
A Novel Cost-Aware Load Balancing Algorithm for
Road Side Units in Internet of Vehicles

Shivank Thapa˚, Swagat Ranjan Sahoo˚, Moumita Patra˚, Arobinda Gupta:

˚Dept. of Computer Sc. and Engg., Indian Institute of Technology Guwahati, Assam, India
{sthapa, swaga176101011, moumita.patra}@iitg.ac.in

:Dept. of Computer Sc. and Engg., Indian Institute of Technology Kharagpur, West Bengal, India
{agupta}@cse.iitkgp.ac.in

Abstract—Vehicular ad-hoc networks formed in an Internet
of Vehicles scenario can enable many useful applications and
services. Many of these applications may generate a large amount
of data, which needs to be processed within some deadline to be
useful. Limited resources present in vehicles may not be sufficient
for processing such data. The resources present in Road Side
Units (RSUs) can be used for this purpose by running Virtual
Machines (VMs) there on behalf of the vehicles. However, RSUs
can also become overloaded in a dense vehicular scenario if all
vehicles use the services of their nearby RSUs only. Also, use of
RSUs may incur a cost. Hence the combined total resources of the
RSUs need to be carefully managed to ensure that a large number
of VMs complete within their deadline while incurring a lower
cost. In this paper, we propose an algorithm called Cost Aware
Load Balancing (CALB) algorithm that assigns and executes VMs
in different RSUs in the total RSU pool. The proposed algorithm
aims to maximize the number of VMs that complete execution
within their deadline and also attempts to minimize the overall
cost incurred by VMs for using RSUs’ resources. Performance
of CALB is compared with several existing algorithms to show
that it works better than the existing algorithms with respect to
several performance metrics.
Index Terms—VANET, Road side units, Load balancing, VM
migration, rent-out cost.

I. INTRODUCTION

Vehicular Ad-hoc NETwork (VANET) has emerged as a major
area of research in recent times. In vanets, On-Board Units
(OBU) in vehicles can communicate wirelessly with Road-
Side Units (RSU) placed at various locations along the roads.
VANET has enabled the prospect of building applications for
providing many different types of useful services for on-road
vehicles, including road safety, navigation, traffic monitoring,
entertainment, etc. [1]. Some of these applications generate a
large amount of data that needs to be processed in real-time as
the data is very likely to hold significance for a short period
of time. In many cases, OBUs in vehicles may not be able to
process or even store such a large amount of data and require
some external resources to store and complete the required
processing of the data within time [2]. In such cases, data
generated by applications can be offloaded to nearby RSUs
on its path, which usually can be equipped with both a larger
amount and better quality of resources as compared to those
in vehicles. The RSUs can then run Virtual Machines (VMs)
on behalf of the vehicles to process their data. However, an
RSU is still going to have limited resources and can become
overloaded. For example, RSUs in a dense traffic region or

near intersections may receive requests from a large number
of vehicles that are beyond their serving capacity, while some
other RSUs elsewhere are less utilized. Due to this, some
requests may get dropped and/or fail to complete, resulting
in a deteriorated quality of service. One way to address
this problem would be to efficiently distribute the load from
overloaded RSUs to the less utilized RSUs by migrating the
VMs among RSUs [3] [4]. However, VM migration has a cost
associated with it and can also result in increasing the delay in
serving application requests [5] [6]. In addition to the cost of
migration, using the resources of RSUs can also incur cost for
usage, with different RSUs incurring possibly different costs.
Hence, the problem of increasing the number of VMs that
complete their execution within time while reducing the total
cost is challenging.
In this work, we address the problem of managing the services
of RSUs to maximize the number of VMs completing their
execution while minimizing the total cost, i.e., the sum of rent-
out cost and migration cost. Rent-out cost is the cost associated
with using RSU’s resources by the VMs and migration cost is
the cost of migrating VMs among the RSUs. We first formally
specify the problem and propose a pricing model for modeling
the rent-out cost of RSUs. We then formulate the problem
as an assignment problem on a weighted bipartite graph, and
propose an algorithm for it called Cost Aware Load Balancing
(CALB) that assigns VMs to RSUs while considering the
storage and computation capacity, DPR, and rent-out cost of
RSUs. The performance of CALB is compared both with two
other existing algorithms and a lower bound (for cost) scenario
with respect to VM completion percentage, delay, rent-out
cost, and total cost. It is seen that CALB outperforms existing
algorithms and performs close to the lower bound scenario for
both periodic applications that generate data periodically and
event-driven applications that generate data on specific events
only.

II. RELATED WORK

Applications with deadlines can be classified broadly into two
classes - delay-sensitive and delay-tolerant. Migrating delay-
tolerant applications to RSUs with less load to balance the
load in vehicular environments is used in [1]. The works in
[6] and [7] show that prior knowledge of RSU’s and vehicles’
positions can improve the load balancing performance. System
performance can also be improved by partitioning the tasks

978-3-903176-51-5 © 2022 IFIP978-3-903176-51-5 © 2022 IFIP

2022 18th International Conference on Network and Service Management (CNSM) - Short Paper

394



and executing a part of the task in the vehicle and the remain-
ing part in the RSUs [2]. Algorithms for load balancing using
VM migration based on the available storage and computation
are given in [8] and [9]. Renting out resources is a useful way
to minimize the setup cost of server infrastructure in cloud
federations already and related works in this area have some
similarities with the problem we address [8], [10]–[12]. In
vehicular networks, VMs of fog nodes are rented to increase
the reliability of the system as mentioned in [13]. In [8] and
[9], load balancing algorithms are proposed by considering
only storage and computing resources, but in the current work,
we consider rent-out cost and data processing rate of RSUs
in addition to storage and computing resources of RSUs. In
[12], a dynamic resource pricing model is proposed for sharing
resources between the cloud providers. To minimize the cost of
the vehicular service provider a cost and delay-aware resource
allocation algorithm is proposed. In the current work, the focus
is on the resources of RSUs and the cost associated in using
the resources. To the best of our knowledge, no work in the
literature has tried to maximize the number of tasks completed
and minimize the cost at the same time.

III. PROBLEM FORMULATION

We consider a city scenario with a set of vehicles, where
each vehicle runs one application at a time that generates
data at different time instants. We assume that the amount of
data generated by the applications running in these vehicles is
known. Applications have specific deadlines. Data generated
by these applications should be processed within the given
fixed deadline. There is a set of RSUs with non-overlapping
coverage areas which are interconnected via some backbone
networks. These RSUs have fixed storage and computing
resources that are larger than the amount of storage and
computing resources available in any vehicle’s OBU. The data
generated by the vehicles are temporarily stored in the vehicles
and are then transferred to the RSUs for processing when
a vehicle comes in contact with the RSUs in its path. The
resources available in the RSUs are rented out to vehicles to
run VMs for processing the data generated by the applications
in the vehicles. A VM is said to have completed its execution
if all data generated by the corresponding application is
processed within some deadline.
Let the total time under consideration be T , with the time
slots numbered from 0 to T ´ 1. We denote the set of
vehicles as V “ tv1, v2, . . . , vXu and the set of RSUs as
R “ tr1, r2, . . . , rY u. Each vehicle vj P V can be represented
by a tuple xPj , aj ,Lj ,^jy, where Pj is the path followed
by vj represented as a sequence of RSUs xrj1, r

j
2, . . . , r

j
Ky

encountered by the vehicle on the path, aj is the application
being run by vj , Lj is the lifetime of the application running
at vj , and ^j is the data generation rate of application running
at vj . The data generation rate ^j is represented by a sequence
xλj

1, λ
j
2, . . . λ

j
T y, where λj

k ě 0 is the amount of data generated
by vehicle j at time slot k. Further, for each RSU rjk in
the path of vj , its arrival and departure time is denoted by
arrjrk and depjrk respectively. We represent an RSU ri by

the tuple xpi, si, D
r
i y, where pi is the computing capacity, si

is the storage capacity and Dr
i is the data processing rate

of ri. Finally we have the set of applications, denoted as
A “ ta1, a2, . . . , aku. Each application ak can be represented
by a tuple xpjk, s

j
k, Costf y, where pjk is the amount of com-

puting need for the application ak in vehicle vj , sjk is the
amount of storage needed for the application ak in vehicle vj ,
and Costf is the fixed cost of migration. The deadline for
an application varies based on the vehicle it runs in, and is
defined as the time the vehicle leaves the last RSU in its path.
The output is defined by two sets of variables txijtu and
tyijtu, @ri P R, @vj P V , and @t, 1 ď t ď T . For a VM
of vehicle vj , the variable xijt is set to 1 if it is present in
RSU ri at time t, otherwise it is 0. Variable yijt is set to 1 if it
is scheduled in RSU ri at time t, otherwise it is 0. The amount
of unprocessed data for the VM of vehicle vj at time t can
be computed as the difference between the data transferred by
the vehicle till time t and the data processed by RSUs till time
t for vehicle vj . This can be written as,

U j
t “

arrjrc
ÿ

k“1

λj
k ´ Dr

i

Y
ÿ

i“1

T
ÿ

t“1

yijt (1)

The variable arrjrc is the arrival time of vehicle vj at the
last RSU in the vehicle’s path before time t. We define an
indicator variable zt,k,ij , whose value is set to 1 if and only if
(xkjt “ 1 ^ xijt1 “ 1 ^ t1 “ t ` 1 ^ k ‰ i), 0 otherwise.
Thus zt,k,ij indicates that VM j has migrated from RSU k to
any other RSU i at time t. Therefore, zt,k,ij “ 1 if at time t,
VM j migrated from RSU k to i, 0 otherwise.
If k “ i, the VM is not migrated to any other RSU and
the migration cost incurred will be zero. We also define the
indicator variable Ij , such that, Ij “ 1 if U j

t “ 0 when vj
leaves the last RSU in its path, 0 otherwise.
We can now formally define the problem as,

maximize
X
ÿ

j“1

Ij (2)

minimize
X
ÿ

j“1

T
ÿ

t“1

pzt,k,ij qpQt
i `M t

i q ` p1´ zt,k,ij qpQt
kq (3)

subject to the following constraints:
@vj P V,@t ą arrjrl , λj

t “ 0 (4)

@vj P V,@t, 1 ď t ă arrjr1 , xijt “ 0 (5)

@vj P V,@t, arrjr1 ď t ď depjrl ,
Y
ÿ

i“1

xijt “ 1 (6)

yijt “ 1 ùñ pxijt “ 1 ^ U j
t ‰ 0q (7)

@ri P R,@vj P V, @t, 1 ď t ď T,
X
ÿ

j“1

pjk yijt ď pri (8)

@ri P R,@vj P V,@t, 1 ď t ď T, p

X
ÿ

j“1

U j
t `

X
ÿ

j“1

sjkqxijt ď sri

(9)

@vj P V, p

arrjrl
ÿ

t“1

λj
t q{pDr

i

Y
ÿ

i“1

depj
rl

ÿ

t“1

yijtq ď depjrl (10)

Equation 2 and Equation 3 represent the objective functions
to maximize the number of VMs completing execution and to

2022 18th International Conference on Network and Service Management (CNSM) - Short Paper

395



minimize the total cost incurred in placing, scheduling, and
migrating the VMs in the system respectively. The constraint
in Equation 4 limits the data generated by the vehicles when
they reach the last RSU (rjl ) in their route i.e. data generated
after this point is not considered for processing. Equation 5
indicates that no VM will be created for a vehicle until its
arrival time at the first RSU in its route. Equation 6 makes
sure that the VM must be present in exactly one RSU at any
time t, between the arrival to the first RSU and departure
from the last RSU in its path. Equation 7 ensures that a VM is
scheduled only when it has some unprocessed data. Equation 8
and Equation 9 specify that the total computing and storage
need of all the VMs combined at an RSU should not exceed the
total computing and storage capacity of the RSU respectively.
Equation 10 restricts the total execution time required by a
vehicle’s VM to be less than the departure time of vehicle
from last RSU (rl) in its path.
The problem formulated is a mixed-integer nonlinear program-
ming problem, which is NP-hard. Therefore, we next propose
a heuristic algorithm, Cost Aware Load Balancing (CALB),
for the problem.

IV. COST AWARE LOAD BALANCING (CALB)

In this Section, we first introduce a fixed pricing model for
rent-out cost of the RSUs. We then propose a graph theo-
retic formulation for solving the problem and finally specify
our proposed algorithm called Cost Aware Load Balancing
(CALB). CALB focuses on maximizing the number of VMs
completed while minimizing the overall cost.
A. Pricing Model

We consider a fixed pricing model for RSUs to rent out
resources, where each RSU has a predefined cost associated
with its computing and storage resources.
For every RSU i P R, we assume a predefined cost associated
with its per unit storage resources per unit time (Si) and per
unit computing resources per unit time (Ci). We also assume a
predefined per unit time base cost (Pi) when a VM is present at
an RSU waiting for the data of the corresponding application
to arrive. Using the above definitions, we define Qt

i as the rent-
out cost offered by RSU i at time step t, based on a VM’s
storage and computing requirements. The following cases are
possible for the cost incurred to process a VM:
Case 1: When a VM has no data to process but has not
completed its execution, i.e., the VM is waiting for more data
from the application to process. The rent-out cost for a VM j
waiting for some data in RSU i at time t is the base cost.

Qt
i “ Pi (11)

Case 2: When a VM j, present in RSU i at current time step t
has some unprocessed data but is not scheduled to execute at
this time step. The rent-out cost for a VM j is given as:

Qt
i “ U j

t Si (12)

where, U j
t is the unprocessed data in VM j at time t and Si

is the cost per unit storage resources per unit time.
Case 3: When a VM j present in RSU i at the current time step
t has some unprocessed data and is also scheduled to execute

at time step t. The computing cost in addition to storage cost
for the VM’s unprocessed data is given as:

Qt
i “ U j

t Si ` V jCi (13)

where, V j is the computing requirement of the VM j.

We also consider the cost incurred for migration of VM j to
RSU ri at time t (if a migration occurs at t) as:

M t
j “ Costfj ` U j

t ˚ Costvj (14)

where, Costfj is the fixed cost of migrating the VM for vehicle
vj and Costvj is the migration cost associated with per-unit of
data transfer. The total cost incurred by a VM at time t is the
sum of the rent-out cost and migration cost of the VM.
B. Graph Theoretic Formulation

The problem of assignment of VMs to RSUs at time step t is
represented by a weighted bipartite graph. We add a node for
every VM that has not yet completed its execution at t, and
also a node for every RSU. Edges are then added from a VM
to an RSU if the VM can be assigned to that RSU. Thus the
set of nodes for the VMs and the set of nodes for the RSUs
form two partitions in the bipartite graph. Dummy nodes are
added to either set as needed to make the number of nodes
the same in both partitions, as our algorithm will need this
property. This graph is shown in Figure 1, with X VMs and
Y RSUs. The goal is to assign each VM to one RSU in the
RSU set at t while trying to maximize the number of VMs
completing and minimize the total cost. To this end, we assign
a weight to each edge as follows:

Fig. 1: Graphical representation

Wji “ ω1pRtris.s ´ pDg
j ` U j

t qq ` ω2pDr
i q `

ω3p´Rtris.p{V rjs.pq ` ω4p´Rtris.Q
t
iq

(15)

Here, 0 ď ω1, ω2, ω3, ω4 ď 1 and ω1 ` ω2 ` ω3 ` ω4 “ 1.
These ω1, ω2, ω3, ω4 are the weights that assign priorities to
storage resources, data processing rate, computing resources,
and rent-out cost, respectively. Wji is the weight of the edge
between VM node j and RSU node i at time t. Rtris.s is the
amount of storage available with RSU i. Dg

j is the expected
data generated by application j. Dr

i is the data processing
rate of RSU i. U j

t is the amount of unprocessed data in VM
j. Rtris.p is the amount of computing resources available with
RSU i. V rjs.p denotes the computing need of application of
VM j. Rtris.Q

t
j is the maximum rent-out cost offered by RSU

i to VM j. The different terms in Equation 15 are described
as follows:

‚ The term (Rtris.s ´ pDg
j ` U j

t )) indicates the difference
between storage available with RSU i and amount of
unprocessed data in VM j. The expected data that can
be generated by the application till the deadline is added

2022 18th International Conference on Network and Service Management (CNSM) - Short Paper

396



to the unprocessed data at current time step to find a
suitable RSU. The generated data can be calculated as
Dg

j “
řT

k“t λk.
‚ Since the Data Processing Rate (DPR) of RSUs can vary,

each VM attempts to find an RSU having a greater DPR.
This is represented using the term pDr

i q.
‚ The term (´Rtris.p{V rjs.p) represents the ratio between

available computing resources of RSU and required
computing need of VM. Since the computing resources
required by a VM is constant, we use best-fit policy to
efficiently allocate these resources.

‚ The term p´Rtris.Q
t
iq indicates the maximum rent-out

cost offered by RSU i. To minimize the rent-out cost,
the cost of the chosen RSU should be low. Therefore, we
assign a negative value to the cost factor so that higher
cost of an RSU will make the weight of the edge lower.

C. Proposed Algorithm

In this Section, we briefly describe the proposed algorithm,
Cost Aware Load Balancing (CALB). The pseudocode of the
algorithm is shown in Algorithm 1. CALB runs from time
t “ 0 till t “ T ´ 1. In each iteration, it first admits the
VM requests to the system based on resources available in
RSUs (Lines 3-5). VMs that cannot be admitted at time t due
to lack of resources are temporarily dropped and considered
again at time t ` 1 (Line 6). It then chooses a set of VMs
for assignment at time t. For the assignment, a graph is
first formed as described before, and then the well-known
Hungarian matching algorithm is run on the graph to find a
maximum-weighted matching on the graph, and the VMs are
assigned to the RSUs based on the matching found (Lines 7-
11). Once assignment of VMs is over, based on the available
computing resource of RSUs, VMs get scheduled in the RSUs
they are assigned to in earliest deadline first manner (Lines 12-
19).

V. SIMULATION RESULTS

The proposed algorithm CALB is simulated using a Java-
based discrete event simulator to evaluate its performance.
We have considered a lower Manhattan city scenario with
bidirectional roads and an area of 10 square kilometers. Nine
uniformly placed RSUs are considered with transmission range
500 meters. Thus, there are many areas in the scenario that are
not covered by any RSUs. Vehicle movement in the scenario is
generated using Simulation of Urban MObility (SUMO) [14].
The parameters used for simulation are given in Table I. We
have evaluated our proposed algorithm for both periodic and
event-driven applications. A periodic application is an appli-
cation that generates data periodically, while an event-driven
application generates data only on specific events such as acci-
dents in the city, arrival of the current vehicle to market areas,
etc.. We have compared the results of CALB with Matching-
based Dynamic Load Balancing (MDLB) algorithm [8], Joint
algorithm for Selection decision, Computation resource, and
Offloading ratio (JSCO) [2], and one Lower Bound (LB)
scenario. For LB scenario, we have considered a hypothetical

Algorithm 1: Cost Aware Load Balancing (CALB)
1 Initialize the RSUs and VMs information
2 for pt “ 0; t ă T ; t “ t ` 1q do
3 Append the temporary dropped VM’s request from time

step t ´ 1
4 Update VM’s resources requirements
5 Admit VM’s requests based on resource availability
6 If no suitable RSU found, request dropped and again

considered in time step t ` 1
7 while (all chosen VMs are assigned or no assignment is

possible) do
8 Choose a set of VMs to be assigned
9 Form the graph with weights as per Equation 15

10 Use Hungarian matching algorithm on the graph

11 Update the assigned VMs, RSUs information
12 for (each ri in R) do
13 Sort the VMs present in ri based on earliest

deadline first manner
14 for VM j in ri’s VM’s list do
15 if (VM j is not complete) then
16 if (sufficient computing resources is

available at ri) then
17 Execute VM j

18 else
19 Add the VM j to completed VMs list

TABLE I: Table of parameters [1] [5]

Parameters Values
Number of vehicles 50-300
Total time steps 890
Data processing rate of RSU 8-15 Mbps
Per unit storage cost of RSU 0.001$ - 0.007$
Per unit computing cost of RSU 0.001$ - 0.007$
Per unit time base cost of RSU 0.001$ - 0.004$
Fixed migration cost of VM 0.01$
Per unit cost of data transfer 0.002$
Initial storage need of VMs 100 MB- 300 MB
Computing need of VMs 5 MHz - 40 MHz
Total storage capacity of each RSU 6000 MB
Total computing capacity of each RSU 1000 MHz

RSU with infinite storage and computing resources, and a rent-
out cost that is the minimum among all RSUs. Therefore,
all vehicles in this scenario can immediately transfer their
requests and any data generated to this RSU for processing.
Figure 2 shows the performance of algorithms for periodic ap-
plications. Figure 2(a), 2(b), 2(c), and 2(d) show the variations
of VM completion percentage, average delay, average rent-out
cost, and average total cost respectively with an increasing
number of vehicles. It can be seen that VM completion
percentage is higher in the case of CALB as compared to JSCO
and MDLB. This is because CALB allocates VMs to RSUs
based on the expected storage needs of the VMs, thus reducing
the need for unnecessary migrations. The VM completion
percentage achieved by CALB is also very close to the result
obtained from LB scenario. The average delay is also less in
the case of CALB as compared to JSCO and MDLB. This

2022 18th International Conference on Network and Service Management (CNSM) - Short Paper

397



(a) (b)

(c) (d)

Fig. 2: Performance of algorithms for periodic applications

(a) (b)

(c) (d)

Fig. 3: Performance of algorithms for event-driven applications

is because best-fit strategy and DPR of RSUs are considered
in CALB. The best-fit strategy is used for scheduling and
DPR is used for assignment. The best-fit strategy minimizes
queueing delay and use of RSU with higher DPR minimizes
the execution time of applications. It is also observed that the
average rent-out cost and the average total cost in CALB are
both lower as compared to JSCO and MDLB. This is because
CALB also considers pricing of the resources along with
storage and computing resources, and DPR of RSUs, while
MDLB only focuses on storage and computing resources and
JSCO only focuses on computation. In addition, CALB also
reduces the number of migrations, thus reducing the migration
cost, and hence the total cost. Both the rent-out cost and total
cost are also very close to the lower bound achieved in LB
scenario, indicating that CALB achieves a solution that is
closer to the optimal one.
We have also analyzed the performance of CALB for event-
driven applications as given in Figure 3. In this case also
CALB performs better than MDLB and JSCO. It is seen that
VM completion percentage of event-driven applications is less
in comparison to the periodic applications (Figure 3(a)). Also,

the delay incurred (Figure 3(b)), the rent-out cost (Figure 3(c)),
and the total cost (Figure 3(d)) are all higher in an event-driven
applications in comparison to periodic applications. This is
because, for event-driven applications, a large amount of data
is generated during an event. With this, it becomes difficult
for a VM to get a suitable RSU. This leads to an increase in
the number of migrations, which eventually increases delay,
decreases VM completion percentage, and increases total cost.
However, CALB still performs better compared to MDLB,
JSCO, and the solution obtained is closer to that found in the
lower bound scenario LB.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an algorithm called CALB that
aims to maximize the number of VMs completed and minimize
the overall cost. Simulation results show that CALB outper-
forms two other existing algorithms, MDLB and JSCO, with
respect to VM completion percentage, delay, rent-out cost, and
total cost. Comparison with a hypothetical ideal scenario is
also shown, which indicates that the solution found by CALB
is closer to the ideal scenario. One possible extension of the
current work can be the utilization of resources available in
vehicles instead of offloading the complete task to RSUs.

REFERENCES

[1] G. G. M. N. Ali, E. Chan, and W. Li, “On scheduling data access with
cooperative load balancing in vehicular ad hoc networks (VANETs),”
The J. of Supercomputing, vol. 67, no. 2, pp. 438–468, Feb. 2014.

[2] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing and
offloading in vehicular edge computing and networks,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4377–4387, Jun. 2019.

[3] A. M. Maia et al., “Dynamic service placement and load distribution in
edge computing,” in 16th Int. Conf. on Network and Service Manage-
ment (CNSM), Nov. 2020, pp. 1–9.

[4] T. D. Schepper et al., “Load balancing and flow management under
user mobility in heterogeneous wireless networks,” in 14th Int. Conf. on
Network and Service Management (CNSM), Dec. 2018, pp. 247–253.

[5] L. Li et al., “Compound model of task arrivals and load-aware offloading
for vehicular mobile edge computing networks,” IEEE Access, vol. 7,
pp. 26 631–26 640, Feb. 2019.

[6] G. G. M. Nawaz Ali et al., “An efficient cooperative load balancing
approach in RSU-based Vehicular Ad Hoc Networks,” in IEEE Int. Conf.
on Control System, Computing and Engineering, Nov. 2014, pp. 52–57.

[7] M. F. Tsai et al., “Improving positioning accuracy for VANET in real
city environments,” J. of Supercomputing, vol. 71, no. 6, pp. 1975–1995,
Jun. 2015.

[8] S. R. Sahoo, M. Patra, and A. Gupta, “MDLB: A matching based
dynamic load balancing algorithm for road side units,” in Int. Wireless
Comm. and Mobile Computing (IWCMC), Aug. 2021, pp. 291–296.

[9] S. R. Sahoo et al., “AALB: Application Aware Load Balancing Algo-
rithm for Road Side Units,” Veh. Comm., vol. 36, p. 100475, Aug. 2022.

[10] H. Deng et al., “Revenue maximization for dynamic expansion of geo-
distributed cloud data centers,” IEEE Trans. on Cloud Computing, vol. 8,
no. 3, pp. 899–913, Jul. 2020.

[11] H. Li, J. Liu, and G. Tang, “A pricing algorithm for cloud computing re-
sources,” in Int. Conf. on Network Computing and Information Security,
vol. 1, Jul. 2011, pp. 69–73.

[12] M. Najm, M. Patra, and V. Tamarapalli, “Cost-and-delay aware dynamic
resource allocation in federated vehicular clouds,” IEEE Trans. on Veh.
Technology, vol. 70, no. 6, pp. 6159–6171, Jun. 2021.

[13] J. Yao and N. Ansari, “Fog resource provisioning in reliability-aware
IoT networks,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8262–
8269, Jun. 2019.

[14] P. A. Lopez et al., “Microscopic traffic simulation using SUMO,” in
21st Int. Conf. on Intelligent Transportation Systems, Dec. 2018, pp.
2575–2582.

2022 18th International Conference on Network and Service Management (CNSM) - Short Paper

398


	56



