

QoS-aware SFC Migration Scheduling Based on
Encoder-Decoder RNN for Cloud-Native Platform

Takahiro Hirayama, Masahiro Jibiki, Takaya Miyazawa, and Ved P. Kafle
National Institute of Information and Communications Technology

{hirayama, jibiki, takaya, kafle}@nict.go.jp

Abstract—Service function chaining (SFC) provides the plat-

form for flexible resource management by dynamically
allocating resources to virtual and/or container network func-
tions (VNFs/CNFs). To meet the quality of service (QoS)
requirements while facing increasing resource demands, the sys-
tem will require the migration of the VNFs/CNFs from the
current server to the others that offer sufficient resources. In
this study, we formulate an integer linear programming (ILP)
based optimization model to solve the function migration sched-
uling problem so that it meets QoS requirements of each service
function (SF) chain. The remarkable points of this work are the
following two points. The one is that we consider latency be-
tween VNFs/CNFs belonging to an SF chain, avoiding overhead
due to their unnecessary migration and resource shortage. And
the other is that we consider the case in which each VNF/CNF
must be to be deployed strictly to a designated virtual machine
(or container). To reduce complexity, we apply an encoder-de-
coder recurrent neural network (ED-RNN) as a machine
learning model to the function migration scheduling problem.
Performance evaluations show that the ED-RNN based ap-
proach achieves a similar performance as the ILP, while adding
the benefits of very low complexity.

Index terms—Service function chaining (SFC), Integer linear
programming (ILP), Machine learning (ML), Recurrent neural
network (RNN), Cloud-native platform.

I. INTRODUCTION
The 5th generation (5G) or beyond 5G (B5G) mobile

communication systems are expected to provide many types
of application services such as virtual reality and autonomous
vehicles over a single network infrastructure. To enable
network operators to effectively provide diverse services over
the same network, the systems must be reconfigurable by
software. For this purpose, service function chaining (SFC),
software defined networking (SDN), and network function
virtualization (NFV) are promising platform technologies [1].

A service function (SF) chain contains a series of network
functions (NFs) such as load balancers, and firewalls, and they
can be deployed in virtual machines (VMs) as virtual NFs
(VNFs) or in smaller containers as container NFs (CNFs). On
a cloud-native network service platform, services can easily
be scaled up or down with demand. However, implementing
NFs with smaller granularity and deploying them in many
microcontainers makes the system architecture more complex
to operate and monitor. Furthermore, operators should
determine NF placement with considering QoS requirement of
each SF chain and the constraints of the cases when SF chains
are deployed on the cloud-native platform. To maintain the
diverse QoS of SF chains, network operators should consider
multiple factors those impact to performance of all NFs
belonging to a chain, for example, latency between NFs in the

same chain, overhead due to NF migration, and resource
competition among NFs on the same server.

The NF placement, resource allocation and migration
scheduling problems for the monolithic deployment of NFs
have been studied recently [2,3], but the techniques applied
are limited in providing agile operations of NF migration as
they require a significant amount of time to complete an oper-
ation cycle. Meanwhile, machine learning (ML) techniques
are expected to be capable of meeting the diverse QoS
requirements by autonomous and proactive resource control
and management predicting time-varying traffic demands.
Application of ML techniques has also been presented in
several prior studies. The authors in [4,5] proposed SF
chaining using multiple distributed CNFs, and discussed
traffic steering such as load balancing. However, they did not
address the issues of proactive and sophisticated resource
adjustments using ML technologies.

To adapt to the situation of dynamic NF migration in SFC,
the prior study has applied the encoder-decoder recurrent neu-
ral network (ED-RNN) model to tackle the migration
scheduling problem [6]. However, it is limited in that it does
not considered the prominent feature of cloud-native platform
features, such as the coexistence of VNFs and CNFs and the
diversity of QoS requirements of SF chains. Therefore, in the
work presented in this paper, we propose an NF migration
scheduling solution suited for cloud-native platforms where
services are deployed and provided in containers created on
VMs meeting the desired QoS requirement of each service.

The main contributions of this paper are as follows:
• We formulate an NF migration scheduling problem

for cloud-native platform as an integer linear programming
(ILP) with the objective to meet QoS requirements of every
SF chain. We determine its objective function as to minimize
the uncomfortability of SF chains, by avoiding unnecessarily
frequent NF migration while guaranteeing low latency.
Furthermore, our formulation includes the NF placement
constraint that each VNF or CNF is designated to be
allocated to a VM or a container, respectively.

• We show that the ED-RNN architecture has the pos-
sibility to be used for NF migration scheduling in a cloud-
native platform. Through computer simulation, we verify
that the proposed method can reduce the occurrences of un-
necessary NF migration and that it has much lower
computation complexity.

This paper is organized as follows. In Sec. II, we introduce
our SF migration framework. The NF migration problem is
discussed in Sec. III and the ED-RNN model architecture is
described in Sec. IV. Performance evaluations are presented
in Sec. V. Finally, the conclusions are presented in Sec. VI.

978-3-903176-51-5 © 2022 IFIP978-3-903176-51-5 © 2022 IFIP

2022 18th International Conference on Network and Service Management (CNSM) - Short Paper

384

II. AUTONOMIC SERVICE FUNTION MIGRATION SCHEME
Our assumptions regarding the architecture of the network

service platform are as follows. Infrastructure providers (IPs)
construct their networks by connecting servers (nodes) that
can deploy several NFs in VMs. Application service providers
(ASPs) borrow an appropriate number of NFs from the IPs
according to their service types and scales. When an IP
receives a request for the construction of a network service
from an ASP, it constructs and manages the SF chains of the
desired service. If sufficient computational resources are ex-
hausted due to increased demand, the NF should be migrated
from the current node to another. The IP must determine the
destination server node from many available ones. Solving
this problem using ILP in a short time is prohibitively difficult
because of its complexity, which is the main reason for
adopting an ML based approach for this type of problem.

The advantage of our NF migration scheduling leveraging
ML techniques is as follows. In the given network
infrastructure, the ML model autonomously creates NF
migration plans in accordance with the utilization of
computational resources in the current state, QoS
requirements of the NFs, position dependencies of the NFs per
SF chain, and predicted future resource demands. If a certain
NF is migrated from one node to another too often, the service
deployed on the NF will experience frequent disruptions.
Therefore, it would be optimal if a certain NF once migrated
to a node is not migrated again to other nodes for a while. Our
previous work revealed the efficacy of the ED-RNN in NF
migration scheduling on a simple multihomed topology [6].
However, it is still necessary to consider more complex
situations of cloud-native platform, where each server can
accommodate NFs as service applications deployed on VMs
and/or containers (within another VM). Notably, if an NF does
not strictly require a specific operating system distribution, the
NF can be deployed as an application on any container.

In this study, we validate that the ED-RNN, which was
introduced in our previous work for NF migration scheduling,
is also effective for the NF migration scheduling in the cloud-
native platform. Related studies have applied ML-based
approaches to the SFC placement problem before, but they
mainly use deep reinforcement learning (DRL) [7] to find the
optimal solutions to maximize the reward function. However,
DRL requires a very long time to train complicated models,
and is probably incapable of dealing with the rapidly time-
varying resource utilization. Our work differs from their
approaches by applying a simple neural network trained by the
solutions obtained by the ILP.

III. PROBLEM STATEMENT AND FORMULATION
Fig. 1 displays a leaf-spine topology with 𝑁 = 4 servers

to set the stage for the problem formulation and its subsequent
evaluation. In this section, we elucidate the VNF scheduling
problem for SF chains deployed on a cloud-native platform
and its ILP solution. We describe the ED-RNN training pro-
cess using the ILP solution in Sec. IV.

In Fig. 1, an SF chain (SFC1) is composed of three NFs
(NF1-1, NF1-2, and NF1-3) deployed on three servers. NF1-
1 and NF1-3 are deployed on VMs (as VNFs), and NF1-2 is
installed on a container (as a CNF). In our example, because

all functions are installed on different servers, the packet
transmission cost induced by their encapsulation and
decapsulation overhead and propagation delays between
servers must not be ignored. The architecture for application
working on a container is more complex than the cases of
applications working on VMs. Therefore, the transmission
cost of any SF chain increases when it includes many NFs
deployed as CNFs. The propagation delay is proportional to
the hop count between servers.

To formulate the problem, we denote the computational
resources (such as CPU) of server 𝑖 (𝑖 = 1,2,… , 𝑁)
allocated to VNFs as 𝑆𝑖

𝑣 and to CNFs as 𝑆𝑖
𝑐. There are 𝐹 SF

chains, and each SF chain 𝑐𝑓 (𝑓 = 1,2,… , 𝐹) consists of
several NFs. The ℎ-th NF of SF chain 𝑐𝑓 is denoted as 𝑣𝑓,ℎ,
where ℎ ∈ 1,2,… , 𝐻𝑓 and 𝐻𝑓 denotes the hop count of chain
𝑐𝑓 . The demands of NF computing resources dynamically
change at each time slot (𝑡 = 𝑡1, 𝑡2,… , 𝑡𝑇). Thus, to simplify
the problem, we assume that the orchestrator can accurately
predict the changes in the resource demands of all SF chains
during each time slot. Therefore, the appropriate placement
positions of the NFs can change significantly. Some NFs are
required to be migrated from one server to another when the
total resource demand of NFs deployed on the server exceeds
the server’s total capacity. Notably, the QoS requirements of
each SF chain differ from those of the others. When severe
resource competition occurs, it is better to migrate the NFs of
a disruption-insensitive service.

Each SF chain has unique parametric requirements. The
uncomfortability of 𝑐𝑓 at time 𝑡, 𝑈(𝑐𝑓 , 𝑡), is defined as:
𝑼(𝒄𝒇 , 𝒕) = 𝜶𝒇𝑮(𝒄𝒇 , 𝒕) + 𝜷𝒇𝑴(𝒄𝒇 , 𝒕) + 𝜸𝒇𝑳(𝒄𝒇 , 𝒕) (1)
where 𝐺(𝑐𝑓 , 𝑡), 𝑀(𝑐𝑓 , 𝑡), and 𝐿(𝑐𝑓 , 𝑡) represent the
performance degradations induced by the resource shortages
of servers (i.e., due to the gap between capacity and demand),
the temporal service disruptions induced by NF migration, and
the transmission costs (latency) of NF packet forwarding,
respectively. Their concise definitions of 𝐺(𝑐𝑓 , 𝑡), 𝑀(𝑐𝑓 , 𝑡)
and 𝐿(𝑐𝑓 , 𝑡) are provided later. The parameters 𝛼𝑓 , 𝛽𝑓 and
𝛾𝑓 are coefficients exhibiting the importance of these metrics
in the SF chain 𝑐𝑓 . We formulate the optimization problem of
minimizing the sum of the uncomfortability values.

To formulate the NF scheduling problem as an ILP
problem, we define several variables, as follows:
𝑆: Set of servers. |𝑆| = 𝑁 × 2 because server 𝑖

includes 𝑆𝑖
𝑣 and 𝑆𝑖

𝑐.
𝑉 : Set of NFs. |𝑉 | = Σ𝑓∈𝐹 𝐻𝑓 .
𝑥(𝑠, 𝑣, 𝑡) ∈ 0,1: Binary variable indicating whether server 𝑠

hosts NF-𝑣 at time 𝑡. 𝑠 ∈ 𝑆, 𝑣 ∈ 𝑉 .

NF1-1
(VNF)

NF1-2
(CNF)

Leaf SW

NF1-3
(VNF)

Leaf SW

Spine SW

Resource
for VMs

(𝑆𝑖𝑣)

Resource
for containers

(𝑆𝑖𝑐)

Server 4

VM

Container

SFC1

Server 3Server 2Server 1

Fig. 1 Network topology (N=4 servers).

2022 18th International Conference on Network and Service Management (CNSM) - Short Paper

385

𝑑𝑣(𝑡) ≥ 0: Demand level of NF-𝑣 at time 𝑡 (input param-
eters, constant real number). To simplify,
values of 𝑑𝑣(𝑡) have only three values, high (H),
middle (M), and low (L).

𝐶𝑠 > 0: Capacity of server 𝑠 ∈ 𝑆 (input parameter,
constant integer).

𝑔(𝑠, 𝑡) ≥ 0: Variable representing the resource shortage
amount in server 𝑖 at time 𝑡 (real number).
𝑔(𝑠, 𝑡) = 0 indicates no shortage.

𝑚(𝑠, 𝑣, 𝑡) ∈ 0,1: Binary variable indicating whether NF-𝑣 is
migrated at time 𝑡 or not.

𝑙(𝑠, 𝑠′) ≥ 0: Variable representing the latency between a
pair of servers (𝑠, 𝑠′) (input parameter, con-
stant real number). 𝑠, 𝑠′ ∈ 𝑆.

𝑟(𝑣, 𝑣′) ∈ 0,1: Binary variable indicating whether a pair of
adjacent NFs (𝑣, 𝑣′) is deployed in the path of
SF chain 𝑐𝑓 or not. 𝑣, 𝑣′ ∈ 𝑉 .

𝑝(𝑣) ∈ 0,1
(¬𝑝(𝑣) ∈ 0,1):

Binary variable indicating whether NF- 𝑣
must be deployed as VNFs (CNFs) (input pa-
rameter). Details are described later.

We formulate the NF migration scheduling problem as
follows.

Objective:
𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 ∑ ∑ 𝑼(𝒄𝒇 , 𝒕)

𝒇∈𝑭𝒕∈𝒕𝟏,…,𝒕𝑻
 (2)

subject to:
 ∑ 𝑥(𝑠, 𝑣, 𝑡)

𝑠∈𝑆
= 1, ∀𝑣 ∈ 𝑉 , ∀𝑡, (3)

 ∑ 𝑥(𝑠, 𝑣, 𝑡) ⋅ 𝑑𝑣(𝑡)𝑣∈𝑉
− 𝐶𝑠 < 𝑔(𝑠, 𝑡), ∀𝑠 ∈ 𝑆, ∀𝑡, (4)

 𝑚(𝑠, 𝑣, 𝑡𝑘) ≥ 𝑥(𝑠, 𝑣, 𝑡𝑘) − 𝑥(𝑠, 𝑣, 𝑡𝑘−1),
∀𝑠 ∈ 𝑆, ∀𝑣 ∈ 𝑉 , ∀𝑘 ∈ 2,3,… , 𝑇 . (5)

Fig. 2 illustrates the relationship between these constraints.
In this figure, the upper two tables represent the values of
𝑥(𝑠, 𝑣, 𝑡) at times 𝑡1 and 𝑡2 . Thus, it denotes the server that
accommodates NF-𝑣 at time 𝑡1 (and 𝑡2). Similarly, the lower
table represents the values of 𝑑𝑣(𝑡), which denote the resource
demands of SF chains at time 𝑡 = 𝑡1, 𝑡2,… , 𝑡𝑇 . The constraint
of Eq. (3) indicates that each NF must be allocated to only one
server. In Eq. (4), the resource shortage value, 𝑔(𝑠, 𝑡) ,
becomes larger than zero only when the sum of the demands
in the SF chains on server 𝑠 exceeds its capacity, 𝐶𝑠, at time
𝑡. Eq. (5) denotes whether an NF is migrated from one server
to another or not, at time 𝑡𝑘. The value of 𝑚(𝑠, 𝑣, 𝑡𝑘) equals
one when NF-𝑣 is migrated to server 𝑠. For example, when
NF- 𝑣1,2 is migrated from server 𝑆1

𝑣 to server 𝑆2
𝑣,

𝑥(𝑆2
𝑣, 𝑣1,2, 𝑡2)− 𝑥(𝑆2

𝑣, 𝑣1,2, 𝑡1) = 1, as shown in Fig. 2. If
NF-𝑣 is not migrated at time 𝑡𝑘, 𝑚(𝑠, 𝑣, 𝑡𝑘) remains zero.

As described, the objective function (Eq. (2)) includes
three factors, 𝐺(𝑐𝑓 , 𝑡), 𝑀(𝑐𝑓 , 𝑡) and 𝐿(𝑐𝑓 , 𝑡). The metric of
the resource shortage affecting the chain 𝑐𝑓 , 𝐺(𝑐𝑓 , 𝑡) , is
defined as

𝑮(𝒄𝒇 , 𝒕) = ∑ ∑ 𝒈(𝒔, 𝒕) ⋅ 𝒙(𝒔, 𝒗, 𝒕)𝒗∈𝒄𝒇𝒔∈𝑺 . (6)
The value of 𝐺(𝑐𝑓 , 𝑡) increases if NF-𝑣 is deployed on server
𝑠 at time 𝑡, and the amount of resource demand exceeds the
capacity of server 𝑠 . 𝑀(𝑐𝑓 , 𝑡) represents the frequency of
migration of VNFs in 𝑐𝑓 at time 𝑡. The metric of the resource
shortage affecting the chain 𝑐𝑓 , 𝐺(𝑐𝑓 , 𝑡), is defined as

𝑴(𝒄𝒇 , 𝒕) = ∑ ∑ 𝒎(𝒔, 𝒗, 𝒕)𝒗∈𝒄𝒇𝒔∈𝑺 . (7)
Finally, 𝐿(𝑐𝑓 , 𝑡) indicates the total transmission latency
through the NFs comprising the SF chain 𝑐𝑓 at time 𝑡. It is
defined by
𝑳(𝒄𝒇 , 𝒕) = ∑ ∑ ∑ ∑ 𝑳′

𝒗𝒇,𝒈′∈𝒄𝒇𝒗𝒇,𝒈∈𝒄𝒇𝒔𝒃∈𝑺𝒔𝒂∈𝑺
,

𝐿′ = 𝑙(𝑠𝑎, 𝑠𝑏) ⋅ 𝑥(𝑠𝑎, 𝑣𝑓,ℎ. 𝑡) ⋅ 𝑥(𝑠𝑏, 𝑣𝑓,ℎ′ , 𝑡) ⋅ 𝑟(𝑣𝑓,𝑔, 𝑣𝑓,ℎ′).
(8)

In Eq. (8), the transmission cost from server 𝑠𝑎 to 𝑠𝑏 is
included in the value of 𝐿(𝑐𝑓 , 𝑡) if NF-𝑣𝑓,ℎ and NF-𝑣𝑓,ℎ′ are
adjacent pairs of VNFs comprising the SF chain 𝑐𝑓 and NF-
𝑣𝑓,ℎ(𝑣𝑓,ℎ′) is deployed on server 𝑠𝑎(𝑠𝑏).

As mentioned, NFs should be deployed in VMs or
containers according to their requirements when considering
the features of the cloud-native platform. Thus, if an NF-𝑣 is
marked for deployment on a VM (𝑝(𝑣) = 1), it should be
installed in a VM. We replace Eq. (3) using the following
detailed constraints:

∑ 𝑥(𝑆𝑖
𝑣, 𝑣, 𝑡)

𝑖∈𝑁
+ ∑ 𝑥(𝑆𝑖

𝑐, 𝑣, 𝑡)
𝑖∈𝑁

= 1,

∑ 𝑥(𝑠𝑖
𝑣, 𝑣, 𝑡) = 𝑝(𝑣)

𝑖∈𝑁
,

∑ 𝑥(𝑠𝑖
𝑐, 𝑣, 𝑡) = ¬𝑝(𝑣)

𝑖∈𝑁
,

𝑝(𝑣) + (¬𝑝(𝑣)) = 1, ∀𝑣, ∀𝑡.

 (9)

This set of equations denotes the following constraints: First,
NF-𝑣 must be deployed on at least one server. Second, NF-𝑣
should be installed in a VNF if 𝑝(𝑣) = 1. Third, NF-𝑣 should
be installed in a CNF if ¬𝑝(𝑣) = 1. Finally, 𝑝(𝑣) and ¬𝑝(𝑣)
exhibit an exclusive relationship.

In summary, solving this problem clarifies the best
combination of 𝑥(𝑠, 𝑣, 𝑡) values. Thus, server 𝑠 ∈ 𝑆 should
accommodate NF- 𝑣 (𝑣 ∈ 𝑉) at each time slot (𝑡 ∈
𝑡1, 𝑡2,… , 𝑡𝑇). The optimal solutions maintain the sum of the
uncomfortability metrics of SF chains as low as possible.

IV. ED-RNN ARCHITECTURE
We trained the ED-RNN model with the solutions of the

optimization problem as described in Sec. III. Our NF
migration scheduling problem uses the time-series data on the
resource demands of SF chains. As clarified by a prior study
[6], the ED-RNN architecture is suitable for reducing the
frequency of migration because the past state’s information is
adopted effectively during scheduling. Note that the past state
information includes the NF placement and resource
utilization at each time slot.

Fig. 3 illustrates the architecture of the ED-RNN model,
which is composed of three parts: encoder, decoder, and
attention. The encoder reads a certain length of sequential

𝑆1𝑣 𝑆1𝑐 𝑆2𝑣 𝑆2𝑐 𝑆3𝑣 …

𝑣1,1 0 1 0 0 0 …

𝑣1,2 1 0 0 0 0 …

𝑣2,1 1 0 0 0 0 …

…
…

NF
(𝒗𝒇,𝒉))

Server status (𝑥(𝒔, 𝒗, 𝒕𝟏))

NF
(𝒗𝒇,𝒉)

Demand Transition (𝒅𝒗(𝒕))

t1 t2 t3 … tT
𝑣1,1 H L L …

𝑣1,2 M M M …

𝑣2,1 L H H …

…
…

𝑆1𝑣 𝑆1𝑐 𝑆2𝑣 𝑆2𝑐 𝑆3𝑣 …

𝑣1,1 0 1 0 0 0 …

𝑣1,2 0 0 1 0 0 …

𝑣2,1 1 0 0 0 0 …

…
…

Server status (𝒙(𝒔, 𝒗, 𝒕𝟐))

NF(𝑣1,2) is migrated from 𝑆1𝑣 to 𝑆2𝑣.
𝒙(𝑺𝟐𝒗, 𝒗𝟏,𝟐, 𝒕𝟏) = 𝟎
𝒙(𝑺𝟐

𝒗, 𝒗𝟏,𝟐, 𝒕𝟐) = 𝟏

Eq. (3): 𝑥(𝑠, 𝑣, 𝑡)𝑠∈𝑆 = 1,
∀𝑣, ∀𝑡

Eq. (4): 𝑥 𝑠, 𝑣, 𝑡 ⋅ 𝑑𝑣(𝑡)𝑣∈𝑉 − 𝐶𝑠 < 𝑔𝑠 𝑡 ,
∀𝑠, ∀𝑡, 0 ≤ 𝑔𝑠 𝑡

Eq. (5):
𝑚 𝑠, 𝑣, 𝑡𝑘 ≥ 𝑥 𝑠, 𝑣, 𝑡𝑘 − 𝑥 𝑠, 𝑣, 𝑡𝑘−1 ,
∀𝑠, ∀𝑣, 𝑘 = 2…𝑇,𝑚 𝑠, 𝑣, 𝑡𝑘 ∈ {0,1}

+1

Fig. 2 Illustration of constraints of the VNF(CNF) scheduling problem.

2022 18th International Conference on Network and Service Management (CNSM) - Short Paper

386

input data. The decoder then processes the input data step-by-
step alongside the hidden state retrieved from the gated recur-
rent unit (GRU) cell, which is used for an RNN to memorize
the long- and short-term behaviors of the encoder part. This
architecture improves scheduling performance by using both
past and future input data. Our VNF/CNF migration
scheduling problem also uses sequential input data that in-
clude the time series of SFC demands. The encoder reads the
input data, 𝐼(𝑡𝑘)(𝑘 = 1,2, . . . , 𝑇) , and the attention part
integrates the output data from the encoder at each occasion.
The output data from the encoder at each time are gathered at
the attention part, which memorizes the 𝑇 × 𝐻 matrix. This
part supports the decoder in identifying parameters that have
a significant impact on NF scheduling. Our previous work [6]
showed that the attention part plays a key role in improving
NF placement performance because it handles dynamically
changing conditions, i.e., fluctuations in resource demands.

To more effectively use the ED-RNN model architecture,
we apply the QoS parameters of each chain and the placement
constraint. The input tensor to the encoder at time 𝑡𝑘, 𝐼(𝑡𝑘), is
shown in Fig. 3. The input data include the capacity of servers
(𝐶𝑠, 𝑠 ∈ 𝑆), constraints of NFs deployed as a VNF (𝑝(𝑣), 𝑣 ∈
𝑉), QoS requirements of SF chains (𝛼𝑓 , 𝛽𝑓 , 𝛾𝑓) (𝑓 =
1,2,… , 𝐹), and predicted resource demands of NFs at time 𝑡
(𝑑𝑣(𝑡), 𝑣 ∈ 𝑉). We assume that the demand for NFs can be
met by some prediction techniques; thus, we did not focus on
these in this study. The size of the input data at time 𝑡, is |𝑆| +
|𝑉 | + 3𝐹 + |𝑉 |. The size of the output data, 𝑒(𝑡), is the same
as the output size of the hidden layer in GRU 𝐻.

The decoder sequentially decides on the placement of NFs
at each time slot using the output data from the encoder and
the attention. The decoder consists of combined linear and
GRU cells. As shown in Fig. 4, at time 𝑡𝑘, the Attn-GRU reads
the output data from the encoder (ℎ𝑑(𝑡𝑘−1)), attention part
(𝐸𝑇), and previous slot 𝑡𝑘−1 (𝑂(𝑡𝑘−1)). The group of |𝑉 |
classifiers produces an NF placement matrix at the time 𝑡𝑘
(i.e., {𝑥(𝑠, 𝑣, 𝑡𝑘)|𝑠 ∈ 𝑆}). Each classifier thus corresponds to
the NF- 𝑣 placements (𝑣 ∈ 𝑉). The NF placement is
represented by one-hot vector in which only one element is
arranged as one, and the others are forced to be 0. As shown
in Fig. 3, the size of each one-hot vector becomes |𝑆| + 1
because it also includes the element 𝑥’(𝑣), which represents
don’t care (the first element, whose index is 0). This is used
to handle cases in which the resource demands of the

corresponding NFs are 0. Consequently, the output data com-
prise a vector of size |𝑉 | × (|𝑆| + 1).

Each one-hot vector output from the classifier exhibits a
server that should accommodate the VNF. For example, if the
𝑣-th one-hot vector is (0, 0.3, 0.7, 0.4) at time 𝑡, then NF-𝑣
should be deployed on the second server because the element
indexed by 2 (starting from 0) shows the largest value. In some
cases, a solution obtained from the ED-RNN is not suitable for
meeting the NF requirements, that is, the cases when the
server type mismatches its requirements (e.g., 𝑆𝑖

𝑐 is selected
despite 𝑝(𝑣) = 1). In these cases, the NF-𝑣 is deployed on the
server corresponding to the element having the second-largest
value in the one-hot vector.

V. EVALUATION AND DISCUSSION
To train the ED-RNN model, we first generated 10,000

patterns of QoS requirements and time-series data as resource
demands in SF chains. We then solved the NF migration
scheduling plans for each pattern as ILPs. The number of
combinations 𝑥(𝑠, 𝑣, 𝑡) is 2|𝑆|+𝐹+𝑇 . The ranges of the
number of active chains, 𝐹 , and the SF chain length (max:
𝐻𝑓) were set to [3, 8] and [1, 3], respectively. Thus, the
maximum value of |𝑉 | was 8 × 3 = 24. The capacities of 𝑆𝑖

𝑣
and 𝑆𝑖

𝑐 were 3 and 2, respectively. There were 𝑁 = 4 servers
in the network, thus, |𝑆| = 4 × 2 = 8. The number of time
slots, 𝑇 , was 10. The values of 𝑝(𝑣) were randomly chosen,
and the resource demands of VNFs at each time, 𝑡, (𝑑𝑣(𝑡))
were randomly chosen from 0.1 (low), 0.5 (middle), and 1
(high). When the number of active chains and active NFs in
the chains was smaller than 8 and 3, respectively, the gap was
filled with padding zeros. 𝑙(𝑠𝑎, 𝑠𝑏) was defined as the sum of
hop counts and connection overheads. Hop counts are defined
by the shortest paths from 𝑠𝑎 to 𝑠𝑏 in the topology shown in
Fig. 1. The connection overheads are 0, 0.4, and 0.6, which
correspond to cases in which both of 𝑠𝑎 and 𝑠𝑏 are in VMs,
when one is in a VM and the other is in a container, and when
both are in containers, respectively. The QoS requirements of
SF chains (𝛼𝑓 , 𝛽𝑓 , 𝛾𝑓) were randomly selected from ((0.5,
0.2, 0.1), (0.15, 0.05, 0.05), and (0.05, 0.01, 0.01)). These
represent expensive, moderate, and low-price services,
respectively. We solved the above optimization problem using
MATLAB. If the computation time exceeds a 5-min threshold,
the solution- seeking process is disrupted, and one of the
feasible solutions is chosen as a provisional solution.

In the training data, the output data were converted to a
one-hot vector, as described in the previous section. For
example, if the NF-𝑣 is deployed to server 5, the output vector
becomes (0, 0, 0, 0, 0, 1, 0, 0, 0). Note that, the output one-hot
vector becomes (1, 0, 0, 0, 0, 0, 0, 0, 0), if the demand of NF-
𝑣 is 0. The case in which the first element equals 1 means don’t
care. We defined the loss function as the sum of the cross-

Encoder-Decoder RNN + Attention

GRU GRU GRU

Encoder Decoder

he(tT)

e(t1) e(t2) e(tT)
Attn-
GRU

Attn-
GRU

Attn-
GRU

ET

O(t1) O(t2) O(tT-1)
hd (t1) hd (t2)

hd (tT-1)

Attention

!("1)
!("2)⋮!("!)

Input
I(t1)

Input
I(t2)

Input
I(tT)

Input
I(t1)

Input
I(t2)

Input
I(tT)

Solution
O(t1)

Solution
O(t2)

Solution
O(tT)

! "! = $" % ∈ ' ,) * * ∈ + , ,#, -#, .# / ∈ 0 , 1$ "! * ∈ +
' = 2×4 + 0 ×5 +

6 "! = 7% * , 7 %, *, "! % ∈ ' * ∈ +

one-hot vector
for * ' + 9 ×|+|7% * = 9	

means don’t care
Fig. 3 Encoder-Decorder RNN (ED-RNN) and input/output tensors.

O = |V|(|S|+1)

Linear&
Soft.

Input
I(tk)

Solution
O(tk-1)

Attention
ET

Hidden
Hd(tk-1)

Multiply

Linear&
ReLU

GRU&
Log-
Soft.

Linear
v1,1

Linear
vF,H

Solution
O(tk)

T×H
(matrix)

I = |S|+|V|+3F+|V|

I

O

T

H

H
H

H H

H

H

|S|+1

|S|+1

O

|V| classifiers

|S|+1

F

Fig. 4 Attn-GRU architecture.

entropy loss values, and the ED-RNN model was
implemented using PyTorch. We set the number of
input/output sizes from the hidden layers (𝐻) in the GRU cells
of the encoder and decoder as 𝐻=1,000, which gave the best
performance among the other values in [800, 2000].

All 10,000 patterns of training data were used in random
order for each epoch. To validate the learning results, we
generated another set of 1,000 patterns and their optimal
solutions in the same manner. We repeatedly trained and
validated the ED-RNN model for 100 epochs. In total, it took
approximately 30 minutes on an Intel Core i9-10850K and
Nvidia GeForce RTX 3090. To evaluate the performance, we
generated an additional 1,000 data patterns.

Fig. 5(a) shows the evaluation results of the scheduling
solution obtained from the trained ED-RNN. For comparison,
the results obtained by the optimization (Opt.) and random NF
placement (Rnd.) are plotted in Fig. 5(b), which shows the
average uncomfortability (𝑈(𝑐𝑓)) values. The average values
of 1,000 trials and the error bars represent the 95% confidence
interval of the average 𝑈(𝑐𝑓). 𝑈(𝑐𝑓) is the sum of 𝐺(𝑐𝑓),
𝑀(𝑐𝑓) , and 𝐿(𝑐𝑓) . Therefore, this figure represents a
breakdown. The values of 𝐺(𝑐𝑓) and 𝑀(𝑐𝑓) are zero in the
optimization results; thus, the solution provided by solving the
optimization perfectly avoids resource shortages and unneces-
sary NF migration. Our ED-RNN exhibited the best
performance at the 60th epoch as it is effective in avoiding
unnecessary NF migrations at the cost of a slightly increased
number of resource shortage cases. The migration frequency
was lower than that of random placement. As a result, the ED-
RNN shows about 30% better performance than random
placement when we focus on the sum of metrics, 𝑈(𝑐𝑓).

Fig. 6 shows the average uncomfortability values (i.e.,
expensive, moderate, and low) of each service type. The
values found by the ED-RNN at the 60th epoch were approx-
imately 28%, 30% and 40% larger than those of the optimal
solutions, respectively. The results became worse than those
of the optimization when we focused on the performance of
expensive services. However, the ED-RNN showed
remarkable improvement in the cases of expensive services
when we compared the results to those of the random
placement. The average uncomfortability value was about
40% smaller than that of the random placement.

A performance gap remains between ED-RNN and the op-
timal results. However, the derivation of optimal solutions
takes a longer time, in the worst case, it takes more than an
hour. Therefore, to keep pace with dynamically changing
network conditions in a short period, it is difficult to optimize

at all. However, the ED-RNN requires only a few seconds to
find the solutions, and the evaluation results reflect sufficient
generalizability for SFC management in a short period.
Therefore, our ED-RNN based approach overcomes the
critical issue of the optimization methods. Moreover, the ED-
RNN is a practical method of remaining the uncomfortability
of SF chains that do not exceed 30% larger than that of the
optimization method.

VI. CONCLUSION
The dynamic adjustment of the computational resources

assigned to NFs in a cloud-native platform is essential for the
5G/B5G systems. In this study, we investigated the problem
of NF migration scheduling to satisfy the diverse QoS require-
ments of SF chains against dynamically changing resource
demands. We first formulated the NF scheduling problem as
an ILP problem, considering cases in which each SF chain has
different QoS requirements and when each NF is deployed to
designated nodes. We showed that the ED-RNN model trained
with the optimal solutions obtained by ILP has high potential
to prevent unnecessary NF migrations while guaranteeing low
latency, and avoiding resource shortages. In a future work, we
will improve the ED-RNN model architecture by applying it
to larger topologies and cases with more diverse requirements.

ACKNOWLEDGEMENT
This work was conducted as a part of the project entitled

“Research and development of infrastructure technologies for
innovative virtualization network (JPMI00316),” supported
by the Ministry of Internal Affairs and Communications,
Japan.

REFERENCES
[1] A. M. Medhat et al., "Service Function Chaining in Next Generation

Networks: State of the Art and Research Challenges," IEEE Com. Mag.,
vol. 55, pp. 216-223, Feb. 2017.

[2] A. Leivadeas, G. Kesidis, M. Falkner, and I. Lambadaris, "A Graph
Partitioning Game Theoretical Approach for the VNF Service Chaining
Problem," IEEE TNSM, vol. 14, pp. 890-903, Nov. 2017.

[3] T.-W. Kuo et al., "Deploying Chains of Virtual Network Functions: on
the Relation Between Link and Server Usage," IEEE/ACM ToN, vol. 26,
pp. 1562-1576, Aug. 2018.

[4] A. Bouridah et al., "Optimized Scalable SFC Traffic Steering Scheme
for Cloud Native based Applications," IEEE CCNC, Jan. 2021.

[5] S. D. L. Shah et al., "Cloud-Native Network Slicing Using Software
Defined Networking Based Multi-Access Edge Computing: A
Survey"," IEEE Access, vol. 9, pp. 10903-10924, Jan. 2021.

[6] T. Hirayama et al., "Service Function Migration Scheduling based on
Encoder-Decoder Recurrent Neural Network," IEEE Netsoft, June 2019.

[7] Y. Bi et al., "Multi-Objective Deep Reinforcement Learning Assisted
Service Function Chains Placement," IEEE TNSM, vol. 18, pp. 4134-
4150, Dec. 2021.

 0

 0.5

 1

 1.5

 2

Opt. Rnd.
 0

 0.5

 1

 1.5

 2

10 20 30 40 50 60 70 80 90 100

A
vg

. U
(c
f)/

T

Epoch

M(cf)

L(cf)

G(cf)

(a) ED-RNN (b) Opt.&Rnd.

Fig. 5 Average uncomfortability (U(cf)) value comparison of the ED-RNN,
the optimal solution and the random placement.

 0

 0.3

 0.6

 0.9

 1.2

Expensive

A
vg

. U
(c
f)/
T

 0

 0.1

 0.2

 0.3

 0.4

Moderate

A
vg

. U
(c
f)/
T

Service Type

 0

 0.025

 0.05

 0.075

 0.1

Low

A
vg

. U
(c
f)/
T

 0

 0.025

 0.05

 0.075

 0.1

Low

A
vg

. U
(c
f)/
T

ED-RNN
Opt.
Rnd.

M(cf)

L(cf)

G(cf)

Fig. 6 Average Uncomfortability value by each service type. (The values of
"ED-RNN" are obtained by the AI trained at the 60th epoch).

