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Abstract—The natural objective of resource allocation algo-
rithms is twofold: On one hand, to maximize utilization and on
the other hand to allow a fair share to all users. The actual
meaning of “fair” in this context is manifold; we propose to
address fairness in a simple and natural way by guaranteeing a
minimum level of service to every user.

We develop new competitive online algorithms for this new
resource allocation with mandatory service problem and analyze
their performance guarantees both in the adversarial-order and
random-order online models. We also show that having prior
knowledge about the request distribution can be beneficial. We
accomplish this by analyzing a probabilistic relaxation of the
mandatory service criterion.

We study the practical implementation of these theoretical
algorithms in the context of online cell selection in access
networks. In this setting, mobile users request service and the
network needs to assign a relevant cell (or cells) to provide it.
We conduct extensive simulations to evaluate the performance of
our algorithms in realistic conditions. The results suggest that
our new algorithms perform better than applicable adaptations
of the commonly used heuristics.

I. INTRODUCTION

Efficient utilization of resources is becoming a critical
aspect of many systems due to economical drives to reduce
costs and be more competitive. Resource allocation algorithms
have two natural goals. The first is allowing all users to receive
a fair amount of service. The second goal is maximizing the
utilization, the overall amount of usage, or the revenue for the
service operator.

Satisfying both these goals simultaneously is challenging
and in many cases, optimizing one aspect cannot be done
without compromising the other. This problem is even more
challenging in online settings, where service requests are not
known in advance, but rather arrive over time and the provider
must decide immediately and irreversibly if and how to serve
each request.

While the definition of utilization and the rigorous meaning
of maximizing it are straightforward, this is not the case for
fairness. One common interpretation is based on max-min
fairness, where the goal is to maximize the minimal allocation
of a user. More generally, an allocation is “max-min fair” if
it is impossible to improve the allocation of a user by hurting
only users with larger allocations (see for example [1]).

A well-known approach to address this trade-off between
efficiency and fairness is proportional fairness obtained by
maximizing a logarithmic utility function [2]. Another com-

mon way to combine both goals is to consider all feasible
allocations that satisfy a set of fairness constraints and to select
an allocation that optimizes utilization (see for example [3]–
[5]). In this approach, the overall outcome strongly depends
on the exact definition of the fairness constraints, and the
restrictions it puts on the overall utilization.

Nevertheless, in various practical scenarios, existing solu-
tions are insufficient. In many applications, a minimum service
level is required by users, or due to regulated obligations
and the service provider must allocate resources for these
occurrences. This is the case, for example, for voice calls
where a call cannot be made with insufficient bandwidth. Thus,
getting an allocation below that minimal level will not allow
the user to make an emergency call (911).

To account for these common practical scenarios, we con-
sider a new way of combining fairness and utilization opti-
mization. The main idea is to guarantee a minimal service
level to each customer, which we call mandatory service, and
to decide on the allocation of the remaining available resources
in a way that maximizes utilization.

We apply this approach to study a generalization of the
fundamental online maximum fractional matching problem in
bipartite graphs, which has many applications from ad alloca-
tion [6] to maximizing throughput in multi-queue switches [7]
and virtual machine placement [8]. On one side of the graph,
we have users or clients, and on the other side, we have
servers. Each server has a capacity (the amount of service
it can provide), and each client has a mandatory demand
describing the minimal amount of service it requires and
also a total demand representing the amount of service it
would like to have. Clients arrive online and the goal is to
provide the mandatory demand to all clients and allocate the
remaining service capacity in a way that maximizes the overall
utilization.

We distinguish between two possible service types, serve-
by-one in which each client can be served by one server only
(this is the case in many current services), and serve-by-many
that allows each client to be served by multiple servers (and
is expected to be deployed in future services). Naturally, the
serve-by-many setting provides more flexibility which can be
utilized to achieve improved performance.

We begin by developing online algorithms that reserve
resources throughout their execution to accommodate for all
mandatory demands. We call such algorithms fully-compliant.
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For the serve-by-one case, we follow a greedy approach that
provides service from a server that can provide the largest
portion of the request’s demand from its free and unre-
served capacity (among the servers that can provide service
to this request). We refer to this algorithm by Greedy with
Reservations (GWR). For the serve-by-many case, we use a
water-filling based algorithm that splits the service among the
adjacent servers with the largest fraction of free and unreserved
capacity. We refer to this algorithm by Water-Filling with
Reservations (WFWR).

To allow for fully-compliant algorithms, the serving ca-
pacity of each server must be at least the overall amount
of mandatory demands. It turns out that the competitive-
ratio of GWR and WFWR depend on the ratio between the
minimum capacity of a server and the overall amount of
mandatory demands. We call this ratio the capacity-ratio and
denote it by ρ. We show that as the value of ρ increases, the
competitive-ratios of the algorithms improve, and approach
their respective performance in the setting without mandatory
demands. More concretely, we prove a worst-case competitive-
ratio of 1

2

(
1− 1

ρ

)
for GWR, and

(
1− e1/ρ

e

)
for WFWR.

While the standard worst-case competitive analysis provides
robust performance guarantees, it might be too pessimistic
for many realistic conditions. Therefore, we also analyze our
algorithms in the random order model – a prominent relaxation
of the worst-case model, in which the requests arrive in
a uniformly random order instead of an adversarial order.
We show that GWR and WFWR achieve improved random-
order competitive-ratios. In particular, both algorithms obtain
constant random-order competitive-ratios for the interesting
case of ρ = 1. In contrast, we show that no online algorithm
can achieve a constant worst-case competitive-ratio for ρ = 1.

In many practical cases, the operator has prior knowledge
of the expected requests. Such knowledge can be acquired
by processing past data or building statistical models of the
demand. Using prior knowledge can be very beneficial since
we can reduce the amount of capacity we keep to serve the
mandatory demands of future requests. However, to prove
rigorous bounds, we need to relax the fully-compliant require-
ment. That is, we replace the requirement that all mandatory
demands must be satisfied with a probabilistic requirement,
which we call approximately-compliant, saying that all manda-
tory demands must be satisfied with high probability.

We formally analyze this case using the online i.i.d.
model [6]. In this model, the distribution of client requests
is known in advance, and the actual requests are drawn from
this distribution (see Section IV for a formal description). We
develop an algorithmic scheme that takes an online algorithm
A for the simpler problem without the requirement for manda-
tory services, (for example A may be greedy or water-filling),
and generate an online algorithm A′, based on A, that serves
all mandatory demands with high probability, and pays a small
cost in the competitive-ratio of A. Also, A′ maintains the
service type of A (serve-by-one or serve-by-many).

To study the applicability of our theoretical results, we

evaluate the expected performance of our algorithms in access
network scenarios. This is done using extensive simulations
over realistic data. The results indicate that our new algo-
rithms perform well over a variety of settings, and outperform
applicable adaptations of commonly used heuristics. Unsur-
prisingly, the performance in the serve-by-many case is better
than in the serve-by-one case, and using prior knowledge can
be beneficial in these settings.

Our main contributions are as follows.
• We define an optimization criterion that provides a new

trade-off between fairness and utilization maximization.
• We provide proven performance guarantees for two online

algorithms both in the adversarial and random order
arrival models.

• We define the notion of approximately-compliant algo-
rithms and show that statistical prior knowledge regarding
the expected requests can provide better guarantees for
online algorithms.

• We show that our new algorithms can be used in practical
realistic scenarios (cell selection in access networks)
resulting in better performance.

II. PRELIMINARIES

In the Resource Allocation with Mandatory Service problem
(RAMS), we are given a bipartite graph G = (C,A,E), the
vertices in C are called clients and the vertices in A are called
servers. We denote the number of clients by n = |C| and the
number of servers by m = |A|. Each server aj ∈ A has a
capacity cj ∈ N. Each client ui ∈ C has a mandatory demand
µi ∈ (0, 1] and a total demand si ≥ µi. A server aj ∈ A
can allocate resources to its neighbors in G, i.e., to clients
in N(aj) = {ui ∈ C : (ui, aj) ∈ E}. We denote by xi,j
the amount of resources server aj allocates client ui (where
ui ∈ N(aj)). The total amount of resources aj allocates must
not exceed its capacity cj , that is,

∑
i∈N(aj)

xi,j ≤ cj . For
each client ui ∈ C, the amount of resources allocated to ui
must be at least µi (mandatory service) and must not exceed
its total demand si, that is,

∑
j∈N(ui)

xi,j ∈ [µi, si]. Hence,
we assume that N(ui) 6= ∅ for all ui ∈ C. The goal is to
find a feasible allocation that maximizes the total amount of
allocated resources, that is,

∑
aj∈A

∑
ui∈C xi,j .

We use the following LP formulation of RAMS:

maximize:
∑

(ui,aj)∈E
xi,j (P)

subject to:
∑

ui∈N(aj)
xi,j ≤ cj , aj ∈ A∑

aj∈N(ui)
xi,j ≤ si, ui ∈ C∑

aj∈N(ui)
xi,j ≥ µi, ui ∈ C

xi,j ≥ 0, (ui, aj) ∈ E.

And the dual LP:

minimize:
∑
aj∈A

cjαj +
∑
ui∈C

siβi −
∑
ui∈C

γiµi (D)

subject to: αj + βi − γi ≥ 1, (ui, aj) ∈ E
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αj , βi, γi ≥ 0, aj ∈ A, ui ∈ C.

We consider two variants of RAMS. The first is the serve-
by-many RAMS in which a client may be served by multiple
servers (as formulated in the LP (P) above). The second is the
serve-by-one RAMS, in which each client must be served by
one server alone. We note that in the offline version of the
problem, the serve-by-many RAMS can be solved optimally
in polynomial time, but it is NP-hard to optimally solve the
serve-by-one RAMS. 1

In the online version of the problem, the online player
is given the server set A and the number of clients n up-
front. Then, the clients in C arrive online one by one. Let
(u1, . . . , un) denote the online sequence. When a client u` ∈ C
arrives (at online round `), its demands µ`, s` and its incidents
edges are revealed. Then, the online player must decide
immediately (before the arrival of u`+1), and irrevocably, how
much resources to allocate u` from each of its neighboring
servers. As mentioned before, in the serve-by-one setting, only
one of the neighboring servers can allocate resources to u`,
and in the serve-by-many setting, multiple servers may allocate
resources to u`.

Let ALG be an online algorithm for RAMS. For an input
instance I , let ALG(I) be the amount of resources ALG
allocates on I , and let OPT(I) be the amount of resources
allocated in an optimal (offline) solution for I (that is, the value
of an optimal solution for the LP (P)). We define the minimum-
capacity of I by cmin(I) = minaj∈A cj and the capacity-ratio
of I by ρ(I) = cmin(I)/n. We express the competitive-ratio
of our algorithms in terms of the capacity-ratio.2

In this work we study algorithms in three different online
models. The first is the standard worst-case competitive-
analysis (also known as the adversarial-order model). In this
model, a deterministic online algorithm ALG for RAMS is
called λ(ρ)-competitive, if for any input instance I (and any
arrival order of the clients), ALG(I) ≥ λ(ρ(I))·OPT(I).3 The
second model that we consider is the random-order model,
in which the adversary cannot choose the arrival order of the
clients. Instead, the clients arrive in a uniformly random order.
In this model, an algorithm ALG is called λ-competitive, if
on any input instance I , E [ALG(I)] ≥ λ · OPT(I), where
the expectation is taken over the random arrival order of the
clients. Finally, to account for prior knowledge, we consider
the online i.i.d. model. We defer the definition of the problem
in this model to Section IV.

III. FULLY-COMPLIANT RAMS

For r ∈ R≥0, we say that an online algorithm ALG for
RAMS is fully-compliant for capacity-ratio r, if on any input
instance I with ρ(I) ≥ r, ALG always serves the mandatory
demands of all clients (with probability 1).

1Given a polytime algorithm for RAMS, one can construct a polytime
algorithm for the known NP-hard subset sum problem. We omit the details
due to lack of space.

2When I is clear from the context, we drop I from the notation and write,
for example, ρ instead of ρ(I).

3In this work we analyze only deterministic online algorithms for RAMS.

A. Worst-case competitive-analysis (adversarial order)

We begin by deriving a lower bound on the amount of
reserved resources that any fully-compliant online algorithm
for RAMS must maintain. The following observation guides
us in the design of fully-compliant online algorithms for
RAMS.

Lemma III.1. Let ALG be a fully-compliant online algorithm
for RAMS for capacity-ratio r. Then, on any input instance
I with n clients and ρ(I) ≥ r, at the end of round 1 ≤ ` ≤ n,
ALG leaves at least n−` free resources in each of the servers
(with probability 1).

Proof. Assume by contradiction that there is an input instance
I with ρ(I) ≥ r and server aj ∈ A for which ALG leaves
less than n− ` free resources in aj at the end of online round
` with positive probability p > 0. Then, we can construct
an instance I ′ identical to I on the first ` clients, and with
the same server set, but in I ′, the clients that arrive at online
rounds `+1, . . . , n are adjacent only to aj and each client has
a mandatory demand of 1. Thus, ALG on I ′ fails to serve all
mandatory demands of the clients that arrive after round ` with
probability at least p > 0. Also note that ρ(I ′) = ρ(I) ≥ r
and so, ALG is not fully-compliant for capacity-ratio r.

An immediate corollary of Lemma III.1 is that there are no
fully-compliant online algorithms for capacity-ratio r < 1. In
what follows, we design fully-compliant online algorithms for
capacity-ratio r ≥ 1.

1) Serve-by-One RAMS: In the serve-by-one RAMS,
each client must be served by only one server. We modify the
classical greedy algorithm to guarantee that the mandatory de-
mand of each client is served. To this end, we reserve resources
throughout the execution of the algorithm to accommodate
the mandatory demand of future clients. More concretely,
the algorithm begins by reducing the server capacities and
reserving a unit of resources for each client from each server.
Clearly, this requires that each server has a capacity of at
least n, i.e., cmin ≥ n and thus ρ ≥ 1. Then, when a client
arrives, the algorithm releases one unit of resource from the
reserved resources of each server and executes the standard
greedy algorithm to serve the client with the new, modified
server capacities. For a formal description see Algorithm 1.

Theorem III.2. Algorithm GWR is fully-compliant for
capacity-ratio 1, and is 1

2

(
1− 1

ρ

)
-competitive for serve-by-

one RAMS.

Proof. First, to see that the algorithm is fully-compliant for
capacity-ratio 1, observe that when a client u` arrives, each
server has free capacity of at least 1 ≥ µ`. Additionally,
N(u`) 6= ∅, and since the algorithm serves u` with a server
that maximizes the amount of resources allocated to u`, u` is
served with at least µ` resources.

To prove the competitive-ratio, we follow the online dual-
fitting technique by Buchbinder et al. [9]. When a client ui
is assigned an amount of xi,j by a server aj , we increase
the dual variables αj and βi by ∆αj = (1/cj) · (xi,j/2) and
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Algorithm 1: GREEDY WITH RESERVATIONS (GWR)

1 for each server aj ∈ A do
2 c′j ← cj − n // reduced capacities (reserving

resources)

3 for each client u` that arrives at round ` do
4 for each server aj ∈ A do

/* assuring mandatory service (releasing
resources) */

5 c′j ← c′j + 1

6 For aj ∈ N(u`), let q(`, j) = min
{
s`, c

′
j −

∑`−1
k=1 xk,j

}
be

the maximum amount of resources aj can allocate u`
7 Choose aj` ∈ argmaxaj∈N(u`)

{q(u`, j)}
// arbitrarily

8 x`,j` ← q(`, j`)

∆βi = (1/si) · (xi,j/2). We also set γi = 0 for all i ∈ C.
Observe that according to this update rule, the dual objective
D and the primal objective P are always equal. Therefore, in
order to show that GWR is λ-competitive, it suffices to show
that αj + βi − γi ≥ λ for all (ui, aj) ∈ E.

Fix (u`, aj) ∈ E and consider the point in time right before
u` is served. Let wj =

∑`−1
k=1 xk,j be the water level (the

load) of aj at this point in time. If u` is completely served,
we have αj + β` ≥ β` = 1

s`
· s`2 = 1

2 . Otherwise, if only a
p-fraction of the total demand of u` is served, i.e., p · s`, then
we have wj ≥ cj − n− p · s` (otherwise, u` would have been
served by aj), and therefore, αj + β` ≥ 1

cj

cj−n−p·s`
2 + p

2 ≥
1
2−

n
2cj

+ p
2−

p·s`
2cj
≥ 1

2

(
1− 1

ρ

)
, where in the last inequality we

used the fact that s`/cj ≤ 1, and n/cj ≤ n/cmin = 1/ρ.

Next, we show that GWR is an optimal deterministic fully-
compliant algorithm for the serve-by-one RAMS.

Theorem III.3. The competitive-ratio of any deterministic
fully-compliant online algorithm for serve-by-one RAMS is
at most 1

2

(
1− 1

ρ

)
+ o(1).

Proof. Fix a deterministic algorithm ALG for serve-by-
one RAMS. Consider an instance with n servers A =
{a1, . . . , an} each with a capacity of z ≥ n (i.e., cj = z
for all j ∈ [n]), and n clients C = {u1, . . . , un}. The total
demand of each client in {u1, . . . , u2√n} is z, and the total
demand of each client in {u2√n+1, . . . , un} is 1. Also, the
mandatory demand of each client is 1. For i ≤

√
n, ui is

connected only to two servers: ai and a√n+i.
Now, since ALG must serve each client by one server, each

ui must be served by either ai or a√n+i. Let aj1 , . . . , aj√n
be the servers that ALG uses to serve u1, . . . , u√n. Now, the
online sequence proceeds with the arrival of u√n+1, . . . , u2

√
n

where each ui is connected only to aji . Finally, for i ≥ 2
√
n+

1, ui is connected only to ai.
By Lemma III.1, at the end of online round 1 ≤ ` ≤ n,

ALG must keep at least n − ` free resources in each server.
Therefore, ALG allocates to u1, . . . , u2

√
n a total of at most√

n · (z − (n− 2
√
n)) resources, and for u2√n+1, . . . , un the

algorithm allocates a total of at most n− 2
√
n < n resources.

Therefore, we have ALG ≤
√
n · (z − n+ 2

√
n) + n, while

OPT ≥ 2
√
n · z, as u1, . . . , u2

√
n can be fully served by

a1, . . . , a2
√
n. Hence, we get that ALG

OPT ≤
√
n·(z−n+2

√
n)+n

2
√
n·z =

1
2

(
1− n

z

)
+ 3
√
n

2z ≤
1
2

(
1− 1

ρ

)
+o(1) where the last inequality

follows from the fact that ρ = cmin/n = z/n and z ≥ n.

2) Serve-by-Many RAMS: In the serve-by-many RAMS,
each client may be served by multiple servers. We modify
the classical water-filling algorithm to guarantee that the
mandatory demand of each client is served. We follow the
same reservation technique we used in Algorithm GWR. For
a formal description see Algorithm 2. Note that the function
g : [0, 1] → [0, 1] is used only for the analysis and we
explicitly define it later on. Also, the dual variables αj , βi,
and γi are used only for the analysis.

Algorithm 2: WATER-FILLING WITH RESERVATIONS (WFWR)

1 for each server aj ∈ A do
2 c′j ← cj − n // reduced capacities
3 αj ← 0 // used only for the analysis

4 for each client u` that arrives at round ` do
5 for each server aj ∈ A do

/* assuring mandatory service */
6 c′j ← c′j + 1

7 x`,j ← 0 for all aj ∈ N(u`)
8 β`, γ` ← 0 // used only for the analysis
9 Let x` denote the total amount of resources allocated to u`,

i.e.,
∑

aj∈N(u`)
x`,j

10 For aj ∈ A, let wj be the water-level of aj : wj =
∑`−1

k=1 xk,j
11 while x` ≤ s` and there is aj ∈ N(u`) with wj < c′j do
12 allocate a dx amount to each x`,j for

j ∈ argminaj∈N(u`)
{wj/cj}

13 if x`,j is increased by dx then
// Used only for the analysis

14 Increase αj and β` as follows:
15 dαj = 1

cj
g(wj/cj)dx

16 dβ` = 1
s`

(1− g(wj/cj))dx

The proofs of Theorem III.4 and Theorem III.5 are omitted
due to lack of space and are available in the full version of
the paper.

Theorem III.4. Algorithm WFWR is fully-compliant for
capacity-ratio 1, and is

(
1− e1/ρ

e

)
-competitive for the serve-

by-many RAMS.

Observe that for ρ = 1, Theorem III.4 provides no guarantee
on the performance of WFWR. The next theorem shows that
in fact, no online algorithm can achieve a constant worst-case
competitive-ratio for ρ = 1.

Theorem III.5. There is an infinite sequence of instances
I1, I2, . . . , with ρ = 1, such that the competitive-ratio of any
fully-compliant online algorithm ALG on In approaches 0 as
n→∞.

We note that the difficulty of the instances we construct in
the proof of Theorem III.5 relies on the worst-case arrival
order of the clients. Next, we show that when the clients
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arrive in random order, both GWR and WFWR provide better
performance guarantees. In particular, we show that GWR
and WFWR attains constant competitive-ratios for ρ = 1 of
1/4 and (3/2− 2/

√
e) ≈ 1/3.48, respectively.

B. The random-order model

In the random-order model, the adversary cannot choose the
arrival order of the clients. Instead, the clients arrive online
in a uniformly random order. For an instance I with C =
{u1, . . . , un} let (ui1 , . . . , uin) denote the online sequence
where (i1, . . . , in) is a uniformly random permutation of [n],
and ui` arrives at online round `. In the random-order model
an algorithm ALG is called λ-competitive, if on any input
instance I , E [ALG(I)] ≥ λ · OPT(I), where the expectation
is taken over the arrival order of the clients.

Theorem III.6. Algorithm GWR is fully-compliant for
capacity-ratio 1, and is 1

2

(
1− 1

2ρ

)
-competitive for the serve-

by-one RAMS in the random-order model.

The proof of Theorem III.6 is omitted due to lack of space
and is available in the full version of the paper.

Theorem III.7. Algorithm WFWR is fully-compliant for
capacity-ratio 1, and is

(
1
2 + ρ ·

(
1− e−1/2ρ

)
− e1/2ρ−1

)
-

competitive for the serve-by-many RAMS in the random-order
model.

Proof. First, the proof of Theorem III.4 shows that Al-
gorithm WFWR is fully-compliant for capacity-ratio 1. It
remains to bound the competitive-ratio of the algorithm.
Using the randomized primal-dual technique by Devanur et
al. [10] (Lemma 2.1), in order to show that the algorithm
is λ-competitive it suffices to show the primal and dual
objectives are always equal and that for all (ui, aj) ∈ E,
E [αj + βi + γi] ≥ λ.

By the update rules of the primal and dual variables, the
dual objective D and the primal objective P are always equal.
We define g : [0, 1]→ [0, 1], by g(x) = min

{
ex−(1− 1

2ρ ), 1
}

.
Fix (ui, aj) ∈ E and round ` ∈ [n]. When ui arrives at

round `, i.e., ui` = ui (which happens with probability 1/n),
we have the following cases. If wj ≥ cj − n+ `, we have

αj ≥
1

cj

cj−n+`∫
0

g(x/cj)dx ≥
1

cj

cj−(n−`)cj/cmin∫
0

g(x/cj)dx

≥ 1

cj

cj
(
1− 1

ρ−
`

cmin

)∫
0

g(x/cj)dx

≥

{
e
− 1

2ρ+
`

cmin − e
1
2ρ−1 1− 1

ρ −
`

cmin
≤ 1− 1

2ρ

1− e
1
2ρ−1 otherwise,

(1)

where in the second inequality we used the fact that cj −
n + ` ≥ cj − (n − `)cj/cmin as cj/cmin ≥ 1. In the last
inequality we discard the (non-negative) value obtained by x >
1 − 1

2ρ from the integral. Otherwise, wj < cj − n + `, and

therefore, ui must be fully served by servers whose fraction of
allocated resources is at most wj/cj (as the algorithm always
allocates resources from the servers with the minimum fraction
of resources allocated from their capacity). Hence, we have

αj + βi ≥
1

cj

wj∫
0

g(x/cj)dx+
1

su

su∫
0

(1− g(wj/cj))dx

=
1

cj

wj∫
0

g(x/cj)dx+ 1− g(wj/cj) = 1− e
1
2ρ−1.

Observe that the lower bound we obtained in Inequality (1)
is upper bounded by 1 − e

1
2ρ−1 for all ` ∈ [n], therefore we

can use the weaker lower bound in (1) to lower bound αj +βi
in both cases. Now, we take the expectation over the arrival
order of the clients and get that

E [αj + βi]

≥ 1

n

n/2∑
`=1

(
e
− 1

2ρ+
`

cmin − e
1
2ρ−1

)
+

1

n

n∑
`=n/2+1

(
1− e

1
2ρ−1

)
=

1

n
e−

1
2ρ · e

1
cmin

e
n

2cmin − 1

e
1

cmin − 1
− 1

2
e

1
2ρ−1 +

1

2

(
1− e

1
2ρ−1

)
=

1

n

e
1

cmin

e
1

cmin − 1
·
(

1− e−
1
2ρ

)
+

1

2
− e

1
2ρ−1

≥ cmin

n
·
(

1− e−
1
2ρ

)
+

1

2
− e

1
2ρ−1

=
1

2
+ ρ ·

(
1− e−

1
2ρ

)
− e

1
2ρ−1.

Where the penultimate inequality follows from the fact that
e1/x/(e1/x − 1) ≥ x for all x 6= 0.

IV. APPROXIMATELY-COMPLIANT RAMS

In this section, we study RAMS in the online i.i.d. model.
In this model, we have a set Y of client types and a distribution
D over Y . We can think of a client type as a left-side vertex
in the bipartite type graph G(Y,A). The type graph G(Y,A),
n, and the distribution D are given to the online algorithm
upfront. Then, at each online round ` = 1, . . . , n, a client
type y is drawn from D, and a client u` of this type arrives
(the mandatory demand µ` and the total demand s` ≥ µ` of
the client may be arbitrary).

For G(Y,A), D and n, let I(G(Y,A), D, n) denote the
distribution over random instances generated by the random
process described above. Also, for y ∈ Y , let py be the
probability that a client of type y is drawn from D, i.e.,
py = PrX∼D[X = y].

Let ALG be an online algorithm for RAMS in the i.i.d.
model. ALG is called λ-competitive, if for any G(Y,A), D
and n, E [ALG(I)] ≥ λ ·E [OPT(I)], where the expectation is
taken over the choice of I ∼ I(G(Y,A), D, n). For r ∈ R≥0
we say that ALG ε-compliant for capacity-ratio r, if for any
G(Y,A), D and n with ρ(I) ≥ r, with probability at least
1 − ε, ALG on I ∼ I serves the mandatory demands of all
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Algorithm 3: Approx. Reservations Scheme ARS (ALG′, ε)

1 for each server aj with capacity cj do
2 c′j ← cj − φj // modified capacities
3 φ′j ← φj // reserved resources
4 Rj ← 0 // released resources

5 Initialize ALG′ with server set A and modified capacities
c′1, . . . , c

′
m

6 for a client u` that arrives at round ` do
7 Let y be the type of u`
8 Let aj = a(y) be the designated server for type y
9 if φ′j ≥ 1 then

10 φ′j ← φ′j − 1; Rj ← Rj + 1

11 else
12 Failure

13 Feed the client u` to ALG′ (simulation)
14 Let x′`,1, . . . , x

′
`,m be the resources allocated to u` by ALG′

// add resources allocated by ALG′ to
released resources

15 For all aj ∈ A: Rj ← Rj + x′`,j
/* Serve from released resources */

16 if serve-by-one then
17 Serve u` by GREEDY with server capacities R1, . . . , Rm

18 else (serve-by-many)
19 Serve u` by WATER-FILLING with capacities R1, . . . , Rm

clients.4 We also define the mandatory service portion of I
by δ(I) = n/E [OPT(I)]. We express the competitive-ratio of
our proposed algorithm in this section in terms of δ.

We design an algorithmic scheme for RAMS in the online
i.i.d. model that uses an online algorithm ALG′ for RAMS
without the mandatory demand constraints as a black-box, and
produces a ε-compliant algorithm for RAMS. More formally,
we consider the problem RA defined by the LP (P) without the
third type of constraints:

∑
aj∈N(ui)

xi,j ≥ µi, ∀ui ∈ C. Note
that RA generalizes the online fractional bipartite matching
problem. On the other hand, RA is a special case of the
Adwords problem (see [6] for example) where the bids of
all advertisers on each keyword are equal.

Let ALG′ be an online algorithm for RA. For each client
type y ∈ Y we choose an arbitrarily designated server a(y) ∈
N(y) to be responsible of assuring the mandatory demands
of type y clients are served. We reserve resources in advance
on the designated servers {a(y) : y ∈ Y}. Let φj denote the
amount of reserved resources on aj . To determine {φj}aj∈A,
we use the prior knowledge of the distribution D, and estimate
the amount of resources needed in each server to serve all
mandatory demands.

When a client u` of type y arrives with designated server
aj = a(y), we release one unit of resource from φj to Rj
(where Rj denotes the released resources in aj). Then, we
use the algorithm ALG′ on an instance with reduced server
capacities, cj − φj , for all aj ∈ A as follows: we simulate
ALG′ on u`. Then, we shift the resources that ALG′ allocates
to u` from each server and add them to the released resources
of the corresponding server (i.e., to R1, . . . , Rm). Next, in
the serve-by-one setting, we use the GREEDY algorithm to

4Note that the capacity-ratio depends only on n and A, and thus, it is not
a random variable.

serve u` from the released resources, and in the serve-by-
many setting, we use the WATER-FILLING (WF) algorithm to
serve u` from the released resources (see Algorithm 3 for a
formal description).

For y ∈ Y , aj ∈ A and online round `, we define an indi-
cator random variable Xy,j,` for the event {u` is of type y}∧
{a(y) = aj}. The total amount of mandatory demands
that aj is responsible for assuring is upper bounded
by

∑
y∈Y,`∈[n]Xy,j,`. We have E

[∑
y∈Y,`∈[n]Xy,j,`

]
=

n
∑
y∈N(aj)

1{a(y)=aj}py. For each server aj ∈ A we reserve
an amount of φj = min{τ + n

∑
y∈N(aj)

1{a(y)=aj}py, n}
resources, where τ =

√
n · ln(m/ε)/2. We denote the total

amount of reserved resources across all servers by Φ(D, ε).
We have

Φ(D, ε) =

m∑
j=1

φj ≤
∑
aj∈A

τ + n
∑

y∈N(aj)

1{a(y)=aj}py


= mτ + n

∑
y∈Y

∑
aj∈N(y)

1{a(y)=aj}py

= mτ + n
∑
y∈Y

py = mτ + n.

Next, we show that for any algorithm ALG′ for RA,
ARS

(
ALG′, ε

)
serves all the mandatory demands with prob-

ability at least 1− ε.

Theorem IV.1. Let ALG′ be an online algorithm for RA and
let ε > 0, then Algorithm ARS(ALG′, ε) is ε-compliant for
capacity-ratio 1.

Proof. For aj ∈ A, let Zj,` =
∑
y∈Y Xy,j,` be the random

variable that gets the amount of mandatory resources aj is
responsible of assuring at round `. If the mandatory demand
of a client is not served, then it must be the case that∑
`∈[n] Zj,` > φj for some server aj ∈ A. Otherwise,

each time a client arrives, the designated server of its type
releases one unit of resource, and the mandatory demand is
served from the released resources (by GREEDY or WF).
Thus, to upper bound the probability that the mandatory
demand of a client is not served, it suffices to upper bound
the probability that there is a server aj ∈ A such that∑
`∈[n] Zj,` > φj . Fix aj ∈ A. Observe that if φj = n,

the reserved resources of aj cannot be depleted. Hence,
we can assume that φj = τ + n

∑
y∈N(aj)

1{a(y)=aj}py .
We have Zj,` ∈ {0, 1}, for all ` ∈ [n], and also,
Zj,1, . . . , Zj,n are independent. Therefore, we can apply
a Chernoff bound and get that Pr

[∑
`∈[n] Zj,` > φj

]
=

Pr
[∑

`∈[n] Zj,` − n
∑
y∈N(aj)

1{a(y)=aj}py > τ
]
≤ e

−2τ2

n .
Now, by a union bound, we get that the probability that
there is a server aj ∈ A with

∑
`∈[n] Zj,` > φj is at most

me−2τ
2/n. By substituting τ =

√
n · ln(m/ε)/2, we get that

this probability is at most ε.

Remark IV.2. Note that in the proof of Theorem IV.1 we use
the fact that ρ ≥ 1 only to guarantee that each server, aj ∈ A,
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has capacity at least φj . Hence, the theorem statement also
holds under the (weaker) conditions where each server aj ∈ A
has capacity at least φj (even if ρ < 1).

We now proceed to analyze the competitive-ratio of the
algorithm in terms of δ. Recall that δ(I) = n/E [OPT(I)].

Theorem IV.3. Let ALG′ be a λ-competitive algorithm for the
RA problem. Then, for any constant ε > 0, ARS

(
ALG′, ε

)
is

λmax{δ(1−ε), 1−δ(1+1/
√

2)}-competitive for RAMS with
ρ ≥ 1 and n ≥ m2 ln(m/ε).

Proof. For an instance I ∼ I, let I ′ denote the instance with
the modified, reduced server capacities c′1, . . . , c

′
m. We first

consider the RA problem (without mandatory demands). Con-
sider the optimal solution for RA, OPT(I), and the solution
obtained from OPT(I) by removing the minimal amount of
allocated resources from each server until all allocations fit
in the reduced capacities. Let y denote the resulting solution
and its value. We have OPT(I) ≤ y + Φ(D, ε), and since y
is a feasible solution to I ′, we have OPT(I ′) ≥ y. Hence,
OPT(I ′) ≥ OPT(I) − Φ(D, ε). Since the last inequality
holds for all I , it also holds in expectation over the random
choice of I ∼ I, i.e., E [OPT(I ′)] ≥ E [OPT(I)] − Φ(D, ε).
We now substitute Φ(D, ε) =

√
nm2 ln(m/ε)/2 + n in

the last inequality, and use the fact that n ≥ m2 ln(m/ε),

and get that E [OPT(I ′)] ≥ E [OPT(I)]

(
1− n+

√
n2/2

E[OPT(I)]

)
≥

E [OPT(I)]
(
1− δ(I)(1 + 1/

√
2)
)
.

Now, since ALG′ is λ-competitive, we have
E
[
ALG′(I ′)

]
≥ λ ·E [OPT(I ′)]. For convenience of notation,

we denote ARS(ALG′, ε) by ALG. Observe that ALG always
serves each client with at least as much resources as ALG′

does. This is because the resources that ALG′ allocates to a
client are released to R1, . . . , Rm, and then ALG uses either
GREEDY or WF to serve the client from R1, . . . , Rm.
Therefore, we have E [ALG(I)] ≥ E

[
ALG′(I ′)

]
.

Overall, E [ALG(I)] ≥ E
[
ALG′(I ′)

]
≥ λE [OPT(I ′)] ≥

λE [OPT(I)]
(
1− δ(I)(1 + 1/

√
2)
)
.

Additionally, ALG serves all mandatory demands with
probability at least (1− ε), and so we have the trivial bound
E [ALG] ≥ (1−ε)·n ≥ (1−ε)·δ(I)·E [OPT(I)]. To conclude,

E [ALG] ≥ λmax{δ(1− ε), 1− δ(1 + 1/
√

2)}E [OPT] .

Devanur et al. [11] showed that GREEDY is (1 − 1/e)-
competitive for the Adwords problem in the i.i.d. model, and
so, it is also (1− 1/e)-competitive for the RA problem. Also,
similarly to our proof of Theorem III.4, one can show that
WATER-FILLING (WF) is (1 − 1/e)-competitive for the RA
problem (even in the adversarial model, see also [7]). Hence,
we get the following corollary.

Corollary IV.4. For ρ ≥ 1, ε > 0 and n > m2 ln(m/ε),
ARS (GREEDY, ε) and ARS (WF, ε) are ε-compliant for
capacity-ratio 1 and (1−1/e) max{δ(1−ε), 1−δ(1+1/

√
2)}-

competitive for the serve-by-one and serve-by-many RAMS,
respectively.

Remark IV.5. Note that we use the knowledge of the distri-
bution D only to calculate {φj}aj∈A, which are independent
of the demand values µ1, . . . , µn, s1, . . . , sn and the arrival
order of the clients. Hence, our results also hold when
µ1, . . . , µn, s1, . . . , sn are chosen by an adversary, and for
adversarial arrival order.

V. PERFORMANCE EVALUATION – CELL SELECTION

In this section, we demonstrate a practical application of our
new algorithms by evaluating their performance on realistic
data of the online cell selection problem [12]. In the online
cell selection problem, mobile devices request service over
time. When a request arrives, the network needs to decide
on the amount of service to provide it, and the location of
the cell (or cells if concurrent service from multi cells is
allowed) to provide this service from. This decision has to be
made immediately and irrevocably based only on the available
information upon the request arrival.

We simulate realistic data of the online cell selection
problem in New York City. To this end, we use real locations of
New York City cellular antennas as the cell locations [13]. To
generate the sequence of client requests, we place each client
randomly in the simulation area. To model populated areas
like business areas and less populated areas like residential
areas, we use a Pareto distribution to draw client locations.
More concretely, we partition the simulation area into sections
using a 10x10 grid. We associate each section with a frequency
drawn from a Pareto distribution with a shape of 2. Based on
these frequencies, each client is then randomly assigned to a
grid section. The actual location of the client within the section
is selected uniformly at random.

Each cell has a service range that determines its connectivity
with clients, that is, a client is connected to the cell if its
distance to the cell is at most the cell’s range. We choose the
capacity of each cell to be n. To model high and low client
demands, the total demand of each client is also drawn from a
Pareto distribution with a shape of 2. In what follows, we use
the term load to describe the sum of client demands divided
by the total server capacities, i.e., load =

∑n
i=1 si/

∑m
j=1 cj .

To achieve a given load, we scale all total demands by the
appropriate factor. We also choose the mandatory demand of
each client to be 1.

In Figure 1, we present an example of a simulation area.
The large dark blue dots represent cells, and the circles around
them represent their service range. The green dots are the
client locations. The heat map depicts the number of clients in
each section (red represents more populated sections). Observe
that the client location distribution is top-heavy with a few
sections that contain most of the clients.

In addition to our fully-compliant algorithms GWR
and WFWR, and our approximately-compliant algorithms,
ARS(GREEDY, ε) and ARS(WF, ε), we also evaluate the
performance of the following two simple compliant heuristics.
The first is called Equal Filling with Reservations (EFWR),
which equally splits the total demand of each client between its
connected cells, and serves the available portion of the demand
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Fig. 1. Location distribution of cells and clients.
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Fig. 2. Algorithms performance with respect to the number of cells. Pareto
distributions are used for client locations and demands in the top graph.
Uniform distributions are used in the bottom graph.

from each cell. The second is called Random Allocations
with Reservations (RAWR), which for each client, randomly
selects one of its connected cells and serves the maximum
available demand from it. We also present the performance
of the optimal offline solution OPT, which is calculated by
solving the LP (P).

The theoretical results in Section IV assume that
ARS(GREEDY, ε) and ARS(WF, ε) get the client distribution
D as input. To evaluate their performance in practice, we do
not use the exact distribution. Instead, we use the empirical
estimation by drawing n clients from D. In practical scenarios,
network operators can use historical data in a similar way
to estimate the total number of clients, n, and their location
distribution.

Figure 2 depicts the performance of the described al-
gorithms as a fraction of the total demand served. For
ARS(WF, ε) and ARS(GREEDY, ε) we use ε = 0.1. The ratio
between the number of clients and the number of cells is kept
constant, n/m = 15. The average number of connected cells
per client is 6, and load = 1 (i.e.,

∑n
i=1 si =

∑m
j=1 cj). In the

top graph, both client locations and total demands are drawn
from a Pareto distribution, and in the bottom graph, both client
locations and demands are drawn from a uniform distribution.

In the top graph, all curves follow a similar trend where the
performance decreases as the number of clients increases. A
possible explanation for this is that although the number of
clients increases with the number of cells, due to the Pareto
distribution, the popular areas become more crowded while the
capacity of the cells in these areas remains the same. Observe
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Fig. 3. Algorithms performance with respect to network load.

that the relative performance of all algorithms compared to
OPT is almost constant regardless of the number of clients, and
that the approximately-compliant algorithms perform better
than their fully-compliant counterparts.

The trends in the bottom graph are similar. One can see
that all algorithms perform better with uniform distributions
(bottom graph) with Pareto distributions (top graph). This
might also indicate that the decrease in performance depicted
in the top graph is caused by highly populated sections in the
map. Observe that in the case of uniform distributions too,
ARS(GREEDY, ε) and ARS(WF, ε) perform best.

Figure 3 depicts the algorithms’ performance as a function
of the network load. All simulations are performed on net-
works that contain 400 cells, 2000 clients, and an average of 6
connected cells per client. The performance of the algorithm is
measured as the ratio between the total demand served by the
algorithm and the minimum between the total client demands
and the total server capacities (both provide an upper bound
on OPT), i.e.,

∑
i∈[n],j∈[m] xi,j

min{
∑
i∈[n] si,

∑
j∈[m] cj}

.
One can see that the worst performance is obtained when

the network load is 1. A possible explanation for this is that,
on the one hand, when the network load is greater than 1,
the algorithms have more possibilities to utilize the network
resources. On the other hand, when the network load is less
than 1, the algorithms are less likely to fully occupy the cells
and therefore, more clients can be provided with a larger
fraction of their total demand.

In Figure 4, we present the effect of the value of ε on
the performance and the failure probability of the algorithms.
The failure probability is the probability that the algorithm
does not satisfy all mandatory demands. The simulations are
performed on networks that contain 10 cells, 50 clients, 2
connected cells per client on average, and load = 1.1. The
top graph presents the performance of the algorithms as a
fraction of the optimal offline solution OPT and the bottom
graph presents the failure probability. One can see that as ε
increases the performance and the failure probability increases.
This happens since the initial reserved capacity (in each cell)
decreases. As expected ARS(WF, ε) performs better than
ARS(GREEDY, ε) and its failure probability is lower. Also,
observe that the actual failure probabilities of both algorithms
are better than their corresponding theoretical guarantees.

VI. ADDITIONAL RELATED WORK

Cell planning, the problem of optimal planning of cellular
network, is one of the basic and most studied problems in
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Fig. 4. ε effect on the performance of the approximated fairness algorithms.

the context of cellular systems (see for example [14]–[17]). In
this paper we focus on the specific problem of cell selection,
where one needs to determine the specific cell (or cells) that
provides service for a certain mobile device [5], [12], [18].

Traditionally, cell selection is done by the mobile device,
which selects the cell with the best signal-to-interference-plus-
noise ratio (SINR) [19]. However, new generation cellular
networks allow for other selection methods that potentially
can improve network performance [18], [20].

The trade-off between fairness and maximal utilization is
an important factor here and was studied extensively both in
the specific cellular context [3]–[5] and in the more general
online routing problem [1], [21].

From the theoretical viewpoint, the cell selection problem
we study in this paper is closely related to the integral
and fractional online matching problems, and to the online
Adwords problem which were studied extensively over the
last three decades. We refer the reader to [6] for an extensive
survey on these problems. [6] also covers the three online
models we study in this paper (adversarial-order, random-
order, and i.i.d.) and the relations between them.

VII. DISCUSSION

In this paper, we introduced the online resource allocation
problem with mandatory services. We presented multiple fully-
compliant and approximately-compliant algorithms and proved
theoretical guarantees on their performance in various online
models. Performance evaluation of these algorithms in cell
selection scenarios indicates that they can indeed be used in
relevant practical cellular settings to achieve a good balance
between fairness and utilization.

As we showed, prior knowledge can be used to improve
performance. We note that the assumption of a fixed known
distribution (i.e., the i.i.d. model) can be relaxed and replaced
by new models that only assume the ability to obtain a
representative sample of the requests from historical data
(see [8], [22], [23]). Additionally, historical data can be used
to estimate the distribution of mandatory demand values.
Such estimations can be incorporated in our approximately-
compliant algorithms to reduce the amount of reserved re-
sources and improve performance.
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