
Function-as-a-Service Orchestration
in Fog Computing Environments

Gaetano Francesco Pittalà, Gianluca Davoli,
Davide Borsatti, Walter Cerroni, Carla Raffaelli

University of Bologna, Italy
Email: gaetano.pittala2@studio.unibo.it,

{gianluca.davoli, davide.borsatti, walter.cerroni, carla.raffaelli}@unibo.it

Abstract—With the establishment of the Everything-as-a-
Service (XaaS) paradigm for service provisioning, coupled with
the increasingly-demanding requirements imposed by modern
network services, the need for a XaaS-aware orchestration system
able to cope with a heterogeneous infrastructure, such as the
one of Fog Computing environments, is evident. In this work,
we describe the working principles and implementation aspects
that allow the orchestration of services offered according to the
Function-as-a-Service (FaaS) model. The live demonstration will
showcase the ability of the system to deploy this kind of services
on a suitable test bed, with comments on the procedure and the
performance.

I. INTRODUCTION

The advent of revolutionary communication and service
provisioning models, such as the Internet of Things, brought
about a massive number of connected devices, along with
an ever-increasing necessity for real-time applications. Now
more than ever before, network infrastructures need to manage
resources in an efficient, scalable, and smart way.

In order to cope with such specifications, in modern
telecommunication systems resources are often displaced and
physically located in proximity to the users, causing a shift
from the widely-adopted Cloud Computing (CC) paradigm [1]
to the rising Fog Computing (FC) [2] and Edge Computing
(EC) [3] ones. Specifically, FC mainly aims at reducing service
fruition latency by making use of computing power residing
in portions of the infrastructure which are closer to the user.
In such scenarios, where computation may be distributed
over a large number of heterogeneous interconnected nodes,
an orchestration system able to manage the activation of
services on a dynamic and heterogeneous infrastructure is
clearly needed [4]. The trend of providing “everything as a
service” (XaaS), borrowed from the CC paradigm, depicts a
promising scenario where the development and deployment
of software applications as services is supported by suitable
architectures [5].

These scenarios also caught the attention of standardiza-
tion bodies, such as European Telecommunications Standards
Institute (ETSI), that is standardizing Multi-access Edge Com-
puting (MEC), an emerging system architecture where CC
applications are extended to the edge of networks leveraging
the computing power of mobile base stations and edge data
centers.

Several architectures are proposed for orchestrating ser-
vices in FC environments. For instance, [6] presents a FC
orchestration architecture adopting a two-stage multi-objective
optimization method to select the best fitting node to deploy
the service. Similarly, [7] presents a system that lays its
foundations on MEC, and it is able to merge various “simple”
services into composite ones. However, these works are not
concerned with details such as the ones we cover here, where
we present our vision of activation and fruition of lightweight
services offered through the network infrastructure , along with
implementation details.

Along to the mentioned solutions, FORCH (short for Fog
ORCHestrator) [8] stands out as a XaaS-aware service-based
orchestration system specifically designed for FC scenarios,
supporting the Software-as-a-Service (SaaS), Platform-as-a-
Service (PaaS), and Infrastructure-as-a-Service (IaaS) models.

Along with the mentioned declinations of the XaaS
paradigm, the FaaS model is presented as a means to introduce
further cost-efficiencies, reduce configuration and management
overheads, and rapidly increase the ability of an application
to achieve better performance on FC/EC/CC scenarios [9].
FaaS is an event-driven computing execution model in which
application logic is deployed in a virtualized entity (e.g., a
container) that is fully managed by the platform and executed
as needed. Moreover, the FaaS model is mainly based on
serverless computing, that is a partial realization of an event-
driven ideal in which applications are defined by actions and
the events that trigger them [10].

In this work, we show how we can exploit, adapt and
enhance the functionalities of FORCH to support the or-
chestration of FaaS elements in a FC environment. After
implementing the required software components and devising
a proper test bed for a practical validation, we prepared a
live demonstration of the activation of a sample FaaS element,
as well as of the fruition of the service it offers. Section II
gives an overview of the reference system architecture, while
Section III describes the steps taken for the activation of a
service in the reference context, and Section IV presents the
test bed and the planned demonstration.

II. SYSTEM ARCHITECTURE

To understand how FORCH was employed to orchestrate
FaaS components, a brief overview of the architecture adopted

978-3-903176-51-5 © 2022 IFIP

2022 18th International Conference on Network and Service Management (CNSM) - Demo Session

420

FO Aggregator

FO Mediator

FO Infrastruct. Manager

FO Gateway

FH Infrastructure

Consumer

Fn1

Fi1
Fi3Fi2

Fs1 Fs2

FH Service Monitor
Fh1

Fi4

Fog orchestrator level

Fog host level

Fig. 1. FORCH reference architecture.

in [8] is necessary. The overall system architecture is shown
in Fig. 1, and it can be decomposed into four main functional
entities, namely Gateway (GW), Mediator (ME), Aggregator
(AG), and Infrastructure Manager (IM), in order of logical
proximity to the user.

The GW is the entity in charge of handling the commu-
nication between the orchestrator and the users, exposing a
suitable REST API. The ME hosts the core functionality of
the orchestrator. It is the entity that processes service activation
requests, taking decisions based on current service status and
resource availability information gathered from the nodes.
The scope of the AG is to collect information regarding the
status of services activated on the nodes and provide them
to the ME. The IM manages the resource monitoring on the
underlying infrastructure (i.e., the available nodes), as well as
the interactions needed to activate services on it.

These functional entities were exploited to add new ca-
pabilities to FORCH, mainly concerning the support of the
FaaS paradigm. The fundamental working principles and
mechanisms of the orchestration system were left untouched,
but some of its components were enhanced by acting on
its source code1. Firstly, the system needed an abstraction
to provide continuous service availability to the user. To do
that, we included a new REST API endpoint in the GW,
specific for FaaS-related requests. Secondly, we needed a way
to treat FaaS elements differently from the other services
the system supported before. To this aim, we acted on the
ME, by replicating part of the code for service activation and
using it to enable the system to activate services without an
explicit service activation request from the user. The working
principles and the technical aspects are discussed in greater
detail in Section III.

III. MECHANISMS AND IMPLEMENTATION

Before moving on, it is useful to introduce some termi-
nology. In the context of this work, a service activation may
happen in one of two ways. In the former, called allocation,
a node already offers the service and the orchestration system
makes it available for the user requesting it. While in the latter,
called deployment, the service is not already offered by a node,

1Available at: https://github.com/giditre/unibo gaucho

so the orchestration system needs to use a virtualization engine
to instantiate it before giving access to the user.

With the service models previously supported by FORCH
(i.e., S/P/IaaS), users needed to submit a specific service
activation request to the orchestrator, which would attempt to
satisfy it and then inform the user on how to reach the activated
service. This was carried out as a sequence of operations,
briefly recalled here. The first interaction a user is expected
to have with the orchestration system is the one to discover
the list of currently available services, with a GET request to
the /services endpoint on the GW. Then, the user would
submit a POST request to the same endpoint, specifying the
desired service to be activated. Then, the request would be
processed by the ME, which would use the information on
current service status and resource availability to decide where
to activate the service, if possible, before informing the user
about the outcome of the process.

This procedure must be adjusted for services activated
according to the FaaS model. In fact, FaaS elements should not
be activated explicitly by the user, who should be kept unaware
of the service activation operations, in line with the serverless
principle. In the FaaS case, the user should be able to directly
make use of the service, with the orchestration system handling
the activation process, according to the event-driven rationale.
The system should also consider that a service is not assigned
to a particular user, as it is with the other service models.
This way, a user that wishes to access a service does not
need to formulate an explicit service activation request, but
rather they can immediately interact with the service itself
through the endpoint provided by the orchestrator. This is the
point where the enhancements presented in this work play a
major role. The endpoint provided by the orchestrator for every
FaaS element, in fact, might be the one residing on the node
actually offering the service, or it might be just a symbolic
one, hosted by the orchestrator. This depends on the current
status of the service to be offered according to the FaaS model.
If such service is already active on a node, the orchestrator
will provide the user with a way to reach the node directly.
Conversely, if the service is defined but not currently active
on any node, the orchestrator needs to step in and provide
the user with a symbolic endpoint (actually hosted by the
orchestrator itself) to make use of the service. In the latter case,
the user will send its service fruition request to the symbolic
endpoint, triggering the service activation operations, transpar-
ently handled by the orchestrator, which will then reply to the
user with a Redirect message including the endpoint of the
node actually offering the service. The information a user can
retrieve with a GET request to the enhanced GW is shown in
Fig. 2.

To sum up, in order to make use of a service deployed
as FaaS, the user just needs to discover the list of services
offered by the orchestrator. Then, every FaaS element is either
already active, and the user can access its service right away,
or it will be activated the first time someone tries to use the
service, remaining available for following requests. This fits
in the serverless and event-driven paradigms associated with

2022 18th International Conference on Network and Service Management (CNSM) - Demo Session

421

Request method: GET
Request URL: http://192.168.64.117:6000/services
Response code: 200
Response JSON: {
"message": "Found 3 service(s).",
"services": ["APP992", "FVE001"],
"faasservices": [

"LAF001 192.168.64.117:6000/faasservices/LAF001",
"LAF002 192.168.64.121:5000/transcode",

]
}

Fig. 2. The user requests the list of available services, and the orchestration
system replies with separate lists of S/P/IaaS and FaaS elements. APPxxx
and FVExxx refer to SaaS and IaaS elements, while LAFxxx refers to FaaS
elements, respectively.

the FaaS model.
As a side note, it is worth specifying that we are not

considering security aspects here (including authentication
issues) as they fall outside the scope of this work. For the
sake of simplicity, we assume that anyone who can interact
with the system has already gone through an authentication
process, handled by an external entity.

IV. DEMONSTRATOR DESCRIPTION

We prepared a test bed that is logically coherent with the
architecture depicted in Figure 1. A Virtual Machine (VM)
with 4 vCPUs and 4 GB of RAM hosts all FORCH soft-
ware components, which were developed as separate Python
programs meant to be run independently and capable of
communicating with each other via REST APIs. The Fog
nodes are deployed on different hardware platforms, including
two additional VMs, an Intel NUC MiniPC equipped with a
4-core 8th-gen Intel i7 processor and 16 GB of RAM, and
a RaspberryPi Single Board Computer, model 3B+, equipped
with a 4-core ARMv8 processor and 1 GB of RAM. We use
Docker as our virtualization engine of choice, and Prometheus
as the monitoring system.

We chose to employ a simple image transcoder as the
service to be activated according to the FaaS model. We built
a suitable Docker image and uploaded it to the Docker Hub2.
We performed some experimental evaluations to get an idea of
the amount of time needed by the user to retrieve the endpoint
to be used for service fruition. The results are shown in Fig. 3,
differentiated into three scenarios. In the first one, the service
is already active on a node, therefore all the user needs to do
is to retrieve the list of active services. In the second case,
the service is not active on a node yet, but the node already
holds the image to use to activate it. The third case is similar
to the second one, but the node needs to download the image
from the remote repository, making the required time very
much dependent on the connection quality. Keep in mind that,
although these values were obtained as the mean over a large
number of samples, they are only meant to be indicative of
the order of magnitude of the times at play here.

2https://hub.docker.com/r/giditre/gaucho-transcode

Fig. 3. Time needed for the user to begin service fruition of a FaaS element.

The demonstration will showcase the ability of the enhanced
orchestration system to manage services activated according to
the FaaS model, in line with the procedures described in the
previous sections. We will act as a user interacting with the
orchestrator through its REST API, and then make use of the
service on the provided endpoint, demonstrating the efficacy
of the approach.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation Computer
Systems, vol. 25, no. 6, pp. 599–616, 2009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X08001957

[2] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao,
Y. Xiang, and R. Ranjan, “Fog computing: Survey of trends, architec-
tures, requirements, and research directions,” IEEE Access, vol. 6, pp.
47 980–48 009, 2018.

[3] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge
computing: A survey,” Future Generation Computer Systems, vol. 97,
pp. 219–235, 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X18319903

[4] N. F. Saraiva de Sousa, D. A. Lachos Perez, R. V. Rosa, M. A.
Santos, and C. Esteve Rothenberg, “Network service orchestration: A
survey,” Computer Communications, vol. 142-143, pp. 69–94, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0140366418309502

[5] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu,
“Everything as a service (xaas) on the cloud: Origins, current and
future trends,” in 2015 IEEE 8th International Conference on Cloud
Computing, 2015, pp. 621–628.

[6] N. Morkevicius, A. Venčkauskas, N. Šatkauskas, and J. Toldinas,
“Method for dynamic service orchestration in fog computing,”
Electronics, vol. 10, no. 15, 2021. [Online]. Available: https:
//www.mdpi.com/2079-9292/10/15/1796

[7] D. Borsatti, G. Davoli, W. Cerroni, and C. Raffaelli, “Enabling Industrial
IoT as a Service with Multi-Access Edge Computing,” IEEE Commu-
nications Magazine, vol. 59, no. 8, pp. 21–27, 2021.

[8] G. Davoli, W. Cerroni, D. Borsatti, M. Valieri, D. Tarchi, and C. Raf-
faelli, “A Fog Computing Orchestrator Architecture with Service Model
Awareness,” IEEE Transactions on Network and Service Management,
pp. 1–1, 2021.

[9] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A preliminary
review of enterprise serverless cloud computing (function-as-a-service)
platforms,” in 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), 2017, pp. 162–169.

[10] G. McGrath and P. R. Brenner, “Serverless computing: Design, imple-
mentation, and performance,” in 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW), 2017,
pp. 405–410.

2022 18th International Conference on Network and Service Management (CNSM) - Demo Session

422

	62

