
Scalable Data Plane Caching for Kubernetes
Stefanos Sagkriotis

School of Computing Science
University of Glasgow

Glasgow, UK
s.sagkriotis.1@research.gla.ac.uk

Dimitrios Pezaros
School of Computing Science

University of Glasgow
Glasgow, UK

dimitrios.pezaros@glasgow.ac.uk

Abstract—Computation offloading to the programmable data
plane enabled the acceleration of key-value stores which offer
coordination services for large-scale data centres. Previous re-
search reduced the response latency of key-value requests by
half through deploying the store in the programmable data plane.
In this work, we examine Kubernetes’ central store, etcd, as a
candidate for deployment in data plane. We discuss performance
and scalability limitations existing in the default architecture of
Kubernetes and how these can be alleviated through data plane
offloading. Moreover, we investigate previous design decisions
of in-network caching mechanisms that led to increased traffic
generation and latency. We propose a new in-network key-
value store platform that maintains strong consistency and fault-
tolerance while improving performance and scalability over the
state-of-the-art.

I. INTRODUCTION

Advances in the area of programmable switches, both in
programming tools (P4 [1], PSA [2]) and in hardware im-
plementations (Intel Tofino [3], Broadcom Trident [4] have
allowed line-rate performance for compiled binaries executed
on programmable switches. These enablers have driven inno-
vation in the area of in-network compute. Researchers have
used such technology to offload computation primitives in
Programmable Data Plane (PDP), significantly improving the
performance of the applications that rely upon these primitives
[5]–[8].

For Key Value Stores (KVSs), computation offloading in
PDP not only enables line-rate generation of replies but
effectively reduces the amount of hops necessary in a query’s
path. The Round-Trip latency is reduced in half by generating
a reply from the first network device in the path instead of
traversing all the way to the server that stores KV pairs.
Given the instrumental role of KVSs in providing configu-
ration management [9], locking mechanisms [10], and web-
service related operations in large-scale data centres [11], the
potential performance improvement from PDP deployment is
significant.

Apart from standalone deployments, KVSs operate as part
of other orchestration frameworks, e.g., Kubernetes. Kuber-
netes utilised virtualised computations to enable service de-
ployment across a versatile set of computing nodes. With
its extensible and fault-tolerant architecture it has driven the
transition to the microservices era for numerous mainstream
operators. Central to its architecture is etcd [9], a fault-tolerant,
consistent KVS that provides coordination services and is

used as the backup store for all of Kubernetes’ control-plane
components.

However, it has been shown that etcd presents scalability
bottlenecks [12]. Etdc relies on a consensus-based approach
to ensure consistency among the participating nodes. This
approach requires a growing amount of time to confirm
that changes have been committed in the majority of the
participating nodes, which in turn creates increased response
time. In this work we examine the workloads imposed to etcd
by Kubernetes from the scope of PDP deployment. Based on
our analysis we proceed to suggest an extended Kubernetes
architecture that offloads part of the KV traffic to PDP devices.

NetChain [13], one of the most prominent works in the area
of in-network caching, by accommodating queries entirely in
data plane is effectively the fastest in-network KV platform
existing today. Other important works perform offloading of
certain KV processes, such as conflict detection [14], [15],
which offer performance improvements over legacy storage.
Through comparison with NetChain other platforms seem to
be inferior in terms of maximum throughput and latency
making NetChain the fastest available framework as of now.

While being the fastest in-network KVS, NetChain still
presents some limitations that make it less appealing for
large-scale deployments in a data centre environment. Its CR
mechanism in order to maintain per-item consistency among
the participating nodes requires full chain traversals to fetch
values from the appointed reference node. We analyse and
evaluate the impact of this design decision in performance
and reveal its shortcomings.

To surpass the shortcomings of NetChain’s design we use
NetCRAQ, a novel in-network KV platform which builds
upon the state-of-the-art and improves average read throughput
by approx. 130% compared to NetChain. We argue that the
integration of PDP devices in Kubernetes enhances end-to-
end programmability and propose NetCRAQ’s integration to
Kubernetes by extending Kubernetes’ original architecture.
This new architecture addresses previous scalability and per-
formance constraints stemming from etcd’s integration and
benefits pod scheduling and scaling performance.

Overall, this paper contributes by:
• Analysing the behaviour of Kubernetes with respect to

etcd during the deployment and scheduling of services.
• Identifying weaknesses and performance limitations of

KV platforms that operate in PDP.

978-3-903176-51-5 © 2022 IFIP

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

345



• Proposing a new in-network KV platform that shows per-
formance and scalability improvements when compared
to the state-of-the-art.

• Analysing a new storage replication mechanism as the
main tool to offload Kubernetes related KV pairs.

• Extending Kubernetes’ architecture to integrate data plane
devices and improve the performance of core Kubernetes
components, i.e., etcd.

II. BACKGROUND

KV replication methods are commonly separated between
quorum-based and primary-backup methods. Quorum-based
methods require the majority of the participating nodes to
conduct an operation in order to render it successful (e.g.,
Paxos [16]). Primary-backup methods operate by appointing
one of the participating nodes as the primary (or reference)
node. Operations are considered successful when they are
executed on this reference node. The rest of the nodes act
as replicas of the primary one (e.g., Chain Replication (CR)
[17]).

A. Chain Replication

Under CR, the participating nodes/programmable switches
form a chain and each has a distinct role: head, tail, or replica.
All of the participating nodes hold the same KV pairs. Write
queries originate from the head and then propagate across
all replica nodes until they reach the tail. The tail issues a
response which acts as an acknowledgement for the write. A
tail node is also responsible for responding to read queries.
Only the tail is considered to be up-to-date with the latest
commit for a value and acts as a reference point for the entire
chain. Replicas can replace the head or the tail in case of a
failure.

Defining the tail as the reference point allows per-key
consistency for the entire chain to be achieved. When a write
query reaches the tail, it has certainly been processed by all
previous chain nodes. Therefore, all chain nodes are updated
with its latest version. If the write query is lost before reaching
the tail, then all subsequent reads will be replied with the
previous version for this object. This ensures consistency in
replies.

B. Transferring KVS in PDP

The IncBricks [18] paper was among the first to capture the
potential of PDP devices because of their central location in
a query’s message path. The message path for a query in a
legacy KVS would start from the client, go through network
devices, and finally it would reach the servers that host the
KVS. IncBricks substituted the need to reach coordination
servers for some types of queries and suggested a shorter
path for cached values which stays between the client and the
network devices. However, the use of programmable network
processors offered limited instructions and provided limited
programmability that was dependent on the manufacturer.

NetChain [13] used the same approach but through the
use of P4 [1] managed to deploy an in-network KVS in

high-performance ASICs (instead of Network Processor Units
(NPUs)), and therefore achieved greater performance than
IncBricks. Its design realised that queries can be processed
in PDP with minimal interactions with the control plane, as
part of a fully deployed replication method.

The query response mechanism that was employed relies
heavily on the incoming packets that are processed using the
match-action pipeline [2]. A custom packet format was used,
layered over UDP, which contained the following fields: OP -
the type of operation (read, write), KEY - the ID of the object in
question, VALUE - its value, SEQ - a monotonically increasing
sequence number that mitigates out-of-order deliveries, SC -
the number of chain nodes in the header, Sk - IP of the kth

participating node. Storing the IPs of the nodes in the header
aims at reducing the amount of stored data per switch and
allowing dynamic mapping of data to chains.

We notice that the suggested packet structure can add a
significant amount of overhead bytes, especially for bigger
chains where all the participating node IPs have to be added
in the header. For a 4-node chain, NetChain’s header is 58
bytes, and grows by 32 bits with every node addition. The
linear growth of the packet size with the chain length can
cause increased parsing times and adds complexity when fields
need to be added or removed [19]. Another issue arises from
the use of a monotonically increasing value in the SEQ packet
field, which is 16 bits by default. This size allows just 65, 536
operations before the field overflows.

The reasoning behind the choice of CR as the main repli-
cation method for NetChain reflects the limitations and fea-
tures of the deployment environment and provides important
lessons. Firstly, CR has small redundancy requirements to
achieve fault tolerance: to survive f node failures, it requires
f + 1 nodes. This is a significant reduction when considering
that it translates to the amount of programmable switches in
use. Secondly, CR presents low implementation complexity
by requiring a simple commit & forward pipeline to execute
a write query among the chain nodes. A quorum-based ap-
proach would require several RTTs to reach consensus on a
successful write or respond to a read, which would increase
implementation complexity.

While the choice of CR as an in-network replication method
displayed superior performance over legacy KVSs, we observe
some performance-limiting factors. Based on the principle that
only the tail can reply to read queries, the amount of generated
packets is substantial: for n participating nodes, 2n packets
are required for read queries and n + 1 for write queries.
NetChain, by employing CR, adopts this design which, in
the context of a data centre environment, has the following
limitations: 1) generating messages for the tail results in high
packet gain for the platform. It requires network resources for
extensive parsing and forwarding; 2) the chain’s reply rate is
limited to the throughput that can be provided by the tail node,
being the only one responsible to reply. This heavily harms
scalability; 3) directing all queries to a certain node can also be
a root cause for hot-spots within the topology; 4) the response
latency increases linearly with the chain length because of the

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

346



increasing number of hops.

C. CRAQ

Chain Replication with Apportioned Queries (CRAQ) [20]
operates in a similar manner to CR: the nodes formulate a
chain and each node can be a head, tail, or replica. The key
differences with CR are: CRAQ’s ability to distribute load
across all chain nodes – effectively enhancing scalability, and
its ability to operate under relaxed consistency guarantees to
benefit performance.

In CRAQ, each KV pair can be either clean, in which
case the there are no pending commits for its value, or dirty,
which means that there is a most recent commit which is yet
to be acknowledged by the tail. Therefore, multiple versions
of a value might correspond to a key. CRAQ places this
information inside each participating node. Upon receiving a
read query, each node can either: respond to it, if the version
is clean, or redirect the query to the tail in order to fetch the
latest version. Writes operate similarly to CR: a node has to
propagate a write down the chain until it reaches the tail and
then be acknowledged as the latest clean version. Once this
happens, the rest of the chain nodes are notified and can delete
previous versions of this object.

D. Kubernetes requests on etcd

To find out the type of requests directed to etcd, we
operate a Kubernetes cluster with four nodes while monitoring
various metrics of the generated requests. Stateless services
are deployed in the form of containers which in Kubernetes
are further enclosed within pods. We then proceed to scale
these pods equally among the participating nodes. The pods
are originally 2 and then scale up to 25. After the deployment
has finished successfully we proceed to delete all of them.

The results are the average metrics as obtained over multiple
runs of the same experiment. The majority of the requests
were read queries (known as ranges in etcd) of single KV pair
– approx. 15.3k requests. The write requests were just 2.9k,
which is 16% of the total number of queries. Most of the
read requests, 55%, were directed to just 25 KV pairs which
concerned health requests, leases, and scheduler values. There
were 3.1k consensus proposals, all of which were successfully
conducted.

To establish the performance comparison baseline, we set
up an etcd benchmark with the characteristics of the suggested
deployment by Kubernetes: 3 nodes, 128bit values, 1 client
with multiple connections. We used the default benchmark tool
for etcd to establish these parameters. The results showed an
average write duration of 0.21s and an average read query du-
ration of 0.7ms. These numbers are orders of magnitude higher
that what can be offered by PDP platforms like NetChain.

The obtained metrics reveal a read-mostly workload that
is skewed towards a small subset of KV pairs. The amount
of consensus proposals appears to be significant considering
that each consensus involves multiple RTTs to be conducted.
Moreover, the performance of etcd is significantly slower
than the existing in-network implementations. These results

compile a good use case for in-network KV offloading and the
integration of programmable devices in Kubernetes’ design.

III. PROPOSED DESIGN

Our design can be broken down in two main domains: the
PDP components that utilise P4 to enable in-network repli-
cation (NetCRAQ); and the Kubernetes framework that was
extended to support offloading KV pairs to PDP based on real-
time metrics. An overview of the design is shown in Figure
1, components in red depict our additions, green components
represent etcd, and blue/gray are used for Kubernetes.

A. Kubernetes control plane extension

Kubernetes’ control plane is comprised of 5 components:
the API server which is the front end for the control plane;
the controller manager that monitors jobs, endpoints, and dis-
tributes tokens; etcd as aforementioned; the Control Network
Interface (CNI) that establishes network routing among the
participating nodes; and the scheduler which allocates pods
to workers by comparing the requested resources with the
available worker resources [21]. In our proposed design, two
Kubernetes components have been extended to support the
integration of PDP: etcd and CNI.

A monitoring component has been added to etcd in order
to identify most commonly accessed KV pairs. It uses the
integrated Prometheus endpoint to read metrics [22]. The most
frequent KV pairs are selected as candidates for deployment
in PDP. The number of pairs is decided based on the available
memory of the network device and the total size of the
candidate KV pairs.

Monitoring is also in place for the values already existing
in PDP, which have counters for access frequency. These
statistics are obtained through P4Runtime which is executed
as part of the CNI [23]. Through the NetCRAQ placement
scheduler, also located within the CNI, these metrics are
compared and a decision on which values will be transferred
to PDP is made. The most frequently read values are placed
in data plane. The pairs are transferred through packets that
are generated in the CNI.

The P4Runtime CNI component is also used for less time-
critical operations related to data plane. Forwarding rules
are generated and installed through the control plane upon
initialisation or failure. Equally, the roles of the switches
are initialised through the control plane. They are installed
across all switches to make sure role-based forwarding does
not involve retrieving data from the controller, which would
introduce delays in the packet processing pipeline. The CNI
is entirely responsible for reacting to failures. In the case of
a failure, it initially activates the failover mechanism, which
redirects traffic from the failed node to a working switch. This
is done to minimise traffic loss while the node is down. Once a
recovery node is booted, the CNI installs the latest KV pairs in
its registers and then replaces the failed node with the recovery
one.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

347



Kubernetes
worker

Rack 2
ToR Switch 

Key Action
... ...

NetCRAQ
code

Registers

P4 
Runtime

Kubernetes
workerKubernetes
worker

Kubernetes Control Plane
Controller
manager API

Scheduler

etcd
node 1

etcd
node 2

etcd leader

RaftWrite
ahead log

Snapshot

gRPC

KV
metrics

P4 Runtime
Calico CNI

NetCRAQ
placement

API
Server

Kube
controllers

calicoctl

Kubernetes
worker

Rack 1
ToR Switch 

Key Action
... ...

NetCRAQ
code

Registers

P4 
Runtime

Kubernetes
workerKubernetes
worker

Fig. 1. Overview of proposed design.

B. NetCRAQ overview

We leverage the line-rate performance of PDP devices to
offload all the query processing tasks in the data plane.
This ensures that fast responses are generated even when
retrieving values from other switches cannot be avoided. The
time necessary to retrieve a local key-value pair is minimised
by placing the necessary data structures within each switch’s
registers. The registers are located within the ASIC and ensure
line-rate accesses [2]. Moreover, we keep all coordination
messages within the data plane to ensure minimum delay and
consistency. The NetCRAQ components are running in Top of
Rack switches directly above Kubernetes worker nodes.

IV. NETCRAQ DATA PLANE DESIGN

NetCRAQ’s data plane design is responsible for two main
operations: storing/retrieving the KV pairs in the relevant
data structures and processing and forwarding queries and
coordination messages. To adhere to the constraints of PDP
devices and program under a solid set of rules that will
make our implementation transferable to programmable switch
chips, we choose the P4 programming language [1] and the
Portable Switch Architecture (PSA) [2]. P4 is specifically
designed to be compatible with programmable switches and
ensures that the compiled binary can be executed with near
line-rate performance. This choice also allows for a direct
comparison against NetChain, which is developed with the
same tools.

A. KV data structures

A key difference between CR and CRAQ is the way that
new writes are processed. In CRAQ, for each object k, there
are potentially multiple versions, n. In CR, appending multiple
values for an object is not required and instead the only “clean”
version exists in the tail. In the context of programmable
switches, to satisfy CRAQ’s requirement, n register cells need
to be available to commit writes. For this reason, the switch is
initialised with k×n sequential register cells reserved, forming
an array. We call this the objects_store array.

The state of each object (clean/dirty) has to be retrieved to
determine the future control logic operations. We implicitly
define the state as clean iff the latest committed value exists
in the first cell of the object’s space within the array. This
implicit definition is based on the principle that every previous
value is deleted upon a successful write of an object, i.e.,

when this is acknowledged by the tail node. We store the
location of the latest committed value for each object in the
read_index array. Similarly, the location of the next available
cell to commit a write is stored in the write_index array. The
latter is also used to prevent out-of-bound writes.

B. Packet format

In Section II-B, NetChain’s packet structure is described.
We reiterate its variability according to the chain length and
the large amount of overhead bytes that can be added. Since
extensive packet parsing cannot be avoided when messages
have to traverse the entire chain, even by employing CRAQ,
truncating the packet size and reducing packet modifications
on each switch should enable faster forwarding between the
participating nodes. NetCRAQ’s packet format follows a sim-
pler approach by having just three fields layered over UDP:

• KV_OP: defines the type of the operation: read re-
quest/reply, write request, acknowledgement. (2 bit)

• KEY_ID: contains the key id. (32 bit)
• VALUE: the field containing the value for the specific key.

(128 bit)
The number of participating nodes and the IPs thereof are

omitted from the packet and instead placed within the switch,
thus reducing the parsing time for all KV operations and
coordination messages. The control plane is responsible for
updating the roles according to changes, instead of relying
on the incoming packets for information that concerns the
network infrastructure. This way, when changes occur within
the network, recalculation of forwarding rules and switch roles
can happen in the control plane and switches can be updated
accordingly.

C. Control logic

The control logic, executed by all participating switches,
entails all the necessary operations for interacting with the
KV pairs and managing the network traffic. All operations
of the KVS are atomic to protect the values from simultane-
ous accesses. NetCRAQ’s control logic relies heavily on the
match-action concept, while values obtained from parsing the
NetCRAQ header are matched against a pre-defined table that
dictates the action that is executed when a match occurs. These
match-action pairs are computed at the control plane.

Metadata fields, used for branching decisions, are also filled
by the control plane in advance using the same mechanism.
These metadata fields contain values that need to be regularly
retrieved to manage incoming traffic. For example, the role of
each switch or the IP of the switch appointed to be the tail
of the chain. This constitutes a key design difference with
NetChain, since the aforementioned information is already
stored and maintained in the switches instead of being passed
through incoming packets (in the case of NetChain). Having
this information stored instead of parsed, should enable faster
overall parsing [19].

The control of packets that contain the NetCRAQ header
is primarily dictated by the KV_OP field. The allowed op-
erations for this field are: READ, READ_REPLY, WRITE, and

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

348



Algorithm 1: Control Logic
1 objects store = register[k ∗ n];
2 read index = register[n];
3 write index = register[n];
4 if kv op == READ then
5 get read index(KEY ID);
6 get my role();
7 if meta.read index == 0 then
8 clean read(KEY ID);
9 generate reply();

10 else if meta.my role == TAIL then
11 dirty read(KEY ID);
12 generate reply();
13 else
14 forward to tail();
15 else if kv op == WRITE then
16 get write index(KEY ID);
17 get my role();
18 if meta.write index == 0 then
19 clean write(KEY ID);
20 forward to tail();
21 else
22 if meta.write index >= NUMBER OF VERSIONS then
23 drop();
24 else
25 dirty write(KEY ID);
26 forward to tail();
27 if meta.my role == TAIL then
28 clean write(KEY ID);
29 generate acknowledgement();
30 multicast();
31 else if kv op == ACKNOWLEDGEMENT then
32 clean write(KEY ID);

ACKNOWLEDGE. Deletes happen in the form of a WRITE oper-
ation, since the memory is statically managed and cannot be
freed upon removal of KV pairs.

Algorithm 1 shows the complete control logic. If the iden-
tified operation is a READ, the next decision is based on the
position of the value within the register. If a value exists in the
first position of the object’s register space, we know that the
version is clean, otherwise it is dirty. The next stage includes
checking the role of the node. Only a tail node can reply to a
read with a dirty version, while the rest can only reply with
clean versions of an object. Writes in the tail node may be
committed but not yet acknowledged by all nodes, therefore
replying with the latest value is not voiding consistency.

For WRITE operations, we use a similar technique to identify
clean writes: the index for the next available cell to commit
a write should be at the first cell of the object’s register
space. Otherwise, the write should be considered dirty and,
once committed, should be forwarded to the tail. If the write
attempts to exceed the object’s predefined register space, it
is considered to be out of bounds and the packet is dropped.
All write requests that arrive at the tail are considered to be
the latest clean ones and acknowledgements are generated for
the rest of the chain. To quickly and efficiently update the
rest of the chain, we use the multicast functionality of P4,
which automatically generates the correct amount of necessary
packets, based on the size of the chain and transmits them at
once. This removes the need to sequentially retrieve the IPs
and generate packets for the rest of the nodes, resulting in

faster updates for the chain.
Lastly, receiving an ACKNOWLEDGEMENT message in any

node implies that the contained value of the message is the
latest clean version for the object. Therefore, all previous
versions are deleted and the relevant indices for the object
are reset.

V. HANDLING FAILURES

Failure mitigation happens in two phases: 1) immediate
redirection of traffic to a failover node to reduce the traffic
loss; and 2) complete recovery with a replacement node and
re-installation of forwarding rules and KV pairs.

When a node remains unresponsive for a certain amount of
time – 50ms in our case, the client can automatically direct
requests to a different chain node. This time can be adjusted
based on what is considered as a prolonged lack of response
according to the average response rate of the network. Once
the failure is noticed by the control plane, the forwarding rules
are updated by removing the node from the forwarding tables
and the multicast group. During this phase, the total capacity
of the chain is expected to decrease to the maximum capacity
that can be offered by the working nodes.

In the second phase, a new node re-enters the chain. To
maintain consistency, we follow CRAQ’s approach to identify
which node will be used to copy KV pairs from. The control
plane, depending on the position of the failed node, decides the
node that will be used to copy the KV pairs to the new node.
Due to space limitations, we refer the reader to the original
CRAQ paper for the complete list of scenarios [20].

The recovery node remains offline while the control plane
copies the KV pairs from an online node. During this phase,
the control plane also disables any writes across the chain in
order to preserve consistency. When the copy is complete, the
node is added in the forwarding tables and the multicast group
of the chain. The total capacity of the chain is completely
restored to the initial one.

VI. EVALUATION

Taking into account the workloads that Kubernetes gen-
erates towards etcd, we evaluate our proposed data plane
method. We compare against NetChain, the current state-of-
the-art in-network replication method. Our testbed runs a bare-
metal installation of Ubuntu 18.04 (kernel: 4.15.0-140-generic)
on Intel Core i7-4790 CPU and 16GB of DDR3 RAM. P4
behaviour is emulated using the reference BMv2 switch [24] -
compiled using performance flags. The topology is generated
and managed using Mininet [25] and P4-utils [26]. The control
plane communicates with the Mininet switches using Thrift
[27] and the P4-utils API.

A. Throughput

We evaluate the throughput of both platforms based on the
maximum attainable rate at which they can provide responses
to queries. The measurements are in Queries Per Second
(QPS). We direct millions of packets to each switch while
increasing the packet rate. The maximum attainable response

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

349



Fig. 2. Max read QPS vs distance from tail.

rate is considered the rate at which the response rate starts to
decrease and the response latency rises.

In figure 2, we test the impact of NetCRAQ’s ability to
provide responses to read queries of a clean version. NetChain
has to direct queries to the tail node in order to respond,
regardless of the object’s state. This difference is expected
to generate traffic that will congest the link of the tail node,
causing decreased response throughput and increased latency.
This effect is displayed by using a 4-node chain and individu-
ally generating queries to each participating node. We monitor
the throughput each node is able to achieve given the distance
it has from the tail.

Figure 2 shows that NetCRAQ’s throughput is not impacted
by distance when the queried object is clean. The reduction
in required hops and computations create a big performance
difference in favour of NetCRAQ: 4.08× higher throughput
for queries directed to the head of the chain. In case of dirty
objects, throughput is still higher than NetChain with the
difference being attributed to the smaller packet size used by
NetCRAQ, 72 overhead bytes for NetChain (SEQ field set to
128 bits to allow continuous traffic) vs 22 bytes for NetCRAQ.
This difference results in smaller parsing times, which when
the number of hops increases is less apparent.

When dirty queries are generated directly at the tail, the
amount of processing required to generate a reply is the only
factor impacting performance since hops are minimum. In that
case NetCRAQ shows 22% higher throughput than NetChain,
proving higher overall computation efficiency. When queries
are directed to the head, the amount of nodes between the
source of the queries and the tail is introducing limitations in
throughput. Here NetCRAQ is 10.5% faster. Overall, in terms
of throughput, regardless of the state of the object and the
distance from tail, NetCRAQ shows superior performance.

We examine how the two platforms operate in an environ-
ment with limited resources in order to determine the impact of
traffic gain and the overall computation efficiency. A platform
with minimum redundant operations will be able to utilise the
available resources to generate replies instead of performing
chain traversals and packet parsing. This is indicative of the
wasted processing cycles and link strain that would occur in
a data centre environment. To evaluate these properties, we
create congestion in an increasing number of switches across

Fig. 3. Sustained read throughput vs percentage of congestion.

Fig. 4. Performance under mixed read/write workloads.

the chain and assess the impact this has in throughput. To make
the comparison fair, all different combinations of clients are
averaged, regardless of their distance from the tail. Figure 3
shows the outcome of this experiment. Once more, NetCRAQ
achieves better utilisation of the testbed resources and sustains
higher throughput under intense workload scenarios: 2.25×
higher throughput for 25% congestion in the chain, 2.8×
higher throughput for 50% congestion, and 4.73× higher
throughput for 100% congestion.

B. Mixed workloads

We evaluate the platforms under realistic workloads contain-
ing a mix of reads and writes. The behaviour of both platforms
under such workloads is shown in Figure 4. Starting from a
read-only workload, we gradually increase the percentage of
writes with a step of 25%. The performance of the platforms
is judged by their attainable response rate. NetCRAQ achieves
more than double the read throughput for all write percentages.
With 75% of the queries being writes, both platforms show a
decrease of around 85% of their read-only workload perfor-
mance. Nonetheless, the read efficiency of NetCRAQ enables
higher throughput. Adequate register cells need to be budgeted
to maintain all dirty versions before they can be acknowledged
by the tail. This is depicted by the increasing amount of dirty
commits as write percentage rises, observed in the right y axis
of Figure 4.

C. Scalability

NetCRAQ is also able to operate over longer chains with
smaller throughput and latency losses over NetChain. We

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

350



Fig. 5. Read throughput vs chain length.

validate this in Figure 5. Here, the comparison is between read
queries directed to the head of the chain. We vary the chain
length from 4 to 8 nodes. The throughput difference can be
up to 9.46× in favour of NetCRAQ, for the case of 8 chain
nodes. Each node is able to respond directly and therefore
can accommodate queries at its maximum capacity without
forwarding traffic to other nodes, a key aspect that increased
the average throughput of the platform.

VII. CONCLUSION

We investigate the workload characteristics of Kubernetes
in etcd. By analysing the obtained metrics we assert that in-
network deployment of KV pairs can benefit the performance
of Kubernetes’ scaling and deployment time. We propose a
new design to deploy KV pairs in-network by extending Ku-
bernetes’ architecture. We study and evaluate the performance
limitations of previous state-of-the-art in-network coordination
platforms. We use a new, faster, in-network coordination
platform – NetCRAQ. Without harming strong consistency,
we effectively increase mean throughput, reduce mean latency
(up to multiple orders of magnitude), and improve scalability.
By integrating in-network compute in Kubernetes we extend
the set of supported devices and suggest better end-to-end
programmability.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, p. 87–95, July 2014.

[2] “Portable switch architecture.” https://p4lang.github.io/p4-spec/docs/
PSA-v1.1.0.html. Accessed: 2022-01-29.

[3] “Intel Tofino.” https://barefootnetworks.com/products/brief-tofino/. Ac-
cessed: 2022-01-29.

[4] “Broadcom Trident4.” https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs/bcm56880-series. Accessed:
2022-01-29.

[5] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang, “Accel-
erating distributed reinforcement learning with in-switch computing,” in
2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA), pp. 279–291, 2019.

[6] D. R. K. Ports and J. Nelson, “When should the network be the
computer?,” in Proceedings of the Workshop on Hot Topics in Operating
Systems, HotOS ’19, (New York, NY, USA), p. 209–215, Association
for Computing Machinery, 2019.

[7] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?
toward in-network classification,” in Proceedings of the 18th ACM
Workshop on Hot Topics in Networks, HotNets ’19, (New York, NY,
USA), p. 25–33, Association for Computing Machinery, 2019.

[8] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-
network computation is a dumb idea whose time has come,” in Proceed-
ings of the 16th ACM Workshop on Hot Topics in Networks, HotNets-
XVI, (New York, NY, USA), p. 150–156, Association for Computing
Machinery, 2017.

[9] “etcd: A distributed, reliable key-value store for the most critical data
of a distributed system..” https://etcd.io/. Accessed: 2022-01-29.

[10] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica, “Highly available transactions: Virtues and limitations,” Proc.
VLDB Endow., vol. 7, p. 181–192, Nov. 2013.

[11] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. Oancea, K. Littlefield, D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae,
T. Stancescu, and H. Apte, “F1: A distributed sql database that scales,”
in VLDB, 2013.

[12] A. Jeffery, H. Howard, and R. Mortier, “Rearchitecting kubernetes for
the edge,” in Proceedings of the 4th International Workshop on Edge
Systems, Analytics and Networking, EdgeSys ’21, (New York, NY,
USA), p. 7–12, Association for Computing Machinery, 2021.

[13] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica,
“Netchain: Scale-free sub-rtt coordination,” in 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18), (Renton,
WA), pp. 35–49, USENIX Association, Apr. 2018.

[14] H. Takruri, I. Kettaneh, A. Alquraan, and S. Al-Kiswany, “FLAIR:
Accelerating reads with consistency-aware network routing,” in 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20), (Santa Clara, CA), pp. 723–737, USENIX Association, Feb.
2020.

[15] H. Zhu, Z. Bai, J. Li, E. Michael, D. R. K. Ports, I. Stoica, and X. Jin,
“Harmonia: Near-linear scalability for replicated storage with in-network
conflict detection,” Proc. VLDB Endow., vol. 13, p. 376–389, Nov. 2019.

[16] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, p. 133–169, May 1998.

[17] R. van Renesse and F. B. Schneider, “Chain replication for supporting
high throughput and availability,” in 6th Symposium on Operating System
Design and Implementation (OSDI 2004), San Francisco, California,
USA, December 6-8, 2004 (E. A. Brewer and P. Chen, eds.), pp. 91–
104, USENIX Association, 2004.

[18] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya,
“Incbricks: Toward in-network computation with an in-network cache,”
vol. 45, p. 795–809, Apr. 2017.

[19] H. Harkous, M. Jarschel, M. He, R. Pries, and W. Kellerer, “P8: P4
with predictable packet processing performance,” IEEE Transactions on
Network and Service Management, pp. 1–1, 2020.

[20] J. Terrace and M. J. Freedman, “Object storage on CRAQ: High-
throughput chain replication for read-mostly workloads,” in 2009
USENIX Annual Technical Conference (USENIX ATC 09), (San Diego,
CA), USENIX Association, June 2009.

[21] “Kubernetes components.” https://kubernetes.io/docs/concepts/overview/
components/. Accessed: 2022-05-30.

[22] “Prometheus.” https://prometheus.io/. Accessed: 2022-05-30.
[23] “P4runtime specification.” https://p4.org/p4-spec/p4runtime/main/

P4Runtime-Spec.html. Accessed: 2022-05-30.
[24] “Bmv2.” https://github.com/p4lang/behavioral-model. Accessed: 2022-

01-29.
[25] “Mininet.” http://mininet.org/. Accessed: 2022-01-29.
[26] “P4-utils.” https://github.com/nsg-ethz/p4-utils. Accessed: 2022-01-29.
[27] “Thrift api.” https://thrift.apache.org/docs/. Accessed: 2022-01-29.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

351


	45



