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Abstract—IP geolocation is essential for various applications.
However, the reliability of IP geolocation databases has been
proven to be inadequate. In recent years, the growing number
of public probers has offered the potential for more accurate
geolocation results through active measurement. The conven-
tional practice is to probe the target IP address using all
available probers and feed the measurement results to the active
geolocation method. However, this practice is cost-inefficient and
may trigger the anti-flood mechanism. Moreover, public probers
typically impose user-level limits on the frequency and quantity
of measurements. Therefore, it is important to reduce the average
number of probers (ANP) selected for successfully probing each
target. Researchers have discovered that geolocation accuracy
primarily depends on the minimum delay between probers
and the target. Inspired by that, we propose TinyG, a prober
selection algorithm designed to reduce the ANP needed to find
probers within a sufficiently small delay from the target. TinyG
divides the probing process into multiple rounds and leverages
previous measurement results to guide the selection of probers
for subsequent rounds. Experimental results show that when
the associated minimum delay is within 2 ms, various active
geolocation methods can provide credible geolocation results.
TinyG outperforms other algorithms in reducing the ANP needed
to obtain credible results. Compared to using more than 1,300
probers, TinyG can achieve an ANP of 6.7 with only a 6%
coverage loss of credible results.

Index Terms—IP Geolocation, Public Probers, Delay Measure-
ment

I. INTRODUCTION

IP geolocation aims to map the target IP address to the phys-
ical location. It has numerous applications across various in-
dustries. One prominent use case is in advertising [1], where it
enables the delivery of targeted ads based on users’ locations,
thereby enhancing the effectiveness of marketing campaigns.
Additionally, IP geolocation facilitates content localization and
regional restrictions, ensuring compliance with local laws and
regulations [2, 3]. It also plays a vital role in network security
fields such as tracking the source of attacks and detecting BGP
threats [4]. Moreover, Internet service providers (ISPs) benefit
from IP geolocation for network optimization and management
[5–7]. Credible IP geolocation results are essential for these
applications. Currently, there are many free or commercial IP
geolocation databases, such as MaxMind [8], which are often
used for geolocating IP addresses. However, they have been
found to have significant discrepancies between their stated
accuracy and actual accuracy, as revealed by numerous studies

[1, 9–11]. These studies highlight the pressing need to improve
the accuracy of IP geolocation results.

Besides using databases, researchers have proposed various
active IP geolocation methods, such as CBG [12]. These
methods use all available probers to measure the round-trip
delay between the probers and the target. Probers are servers
with known locations that can send packets to the target IP
address. Since the delay is related to the geographical distance,
active geolocation methods use different ways to estimate the
target’s location based on the delays between the target and
probers. Researchers [13–15] have demonstrated that geoloca-
tion accuracy of these methods is primarily determined by the
minimum delay between probers and the target. Accurate CBG
requires at least 1 prober to be within a sufficiently small delay
from the target, necessitating the prober to be geographically
close to the target. Trammell et al. [13] described this situation
as “lucky”. Ben et al. [14] have shown that a delay less than
2 ms between the target and a certain prober can provide
approximately 95% IP geolocation accuracy at city-level. To
achieve a high success rate of finding probers within 2 ms,
probers distributed around the world are needed. In recent
years, the growing number of public probers has increased this
success rate. Most of them are hosted by volunteers around
the world, such as Looking Glass (LG) [16] and RIPE Atlas
[17]. Currently, there are more than 1,000 LG probers [18] and
more than 20,000 RIPE Atlas probers available. Considering
the high cost of deploying and maintaining a large number of
probers, using public probers is the only viable option for most
individuals and organizations to obtain accurate IP geolocation
results.

While using all available probers to probe the target can
provide the best accuracy, it does not scale in practice [14, 15]
as it often triggers anti-flood and DDoS alerts [19] of the
firewalls, resulting in response loss. Moreover, public probers
typically impose user-level limits on usage to prevent excessive
resource consumption [16]. For instance, Hurricane Electric
[20] sets a 1-minute forced interval between measurements
for each user. To conduct a measurement using a prober of
the RIPE Atlas, the user consumes a certain number of credits,
which limits the total number of measurements the user can
conduct. Given these limits, simply using all available public
probers to probe the target is impractical. Thus, it is necessary
to reduce the average number of probers (ANP) selected for
successfully probing each target, preferably from thousands to
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a tiny number.
Inspired by the observation that the accuracy is primarily

determined by the minimum delay between probers and the
target [13, 14], we propose a multi-round prober selection
algorithm called TinyG. The objective of TinyG is to reduce
the ANP needed for finding a prober within a sufficiently
small delay from the target. To achieve this, TinyG divides
the process of probing into multiple rounds, utilizing the
measurement results from previous rounds to guide prober
selection in subsequent rounds. At the beginning of each
round, 1 prober is strategically selected to probe the target
to measure the delay between them. Subsequently, TinyG
calculates the probability distribution of the target’s location
and uses information entropy to quantify the uncertainty asso-
ciated with the target’s location. TinyG strategically selects
a prober for the next round. The loop continues until the
measured delay is within 2 ms or the number of rounds
exceeds a preset threshold. Experimental results validate that
credible geolocation results can be obtained using various
active geolocation methods when the minimum delay is within
2 ms and TinyG surpasses other prober selection algorithms
in reducing the ANP needed for obtaining credible results.

The rest of this paper is structured as follows: Section
II provides the necessary background and discusses related
work. In Section III, we present the design of TinyG. The
experimental results are presented in Section IV, and the
limitations of TinyG are discussed in Section V. Finally,
Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. IP Geolocation Methods

In recent decades, numerous IP geolocation methods have
been proposed, which can be divided into two categories: in-
formation extraction-based methods and active measurement-
based methods.

Information extraction-based methods derive location
information from specific sources, such as WHOIS and the
Domain Name System (DNS), for the purpose of geolocating
IP addresses. WHOIS contains IP registration data, including
city and country details. An early example is the NetGeo
database developed by Moore et al. [21], which utilized
WHOIS location information. However, NetGeo’s accuracy
is poor due to delayed updates in WHOIS and the fact that
IP addresses may not be used in their registered locations.
For the convenience of operations, the network operators of
ISPs often assign DNS hostnames (PTR records) to router
interface IP addresses, embedding geographical hints within
them to indicate physical locations. For example, the hostname
ae-5.r22.miamfl02.us.bb.gin.ntt.net indicates
that the corresponding IP address is located in Miami, FL,
US. Due to the complexity and diversity of embedding rules
of different ISPs, researchers have proposed various methods
to extract location information from hostnames. Spring et
al. [22] manually constructed rules for different ISPs and
released the undns tool, suffering from limited coverage and
significant labor costs. Other methods, such as DRoP [23]

Fig. 1: Exclusion circles correspond to the delays between
probers and the target (red dot), with the upper bound distance
as the radius. Typically, the larger exclusion circles completely
cover the smaller ones.

and HLOC [24], automatically extract location information
by matching against large geographic information dictionaries
like GeoNames [25]. However, they encounter challenges
when ISPs deviate from common dictionaries and create their
own geographical hints. To address this, Luckie et al. [26]
developed Hoiho, which employs automatic rule learning.
Their comparison results demonstrated that Hoiho achieves
the highest coverage. Besides WHOIS and DNS, location
information displayed on web pages can be leveraged. Guo et
al. [27] extracted location-related strings from web pages and
correlated them with the IP addresses of the hosting servers.
Li et al. [28] used the IP addresses and the coordinates of
public live webcams as landmarks. Information extraction-
based methods do not require conducting active measurements
using probers. However, they heavily rely on specific data
sources and are unable to geolocate arbitrary IP addresses.

Active measurement-based methods primarily rely on
network delay. The simplest approach, known as Shortest Ping
(SP) [29], assigns the location of the prober with the smallest
delay directly to the target. The more common approach is to
construct exclusion circles using the upper bound of distances
corresponding to delays. An exclusion circle is drawn for each
prober, with the prober as the center and the upper bound
distance corresponding to the delay as the radius. Researchers
have proposed various methods to establish upper bounds
due to the complex relationship between delay and distance.
The most relaxed and safest upper bound is based on the
maximum propagation speed of packets (Vpacket). Previous
studies [30, 31] have shown that Vpacket is approximately
2/3 · Vlight = 200km/s, where Vlight represents the speed of
light in vacuum. For simplicity, we refer to it as the maxspeed-
constraint in this paper. To establish stricter upper bounds,
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Gueye et al. [12] proposed CBG, which uses a linear function
to fit the upper bound based on previously collected delay-
distance data and geolocates the target to the centroid of the
intersection of these circles. In 2017, Trammell et al. [13]
demonstrated the significant impact of the minimum delay ob-
served during measurements on accuracy. Fig. 1 illustrates an
example where exclusion circles of small delays are typically
covered by those of larger delays, and thus the intersections of
the larger circles have no contribution to the result, indicating
that the accuracy is mainly determined by the minimum delay.
Laki et al. [32] developed Spotter, a probability-based geolo-
cation method that models the probability density function
of distance at a given delay using a Gaussian distribution.
Spotter calculates the probability distribution of the target’s
location based on delay measurements and assigns the target
to the region with the highest probability. Additionally, some
researchers have explored combining delay and topology to
geolocate IP addresses appearing in routing paths. Katz et al.
[29] performed traceroute from probers to a large number of
targets and used global optimization to estimate the locations
of IP addresses appearing in the traceroute results. Tian et al.
[33] geolocated China’s Internet routers’ IP addresses based on
the hierarchy of topology. Dan et al. [34] geolocated routers’
IP addresses by grouping together two IP addresses with a
small link delay.

B. Prober Selection Algorithms

Previous work [12, 29, 32, 35] typically used as many
probers as possible to conduct measurements for each target,
which is impractical when dealing with a large number of
available probers. To address this challenge, Hu et al. [15]
proposed a prefix-based prober selection algorithm to reduce
the ANP. [15] leverages the observation that IP addresses
within the same /24 prefix are typically located in close
proximity. It selects some IP addresses from each /24 prefix as
the representatives and probes them using all available probers.
For the remaining IP addresses, only the 10 probers closest to
the representatives of the corresponding /24 prefix are selected
for probing. Although [15] reduces the ANP by selecting a
few probers that are likely to be closest to the target, it has
the following limitations:

• It fails to select probers that are close to the target when
the IP addresses within a /24 prefix are not geographically
clustered. This issue arises when two routers from dif-
ferent cities, countries, or continents are interconnected,
with the interface IP addresses on the link belonging to
the same /24 prefix while located in very different areas
[6].

• It cannot effectively reduce the ANP when the given
target IP address list is sparse, meaning that the number
of targets within the same /24 prefix is small while the
total number of targets is large. This limitation stems
from the fact that it initially uses all probers to probe
the representatives of each prefix.
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Fig. 2: TinyG selects 1 prober to probe the target in each round
based on the results of previous rounds. Finally, the measure-
ment results of all rounds are fed to the active geolocation
method.

Unlike [15], TinyG selects probers for each target separately.
reducing the ANP from thousands to a tiny number, regardless
of the distribution of the target IP address list and device types.

III. DESIGN OF TINYG

A. Overview

Different from previous work, TinyG splits the probing
process for a target into multiple rounds. In each round, TinyG
strategically selects 1 prober to measure the delay between the
prober and the target. The delay threshold 2 ms and the max
number of rounds R control the termination. If the measured
delay is within 2 ms or the number of rounds exceeds R,
TinyG stops probing and then feeds the measurement results
of all rounds to an active measurement-based IP geolocation
method like SP, CBG, or Spotter.

At the end of each round, TinyG estimates the target’s
location by calculating its probability distribution and quanti-
fies the uncertainty through information entropy. To illustrate
the relationship between probability density distribution and
entropy, we sequentially use probers located in Frankfurt,
Berlin, Paris, and London to probe an IP address located in
Amsterdam, and the results are shown in Fig. 3. In round 1 and
round 2, the large high-probability region makes estimating
the target’s location challenging. As more measurements are
conducted, the entropy decreases and the high-probability
region contracts, enabling easier finding of the prober within
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Fig. 3: The probability density and the corresponding entropy
based on completed measurement results in different rounds.

2 ms from the target. TinyG adjusts prober selection based on
the level of uncertainty and the number of round. Instead of
switching strategies according to a fixed threshold of entropy,
TinyG implements a dynamic scoring mechanism. Higher
scores are assigned to probers that contribute to greater entropy
reduction on average when entropy is high or the number of
round is small, while probers located in the high-probability
region receive higher scores when entropy is low or the
number of round is large.

To facilitate the calculation of the probability distribution
and information entropy, we build a delay-distance probability
model in advance (Section III-B). To select the prober for
the next round, TinyG goes through 3 phases, as depicted
in Fig. 2. Phase 1 (Section III-C) involves the caculation of
the target’s probability distribution and information entropy
based on the measurement results. In Phase 2 (Section III-
D), TinyG predicts the expected reduction in entropy resulting
from different probers in the next round. Finally, in Phase 3
(Section III-E), TinyG uses a dynamic scoring mechanism to
assign scores to the probers and selects the prober with the
highest score for the next round.

B. Build Delay-Distance Probability Model

To calculate the probability distribution, we require a prob-
ability density function that describes the likelihood of the
target being at a given distance from the prober for a given
delay. Additionally, in order to predict entropy reduction for
each prober in the next round, we need to estimate the
delay at a given distance from the target. Therefore, we
build a delay-distance model offline using previously collected
delay-distance data. The model consists of two parts: one
part outputs the probability density of the target at a given
distance from the prober for a given delay, while the other
part estimates the delay at a given distance from the target.

For the first part, we refer to the calculation process in Spotter
[32]. Additionally, we observe that the relation between delay
and distance is influenced by the Autonomous System (AS)
relations between probers and targets. We categorize the
relations between ASes into 3 types: Same, Neighbor, and
Stranger. Then, we incorporate the AS relation into the model,
which was not considered in Spotter.

Probability Density Function: Suppose we conduct a
delay measurement from a prober to the target, resulting in a
measured delay d. We denote the distance between the target
and the prober as a random variable s. The probability density
for s based on delay d and the AS relation a between the
prober and the target can be expressed as fa,d(s), indicating
the likelihood of the target being at that distance from the
prober. To build fa,d(s), we fit the previously collected delay-
distance data using a Gaussian distribution. We classify the
data according to the AS relation and fit the probability density
functions separately.

Delay Estimation: In phase 2, we use the mathematical
expectation of delay to predict the entropy reduction of using
different probers in the next round. For a given distance s
and AS relation a, we denote the mathematical expectation
of delay as S2T (a, s). To calculate it, we analyze previously
collected data and calculate the average delay for distances
within the range of [80% · s, 120% · s], as it is difficult to find
exact matches for distance s.

C. Phase 1: Calculating Probability Distribution

TinyG utilizes probers world wide, denoted by Vi (i=1,2,...).
In each round, Tiny selects 1 prober to probe the target. We
use a 3-tuple (Yt, At, Tt) to denote the measurement result
of round t (t=1,2,...,R), wherein Yt is the prober selected by
TinyG for probing; At is the AS relation between Yt and the
target; and Tt is the delay between Yt and the target. At the end
of each round, TinyG updates the probability distribution of
the target being in different cities. The cities where the target
could be located are denoted by Ck (k=1,2,...). Here, we only
consider the cities where there are probers and dynamically
remove infeasible cities according to maxspeed-constraint. We
denote the measurement results from round 1 to round t as
Mt, and the conditional probability that the target falls into
Ck at the end of round t can be calculated by integrating the
probability density:

P (Ck|Mt) = P (Ck|Mt−1) · P (Ck|(Yt,At, Tt))

= P (Ck|Mt−1)

ˆ

Ck

fAt,TtS(Yt, σ) · dσ (1)

Here, σ is the random variable to describe the target’s coor-
dinate. And S(Yt, σ) is the distance between Yt and σ.

Next, TinyG calculates the information entropy of the
probability distribution. In information theory, the information
entropy of a random variable is the average level of uncertainty
inherent to the variable’s possible outcomes. The higher the
entropy, the flatter the probability distribution becomes, mak-
ing it more difficult for us to estimate the location. The entropy
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H(Mt) to describe the uncertainty at the end of round t can
be expressed as:

H(Mt) = −
∑
∀k

P (Ck|Mt) · log2 P (Ck|Mt) (2)

D. Phase 2: Predicting Entropy Reduction

As more measurements are conducted, our estimation of
the location becomes more precise. In the first few rounds,
there is significant uncertainty regarding the location, and
TinyG aims to select a prober that can reduce the entropy
more. By leveraging the delay-distance model, TinyG predicts
the expected reduction in entropy for different probers in the
next round. The algorithm for predicting entropy reduction
is summarized and described in Algorithm 1. TinyG iterates
over each city where the target may be located and predicts
the entropy reduction separately, assuming the target is in that
city. Finally, TinyG outputs the weighted mean of the entropy
reduction, using the probability of each city as the weight.
To reduce computation, TinyG selectively processes probers
in the same city according to AS relationship.

To provide a detailed explanation of this process, we denote
the expected entropy reduction of using Vi in round t + 1
as Di,t+1. Assuming the target is located in Ck, TinyG first
obtains the estimated delay T ∗

t+1 based on the given AS rela-
tion A∗

t+1 and the distance between Vi and Ck. Next, TinyG
virtually completes a measurement result (Vi,A∗

t+1, T ∗
t+1)

and combines it with Mt to form M∗
t+1. The predicted

entropy reduction ∆h∗ of using Vi in round t+1, assuming the
target is in Ck, can be expressed as H(Mt)−H(M∗

t+1). Then,
TinyG adds P (Ck|Mt) ·∆h∗ to Di,t+1, since the probability
of the target being in Ck at the end of round t is P (Ck|Mt).
This process is repeated for each city, and the final output is
the expected entropy reduction when using Vi in round t+1.

Algorithm 1 Predict Entropy Reduction

Input: Vi; A∗
t+1; Mt; Ck(∀k);

Output: Di,t+1

1: Di,t+1 ← 0
2: for k do
3: T ∗

t+1 ← S2T (A∗
t+1, S(Vi, Ck))

4: M∗
t+1 ←Mi ∪ {(Vi,A∗

t+1, T ∗
t+1)}

5: ∆h∗ ← H(Mt)−H(M∗
t+1)

6: Di,t+1 ← Di,t+1 + P (Ck|Mi) ·∆h∗

7: end for
8: return Di,t+1

E. Phase 3: Scoring Probers

When the entropy becomes sufficiently low, the probability
differences between cities become more significant. In such
cases, TinyG prefers probers from these high-probability cities.
Rather than setting a fixed entropy threshold for switch-
ing strategies, TinyG utilizes a dynamic scoring mechanism.
TinyG scores probers based on both the prediction of entropy
reduction and the probability distribution. Let Pi,t denote the

probability of the target being in the same city as Vi at the
end of round t. Before scoring, TinyG shifts Di,t+1 to ensure
that all of them are greater than or equal to 0. TinyG combines
Di,t+1 with Pi,t and obtains the score Zi,t+1 as follows:

Zi,t+1 = D5/(t+1)
i,t+1 · P(t+1)/5

i,t (3)

TinyG selects the prober with the highest score for the
next round. In the initial rounds, where the entropy is high
and the probabilities of different cities are similar, the score
is primarily influenced by Di,t+1. As the entropy decreases
and the probability differences between cities become more
pronounced, Pi,t plays a more significant role in the score.
Additionally, we address the scenario where multiple probers
achieve the same score. Considering that the presence at
facilities and Internet Exchange Points (IXPs) reveals the
potential distribution of the target, TinyG gives priority to
probers in ASes present at the same facilities or IXPs as
target’s AS. The information on IXPs and facilities is obtained
from PeeringDB [36].

IV. EVALUATION

In this section, we first validate the assumption that ge-
olocation accuracy is primarily determined by the minimum
delay and show that the 2 ms delay can be used as the
threshold for credible geolocation results. Then, we conduct
experiments to evaluate how TinyG performs in reducing
the ANP needed to obtain credible results. In addition, we
measure the computational time of TinyG and demonstrate its
acceptability.

A. Experimental Settings

Ground Truth. We create a hybrid ground truth dataset
comprising 565 IP addresses belonging to M-Lab Pods [37]
and 565 IP addresses of router interfaces from the CAIDA’s
Macroscopic Internet Topology Data Kit [38]. M-Lab is op-
erated by Google and hosts servers worldwide. These servers
are labelled with their respective cities and coordinates. The IP
addresses of routers are obtained from the top-tier ASes of the
global transit hierarchy, which play a vital role in the Internet.
We extract the interface IP addresses from the routers in the
top ASes according to CAIDA’s ASRank [39]. We perform
DNS lookups to retrieve their DNS hostnames. Through a
combination of hostname-based geolocation methods [22, 26]
and our manual verification, we obtain 565 routers’ IP ad-
dresses with their corresponding city-level locations. While
we acknowledge that the locations indicated by the DNS
hostnames may not be entirely accurate, Zhang et al. [40] have
shown that DNS misnamings occur in only a small fraction
(0.5%). Therefore, it is reasonable to utilize them as a part of
the ground truth.

Probers. We utilize LG probers located worldwide to
conduct measurements. These probers offer users the ability
to execute common measurement commands like ping and
traceroute. Zhuang et al. [18] have compiled a compre-
hensive list of automatable LG probers, saving us the effort of
searching for them. The web pages of these probers provide
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location labels, which are crucial for accurate IP geolocation.
However, some prober locations may be inaccurately labeled
due to operator negligence. Previous studies [12, 15, 29, 32]
did not specifically address this issue. In our research, we
take measures to identify and exclude probers with erroneous
location labels to mitigate significant errors. To identify in-
accurate prober locations, we perform delay measurements
between randomly sampled pairs of probers. For each pair
(a, b), we verify if they satisfy the maxspeed-constraint. If a
pair fails to meet this constraint, it indicates that at least one
prober’s location in the pair is inaccurate. We keep track of the
number of unsatisfied pairs associated with each prober and
systematically remove probers in descending order based on
the count of its unsatisfied pairs. By applying this approach,
we successfully obtain a final set of 1,342 probers.

Baselines. To evaluate the performance of TinyG, we com-
pare it with Hu et al. [15], whose details are introduced in
Section II-B. To illstruate the effectiveness of TinyG, we define
two multi-round prober selection algorithms, including MR-C
and MR-P.

• Hu et al. [15]. Due to the frequency limits imposed
by Looking Glass, we cannot directly use all probers
to probe the representatives. Instead, we select one IP
address as the representative from each prefix and use
10 probers geographically closest to the representatives
according to the ground truth.

• MR-C (Multi-Round + maxspeed-constraint). At the end
of each round, MR-C constructs feasible regoin based on
the measurement results of previous rounds and randomly
selects a prober located in the region for the next round.

• MR-P (Multi-Round + Probability). At the end of each
round, MR-P calculates the probability distribution of the
target. Then, MR-P randomly selects a prober located in
the city with the highest probability for the next round.
If there is no prober in the city, MR-P moves on to the
next city.

Methodology and Metrics. To validate whether 2 ms can
be used as the threshold for credible geolocation results, we
feed the measurement results to various active IP geolocation
methods and group the geolocation results based on their cor-
responding minimum delays. These results are then compared
against the ground truth. Two widely used metrics, including
city-level accuracy (ACC) and median distance error (MED),
are used. In this paper, we consider geolocation results within
a 40 km radius of the ground truth as accurate at the city level,
a threshold previously utilized in various geolocation studies
[9, 10, 14]. By comparing the ACC and MED of different
delay groups, we demonstrate that geolocation accuracy pri-
marily depends on the minimum delay and using a 2 ms delay
as the threshold for credible geolocation results is justified.

To evaluate the effectiveness of TinyG in reducing the ANP
needed for obtaining credible results, we compare TinyG with
other prober selection algorithms. We combine two key metrics
for evaluation: the true positive rate (TPR) and the ANP. TPR
represents the fraction of IP addresses for which the algorithm

successfully finds a prober within 2 ms compared to that of
using all probers.

Hyperparameter Settings. Based on our observation, the
TPR of TinyG remains nearly unchanged after R exceeds 20.
Thus, we conduct experiments with a range of R from 1 to
20.

B. Relationship between Delay and Geolocation Accuracy
To validate the reasonability of using a 2 ms threshold

for credible results and whether the geolocation accuracy is
determined by the minimum delay, we feed the measurement
results to active geolocation methods, including SP [29], CBG
[12]. Then, we set a series of delay intervals and divide the
geolocation results based on the associated minimum delay.
The MED and ACC corresponding to different delay intervals
are presented in Fig. 4.

Fig. 4: (a) The ACC of different delay intervals. (b) The MED
of different delay intervals.

When the minimum delay is within 2 ms, the ACC of the
three IP geolocation methods is very close, and the ACC of
SP and CBG is approximately 93%. However, as the minimum
delay exceeds 2 ms, the ACC sharply declines. In the delay
range of 2 ms to 6 ms, all of them exhibit an ACC below
60%.

The results show that the differences in ACC and MED
caused by using various active geolocation methods are very
small compared to the impact of varying minimum delays.
Therefore, the minimum delay serves as the decisive factor
for geolocation accuracy. Moreover, the results confirm that 2
ms is an important indicator for accurate geolocation at city-
level, which aligns with previous research [14]. Therefore, 2
ms is the justified threshold for credible geolocation results.

Furthermore, we evaluate the ACC and MED of the most
widely used IP geolocation database, MaxMind [8], on our
ground truth dataset. The ACC of the commercial database of
MaxMind is only 17%, which is 76% lower than our credible
results. Therefore, when the minimum delay is within 2 ms, we
recommend using the results obtained from active geolocation
methods rather than querying popular geolocation databases.

C. Effectiveness in Reducing the ANP
To evaluate the effectiveness of TinyG in reducing the ANP

needed to obtain credible results, we conduct a comparative
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analysis of the TPR and the ANP of different prober selection
algorithms. Considering the maxspeed-constraint and the error
of probers’ coordinates, probers within 400 km from the
targets are selected to investigate the coverage of credible
results when using all probers. When using all probers, the
coverage of credible results reaches 79.3%.

Fig. 5 displays the TPR of each algorithm under different R
values. It is important to note that the parameter R is relevant
only to multi-round algorithms, including TinyG, MR-P, and
MR-C. Within the R range of 0 to 10, TinyG demonstrates a

Fig. 5: The TPR of each prober selection algorithm under
different R.

rapid increase in TPR. When R is set to 20, TinyG achieves a
high TPR of 94.4%, representing only 6% reduction compared
to using all probers. In contrast, both MR-P and MR-C exhibit
significantly lower TPR values. At R equals 20, their respec-
tive TPR values are only 87.5% and 67.9%. Furthermore, the
TPR of [15] is observed to be only 57.7%. Then we compare
the ANP values of different algorithms. It should be noted
that for multi-round prober selection algorithms, the ANP
is typically lower than R since they stop probing when the
measured delay is within the 2 ms threshold. When R is set
to 20, the ANP values of each algorithm are summarized in
TABLE I. Notably, TinyG requires a remarkably low ANP of
only 6.7. Overall, TinyG achieves the highest TPR with the
minimum ANP, demonstrating its effectiveness in reducing the
ANP needed to obtain credible results.

TABLE I: The TPR and the ANP of each algorithm when R
is set to 20.

Algorithm TinyG MR-P MR-C Hu et al. [15]

TPR (%) 94.4 87.5 67.9 57.7
ANP 6.7 9.7 12.2 10*

* The probers for probing the representatives are not included.

Additionally, we analyze the poor performance of [15],
which only achieves a low TPR of 57.7%. As discussed in
Section II, [15] faces challenges when the IP addresses within
a prefix are not geographically clustered. For instance, when

two routers from different cities, countries, or continents are
interconnected, the IP addresses on the link belong to the same
/24 prefix IP, resulting in the prefix spanning very different
areas. Fig. 6 displays the TPR of each algorithm on different

Fig. 6: The TPR of each algorithm on different device types
(host and router) when R is set to 20.

subsets of the ground truth, including hosts and routers. Unlike
other algorithms, the TPR on routers of [15] is significantly
lower than on hosts. Furthermore, we examine the /24 prefix
associated with each IP address of the routers and select
prefixes contain IP addresses from at least 2 different cities,
which account for 72% of IP addresses in the ground truth.
Over 35% of the IP addresses in the ground truth are situated
beyond a 400 km radius from their respective representatives.
Consequently, the wide geographical span of these prefixes
leads to the poor performance of [15], which is not illustrated
in previous studies. Although our implementation is not en-
tirely strict, the results can still reflect the poor performance
of [15] in geolocating routers.

D. Computational Time

We further measure the computational time of TinyG be-
cause this is a crucial factor in determining whether it is
practical to use in the real world. We deploy TinyG on
a cloud server located in Beijing, China. In addition, we
collect the HTTP response time of of each Looking Glass
site for comparison. Conducting measurements using a public
prober involves 3 remote interactions: (1) server→website; (2)
website→prober; (3) prober→target. Thus, the response time
is longer than that of common websites. The CDFs of these
two types of time per round during our measurements is shown
in Fig. 7(a). The average computational time is far below the
HTTP response time, which is only 0.09 s. Therefore, the
computational time caused by TinyG is acceptable.

V. LIMITATIONS

TinyG has two limitations: i) As TinyG selects different
probers for different targets, it cannot be directly applied to
delay vector-based methods such as Geoping [41], which use
a fixed set of probers to probe each target, encoding the
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Fig. 7: Compared to the time cost of waiting HTTP responses
of probers, the computational time of TinyG is negligible.

delays between different probers and the target as a fixed-
length vector. The target is then geolocated through similarity
comparisons or other techniques based on these vectors. ii)
TinyG cannot be used for geolocating anycast IP addresses
[42]. In anycast, multiple network nodes are associated with
a single IP address. These nodes can be distributed across
various locations. Different probers may receive responses
from nodes at different locations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose TinyG, a multi-round prober
selection algorithm designed to reduce the ANP in IP geoloca-
tion. TinyG divides the probing process into multiple rounds
and utilizes the measurement results from previous rounds to
guide prober selection in subsequent rounds. In each round,
TinyG calculates the probability distribution of the target based
on the measurement results of previous rounds and selects
the prober for the next round based on entropy reduction
prediction, AS relationship and other information. By feeding
the measurement results to various active geolocation methods,
including SP and CBG, we validate that geolocation accuracy
is mainly determined by the associated minimum delay of the
target, and 2 ms can be used as the threshold for achieving
credible results. Experimental results demonstrate that TinyG
outperforms other multi-round algorithms, improving the TPR
while requiring smaller ANP. Compared to using all available
probers, TinyG achieves a very small ANP of 6.7, with only a
6% decrease in the coverage of credible results. Overall, TinyG
offers a practical solution for individuals and organizations
seeking accurate and cost-efficient IP geolocation. Future work
will focus on conducting large-scale measurements guided by
TinyG to obtain more credible geolocation results, thereby
providing a more comprehensive and accurate view of the
Internet for the research community.
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