLS protocol

Our work enhances the DeCrypto system and provides another
data source to further minimize false positives and support
high accuracy and precision. The proposed classifier aims to
detect the periodic behavior of cryptominers by utilizing FTS
analysis.

III. PERIODICITY BEHAVIOR OF CRYPTOCURRENCY
MINERS

Functionality of cryptomining software is pretty straight-
forward. Firstly, a miner connects to a mining pool or a
crypto network to fetch an unverified block. Then, the miner
starts generating hashes of header of this block together with
a nonce (number used only once). When the miner finds a
hash string that starts with a certain number of leading zeros
(difficulty), the hash is considered correct and verified, and
the completed block is broadcasted back to the mining pool
or crypto network. The whole process starts again — the miner
is fetching a new unverified block. Furthermore, the miner can
receive a notification that the currently processed block was
already verified by someone else. Miner then has to fetch a
new block.

We can notice many periodic activities in this rather elemen-
tary description. Moreover, the average time needed for mining
a block for most cryptocurrencies is either known or can be
derived from public Blockchain databases. For example, a
new Bitcoin block is mined approximately every 10 minutes7.
Therefore, we expect miners will fetch unverified blocks every
couple of minutes. Mining pools usually have slightly lower
difficulty used to verify that miners are really working — more
hashes will satisfy rules and will be sent to the mining pool,
even though the block can not be successfully mined. Some
of these hashes will satisfy the network’s difficulty as well.
Therefore, communication will occur more often. However, it
is enough for periodicity detection.

IV. PERIODICITY DETECTION

We need the FTS with minimal noise for periodic behavior
detection. Every FTS has to contain flows from the one
process only; for example, YouTube video streaming, web-
page loading, Keep-Alive communication or cryptomining
communication. Because of this, we create FTS by sampling
with Network dependencies [6]. A network dependency is a
relationship between two IP addresses where one provides a
service to the other. Furthermore, each network dependency
has an ID created as ip_addr:port-ip_addr, where the
port is well-known or registered and represents the service.
Furthermore, some processes, like cryptocurrency miners, use
non-registered ports. For such cases, it is necessary to use
time series as ip_addr:port-ip_addr:port and apply
detection of such ports in post-processing of FTS collection.
For cryptominers from the CESNET-MINER22 dataset [8],
such ports are 12433, 14433, 14444, and 20535.

The network dependencies were evaluated as the best choice
for sampling [6], causing minimal noise and occurring with

7https://thebitcoinmanual.com/articles/btc-block-time/
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the best result of periodic behavior detection. For example, the
sample only by relationship between two IP addresses ended
significantly worse because multiple processes can share one
public IP address.

In the FTS collection, we experimented with multiple time
windows to evaluate deployment properties into real-time
networks, for example, into ISP network CESNET2 side-by-
side the DeCrypto system. We set the time windows, i.e., FTS
length, from 10 minutes to 24 hours.

Because the FTS are Unevenly Sampled Time Series (USTS),
we use the Lomb-Scargle periodogram [16]–[18], PLS , as a
source of information for deciding whether the FTS contains
periodic behavior.

The method for detection of periodic behavior is based on
our previous work [4]. However, it is not feasible for high-
speed ISP networks because it can process only a small num-
ber of time series per second, and thus optimizations would
be required. A novel and faster periodicity detection pipeline
presented in Fig. 1 is designed for high-speed networks. This
pipeline is able to process the whole CESNET-MINER22
dataset (containing 3 million flows obtained during 3 months)
in 5 seconds with proper precision based on two threshold
values of Scargle’s Significance Test (SST) [19].

Testing Constant FTS

Flow Time Series          (FTS)

LS periodogram

no

Testing Periodic FTSno
yes

Feature Mining

Insert to dataset

End

Creating Time Series

IP flows / biflows

yes

Fig. 1. Periodicity detection pipeline

The SST uses the Cumulative Distribution Function (CDF)
of Lomb-Scargle periodogram powers (PLS), which is defined
as probability P [PLS > z]. As the observed power z becomes
larger, it becomes exponentially less likely produced by pure
noise. Then the observed power level is more likely due to
an original deterministic (i.e., non-noise) feature in the time
series [19].

The SST is performed for threshold value Significance level,
which defines the tested value:

z = max(PLS) ∗ Significance level (1)

The probability that z is bigger then rest of periodogram
powers PLS is computed by the equation:

P [PLS > z] = 1− e
− z

σ2
PLS (2)

If P [PLS > z] is larger or equal to threshold value Per-
centage level, then the time series contains periodic behavior.
In this work, we evaluate the classification results based
on the settings of threshold values Significance level and
Percentage level. Furthermore, the smaller Significance level
is, the more strict is the periodic detection. Moreover, the
bigger Percentage level is, the more strict is periodic detection.

Furthermore, for FTS that are constant, i.e., the same
datapoint occurs periodically, periodic detection by LS peri-
odogram and SST can fail. So, we test if FTS is constant and,
in such case it is taken as periodic. Moreover, the periodic
behavior detection pipeline can cause false positives for short
FTS. Thus, we run the pipeline only for the FTS with at least
ten datapoints.

V. FEATURE MINING

The FTS occur with two time series metrics: the number
of packets and bytes within the IP flow. Furthermore, each
datapoint, i.e., IP flow, has two time information: time of trans-
mission of the first (tfi) and the last (tli), packet. Moreover,
from the time information, two more time series metrics can
be created: the durations and time differences.

The duration for each flow is computed, d = tli − tfi, and
forms a time series metric. The time differences are calculated
for neighboring flows as dt = tfi − tli−1. These time series
metrics and the Lomb-Scargle periodogram are input data for
the computation of features for ML.

We identify two cases of periodic behavior in FTS, and we
define specific features for their ideal representation. The first
periodic behavior is Clear, it is defined as the same datapoint
periodically occurring at the same time interval. Fig. 2 shows
an example of Clear periodic behavior. The second periodic
behavior is Sinusoidal, it is defined by occurring the datapoints
like sinus function with some noise. Fig. 3 shows an example
of Sinusoidal periodic behavior.

In total, we present 43 features. To describe both Clear
and Sinusoidal periodic behavior, we define two groups
of features. The first group of Clear periodic behavior
features contains: packet value, bytes value, duration value,
and difftimes value. The second group of Sinusoidal
periodic behavior features contains two features for each
metric named with suffixes: the interval’s lower value
( x), and the upper value ( y). The list of these features
contains: packet value x, packet value y, bytes value x,
bytes value y, duration value x, duration value y,
difftimes value x, and difftimes value y.

Moreover, we add basic statistic properties (Mean, Standard
deviation, Skewness, and Kurtosis) for each time series metric
resulting in 16 features. The Skewness is computed as Sk =
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Fig. 2. Example of FTS with the Clear periodic behavior

Fig. 3. Example of FTS with the Sinusoidal periodic behavior

∑
i(mi−µm)3

σ3
m

, where mi is metric i-th value of metric m. The

Kurtosis is computed as K =
∑

i(mi−µm)4

σ4
m

.

Furthermore, we use the Lomb-Scargle periodogram to
generate the set of well-known frequency-based features listed
below:

• Min power, Max power — Represent the minimum and
maximum power of the LS periodogram.

• Frequency of min power, Frequency of max power —
Describe the frequency of the minimum and maximum
power of the LS periodogram.

• Spectral bandwidth — Describes the difference between
upper and lower frequencies at which spectral energy is
half its maximum value.

• Spectral centroid — Indicates at which frequency the
energy of a spectrum is centred upon.

• Spectral energy — Represents the total energy present
at all frequencies in LS periodogram.

• Spectral entropy — The degree of randomness or disor-
der in the LS periodogram.

• Spectral flatness — Estimates the uniformity of signal
energy distribution in the frequency domain.

• Spectral flux — The rate of change of periodogram
power with increasing frequency.

• Spectral kurtosis — Indicates a nonstationary or non-
Gaussian behavior in the power spectrum.

• Spectral rolloff — It is defined as frequency below at is
concentrated 85% of the distribution power.

• Spectral spread — It is the difference between the
highest and lowest frequency in the power spectrum.

• Spectral skewness — The measure of peakedness or
flatness of power spectrum.

• Spectral slope — The slope of the power spectrum trend
in a given frequency range.

• Spectral zero crossing rate — Refers to the rate of shift
of the sign of a wave, which is the rate of change from
negative to positive or the reverse.

VI. CLASSIFICATION BASED ON PERIODIC FEATURES

A. Creating datasets

As we mentioned before, we experiment with the length of
FTS by defining the time interval in which FTS are collected.
The chosen time intervals are: 24 h, 12 h, 6 h, 4 h, 2 h, 1 h,
30 m, 15 m, and 10 m. The IP flows were taken from the
CESNET-MINER22 dataset, which was created by monitor-
ing the CESNET28 network infrastructure by ipfixprobe9 —
open-source flow exporter. The computed FTS created from
the CESNET-MINER22 dataset and the datasets of periodic
behaviors have been published on Zenodo [9].

The number of created FTS depends on the size of the time
interval. In the top left graph of Fig. 4, the number of FTS
increases with the decreasing time interval. The number of
constant FTS achieved the same trend as it can be seen on
the left bottom graph of Fig. 4. However, the top right graph
of Fig. 4 shows the number of tested FTS with at least ten
datapoints, and it is not increasing with the same trend.

The number of periodic FTS depends on the settings of
Scargle’s Significance Test (SST), i.e., Significance level and
Percentage level. The right bottom graph of Fig. 4 shows
the numbers of periodic FTS for each tested setting. The
number of periodic FTS with Significance level equals to
0.1 has the same trend as the number of tested FTS. The
number of periodic FTS with Significance level equals to 0.01
has decreasing trend with decreasing time intervals. And the
number of periodic FTS with Significance level equal to 0.001
has a slightly increasing trend with decreasing time intervals.

If we realize that the longer the time interval, the more
accurate the periodicity test should be, and we observed the
behavior just described, we can conclude that the correct SST
setting should be Significance level equal to 0.01. Furthermore,
we performed experiments with the settings of SST in classi-
fication to obtain the best classification results (the following
sections provide further information).

The classification pipeline uses only flows from periodic
FTS. The number of classified flows from non-periodic FTS
is shown in Fig. 5. This figure shows results with SST Signif-
icance level set to 0.01 and Percentage level set to 0.99. The
figure also shows that the number of flows inside non-periodic
FTS increases with smaller time intervals. Furthermore, the
non-periodic FTS usually contain small count of datapoints,
only one in most cases.

B. Classification pipeline

The classification pipeline is a set of steps which create the
best final model. Firstly, Plný et al. [8] split the CESNET-
MINER22 dataset into the Design and Evaluation parts. The
Design part is for creating, tuning and selecting the best model
and the Evaluation part is for the one-time evaluation of the
best model from the Design part. This default split avoids
overfitting and allows comparison of results with other works
without variation by random sampling.

8The Czech Educational and Science Network
9https://github.com/CESNET/ipfixprobe
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Fig. 4. The figure presents the number of FTS, the number of tested FTS, and the number of constant FTS and periodic FTS in datasets of periodic behavior
created from the CESNET-MINER22 dataset. The number of periodic FTS depends on Scargle’s Significance Test (SST) settings.

Fig. 5. The number of flows that are in periodic and non-periodic FTS.

In the design phase, we start with selection of the opti-
mal ML algorithm by testing 11 well-known ML algorithms
from which XGBoost, LightGBM and CatBoost algorithms
achieved similar results. We choose the XGBoost algorithm.
Our experiments ended similarly on each dataset.

After selecting the algorithm, we optimized the hyperparam-
eters to get a suitable set that performs well on the dataset, yet
does not cause overfitting. We use the hyperopt library [20] to
tune the following hyperparameters: n estimators, max depth,
gamma, reg alpha, reg lambda, min child weight, and col-
sample bytree. This tuning phase results in the best settings
of hyperparameters of the XGBoost classifier. We picked the
best models in the design phase. The best models for each
time interval were selected based on the evaluation metrics:
Accuracy, Precision, Recall, and F1-score.

After the design phase, we evaluate selected models on the
Evaluation part of the CESNET-MINER22 dataset. Source
code of the classification pipeline and experiments are pub-
lished on GitHub10.

C. Results of classification

The best results for settings Significance level equal to 0.1
and Percentage level equal to 0.9 are presented in Table I. As
can be seen, the periodic features are more than suitable for
cryptocurrency miners detection. Moreover, no False positives
occur for each time interval.

10https://github.com/koumajos/EnhancedDeCrypto

TABLE I
SUMMARY OF BEST RESULTS WITH SETTINGS Significance level EQUAL TO

0.1 AND Percentage level EQUAL TO 0.9.

Time interval Accuracy Precision Recall F1-score
24 h 93.63 83.49 74.19 78.57
12 h 93.31 87.82 69.27 77.45
6 h 93.37 90.01 74.87 81.74
4 h 94.19 92.24 78.88 85.04
2 h 94.34 93.44 80.46 86.47
1 h 94.86 94.21 84.39 89.03

30 m 95.13 96.11 87.45 91.57
15 m 95.19 95.43 89.21 92.21
10 m 94.92 95.16 88.88 91.91

Fig. 6. Feature importance

The results of the feature importance investigation for the
trained model are shown in Fig. 6. We can see that the Clear
periodic behavior features are one of the least important, but
they cause a low false-positive rate as described by Koumar
et al. [4].

For the deployment of the augmented DeCrypto system
into networks for real-time detection, it is crucial to choose
a proper time interval for FTS sampling and proper settings
of the SST test. However, the best achieved results, presented
in Table I, can not be used for selecting proper time interval
because most of them achieved similar results. Moreover, the
results can be strongly influenced by variation caused by the
randomness that naturally occurs in splitting, training and
tuning of ML models [21]. We evaluated the classification
pipeline for each time interval 100 times. The results of
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Fig. 7. The graph contains results of the Machine Learning pipeline for each dataset that was run 100 times to obtain significant statistical results. Therefore,
the presented results are the mean of the classification metric with standard deviation. On the graph can be seen the dependency between ML results, the time
window of creation time series and settings of periodicity detection.

this experiment enabled choosing the correct time interval
for deployment. The resulting mean and standard deviation
of each classification metric, for each time interval and SST
setting, is shown in the Fig. 7.

Our experiments show that most of the best results are
caused by variation because the mean values of each classifica-
tion metric do not achieve the same or closely the same value.
However, the mean and standard deviation helped to select the
time interval equal to 30 m, Significance level equal to 0.1 and
Percentage level equal to 0.9. This setting occurs with the best
average results and the smallest standard deviation; thus the
results are robust.

VII. COOPERATION WITH DECRYPTO SYSTEM

A. Enhancing DeCrypto system

DeCrypto system consists of weak classifiers, which process
different data sources. It is highly flexible, easily customizable
and expandable. We extended the DeCrypto’s Meta Classifier,
which is now able to use FTS proba — the probability of
a flow being a miner based on the time series analysis. The
FTS proba is created by computing the mean of all previous
predict_proba() output of the XGBoost classifier. The
previous values are stored for each network dependency and
time interval.

Flow time series analysis is highly accurate; therefore, we
decided to use it for both marking miners and non-miners
(class other). Two thresholds were used for classification
— FTS UPPER BOUND and FTS LOWER BOUND. The
flow is marked as the miner if the FTS proba is higher
than FTS UPPER BOUND. If the FTS proba is lower than
FTS LOWER BOUND, the flow is marked as the non-miner.
Otherwise, the decision process of the original DeCrypto
continues [7] (FTS proba is used after the Stratum classifier).
We conducted the search for the optimal threshold settings.
The FTS UPPER BOUND threshold was set to 90 %. The
FTS LOWER BOUND threshold was set to 10 %.

B. Deployment of Enhanced DeCrypto

We use the Dynamic Profile Processing Platform (DP3 ),
available at GitHub11, for the deployment of our approach into
a high-speed ISP network to enhance the DeCrypto system.
The DP3 is an open-source data processing platform for
maintaining dynamically changing profiles of entities (network
dependencies in our case) represented by sets of attributes of
different data types, including various types of time series. It
allows to apply custom processing functions over the profiles
to enrich, correlate or otherwise analyze the data to derive new
information or detect some events.

The proposed deployment of our approach with the DP3

platform is shown in Fig. 8. The Create time series module
creates FTS and using a Datapoint sender it sends them
into a DP3 instance, where they are stored into profiles of
corresponding network dependencies. The processing engine
of DP3 then runs modules for the detection of periodic
behavior, feature mining and ML-based classification. The
DeCrypto system gets the alerts from our approach by calling
DP3 API.

C. Results of cooperation

The confusion matrix of the Enhanced DeCrypto system by
classification based on periodic behavior is shown in Tab. II.
The confusion matrix contains the absolute number of True
positive, False positive, True negative and False negative. Fur-
thermore, the relative number in percent and change (+ or −)
in percent from original DeCrypto and Enhanced DeCrypto.
The confusion matrix occurs with a significant decrease of
False negative; in detail, the absolute change is from 61,300
to 29,543.

Moreover, the Enhanced DeCrypto system achieved the
97.25 % Accuracy, 99.99 % Precision, 92.47 % Recall, and
96.08 % F1-score. That is improvement by 2.95 % Accuracy,
0.001 % Precision, 7.74 % Recall, and 4.37 % F1-score.

11https://github.com/CESNET/dp3
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Fig. 8. Deployment into high-speed ISP network using DP3 platform

TABLE II
RESULTS OF THE ENHANCED DECRYPTO SYSTEM

Actual

Miner Other

Miner 33.75% (363,034) 0.0005% (6)
Predicted Other 2.74% (29,543) 63.50% (682,993)

VIII. CONCLUSION

With the rising value of the cryptocurrency sector, people
are more tempted to join the community and earn revenue
by cryptomining. Even though many cryptocurrencies are by
now based on Proof-of-Stake (PoS) mechanism, the Proof-
of-Work (PoW) mechanism is still dominantly used. Thus,
cryptomalware and abusive mining remain a critical threat to
institutions’ resources.

This paper proposed a novel approach for detection of
cryptominers by monitoring network traffic. We create the
Flow Time Series (FTS) by grouping IP flows by network
dependencies with defined time intervals. We use the Lomb-
Scargle periodogram and Scargle’s Significance Test (SST) for
detection of periodic behavior. We described 43 features for
periodic and constant FTS that we experimentally evaluated.
The feature set is an input vector to XGBoost algorithm. The
correct settings of time interval, hyperparameters of SST, and
hyperparameters of ML provide reliable detection.

The proposed cryptomining detection can be deployed as
a stand-alone detector. Additionally, the cooperation with the
DeCrypto system shows the feasible way to use a long-term
view of communication as a weak indicator to increase the
reliability of the final system. Furthermore, the cooperation
also increases the ability to deploy the system into real-time
networks and improves the trust in the produced alerts.

The DP3 platform was evaluated as a suitable system for
monitoring network traffic by Flow Time Series with excellent
performance and scalability for the high-speed ISP network
CESNET2. Furthermore, our approach for classification only
needs classical IP flows or biflows as the input for computation
of the Flow Time Series and related statistical metrics. It
does not cause any increase in network telemetry like other
classification methods which use extended IP flows. Moreover,
the cooperation with the DeCrypto system occurs with almost

zero percent of False positives. Based on these results, our
approach is suitable for high-speed ISP networks and protect
their users.
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