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Abstract—As design, deployment and operation complexity in-
crease in mobile systems, adaptive self-learning techniques have
become essential enablers in mitigation and control of the
complexity problem. Artificial intelligence and, in particular,
reinforcement learning has shown great potential in learning
complex tasks through observations. The majority of ongoing
reinforcement learning research activities focus on single-agent
problem settings with an assumption of accessibility to a globally
observable state and action space. In many real-world settings,
such as LTE or 5G, decision making is distributed and there is
often only local accessibility to the state space. In such settings,
multi-agent learning may be preferable, with the added challenge
of ensuring that all agents collaboratively work towards achieving
a common goal. We present a novel cooperative and distributed
actor-critic multi-agent reinforcement learning algorithm. We
claim the approach is sample efficient, both in terms of selecting
observation samples and in terms of assignment of credit between
subsets of collaborating agents.

Index Terms—Machine learning, Radio resource scheduling

I. INTRODUCTION

The LTE and 5G Radio Access Networks (RAN) [1] are
complex distributed ecosystems of HW, SW and radio spec-
trum resources. Configuring, operating and coordinating these
systems is a costly, error-prone and labor-intensive task. One
very promising approach is the augmentation of existing au-
tomation approaches like SON (Self Organizing Networks) [2]
with state-of-the-art self-learning machine learning techniques.
Reinforcement learning (RL) [3] is a branch of machine
learning that has shown considerable potential in learning
sophisticated control and decision-making strategies, often
called policies, in highly stochastic environments. In previous
work [4], we demonstrated the potential of RL to learn
complex radio resource management scheduling patterns. One
assumption of that method is a centralized learning approach,
using a combination of simulator (or digital twin [5]) and
real-world system deployment, where the learning agent has
access to a rich observation space. While that approach is
certainly viable for coordinated deployments using a common
scheduler, many real-world resource management mechanisms
are naturally modeled using a decentralized and distributed
control approach [6]. We refer to the approach taken in [4] as
a single agent RL (SARL) solution, in which a single policy
is trained, using a set of distributed resources, by observing

a trajectory of rewards selected from a distribution of actions
conditioned on state. In contrast, in a multi-agent RL (MARL)
system, a set of cooperating agents train independent policies
while simultaneously ensuring that these agents act towards
maximizing some chosen common goal or intent.

In this work, we extend a concept of continuous SARL,
as described in [4], to learn effective and scalable MARL
solutions to the SON problem of Inter-Cell Interference Co-
ordination (ICIC) [7]. The MARL approach is particularly
suited to this problem domain for a number of reasons. First,
radio networks are in their nature highly distributed compute
systems and while centralized decisions is very desirable on
a local cluster of resources, it is often not feasible on a large
scale [8]. Second, centralizing data observations for timely
decision-making on a sub-second timescale is problematic in
terms of added latency and transport cost. Finally, using a
distributed MARL approach reduces compute requirements
for continuous training as each agent works on its local,
reduced, state space. This has the advantage of reducing
the deep-learning complexity requirements per agent (cf. [9])
so that standard processors, instead of expensive and power
hungry GPUs, may be sufficient. Technical solutions for goal
coordination across multiple distributed agents (sometimes
called the credit assignment problem [10]) in an RL setting is a
particularly challenging area, with several possible approaches
(see section III). In this paper, we focus on an adaptive
partial reward sharing between groups of agents to guide a
common intent. The key contributions to the MARL field
as proposed in this work are as follows: 1) A mechanism
to, adaptively, identify which agents are most likely to have
dependent actions. 2) A sample efficient partial reward shar-
ing strategy across dependent agents. 3) A novel distributed
RL algorithm, with extension to the actor-critic policy-based
approach. 4) Experimental comparisons of SARL and MARL
algorithms based on previous baselines.

II. DISTRIBUTED REINFORCEMENT LEARNING SYSTEMS

1) Background: Reinforcement learning [3] is a way to learn
a policy to select actions that optimize a selected goal for a
range of system states. Agents interact with an environment
with observable state s, through actions a. The environment
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disburse rewards r to the agent, based on the value of actions
a in state s. The environment also transitions into a new
observable state s′. The policy π(a|s) is the probability of
choosing the action a, given state s. The objective of an RL
agent is to learn a policy that selects the best a in any given
state s and a specific optimization objective. Formally, an RL
problem setting can be described as maximizing an objective
J , a discounted (γ) reward expectation over a sequence of
time-steps (t), in following a trajectory (τ ) as selected by
policy π:

max
(∣∣J(π) = Eτ∼π[R(τ)] = Eτ

[
T∑

t=0

γtrt

] ∣∣) (1)

In many modern RL settings, the policy π is parameterized
by a set of parameters θ, implemented as a neural network
[11], where θ represents the neural network weights. In a
SARL setting, the objective then becomes the tuning of θ in
the objective maxθ J (πθ), with parameter update following
the objective gradient: θ ← θ + α∇θJ (πθ). There are many
methods to achieve this objective [3], but for most large scale
real-world problems there are currently two main approaches:
1) Value-based methods based on temporal difference learn-
ing (TD, SARSA, Q-learning) and Bellman optimality [12].
2) Policy-based methods that directly learn an optimal (or
approximate) policy, using the policy gradient theorem [13],
[14]. In policy-based approaches, the objective gradient [14]
can be derived using equation 2:

∇θJ (πθ) = Eτ∼πθ

[
T∑

t=0

Aπ
t∇θ log πθ (at | st)

]
(2)

where Aπ
t is an encoding of reward called the advantage

function, which in the simplest case can be the Monte-
Carlo reward return from trajectory episodes. Another possible
encoding of Aπ

t is an estimate of the current state-action
value for each time-step, t, measured against the action-value:
Aπ (stat) = Qπ (st, at) − V π (st). This approach leads to a
rich family of actor-critic algorithms. In this work, we adapt
actor-critic architectures for use in a distributed and multi-
agent setting.
2) Multi-Agent RL: In a cooperative MARL setting, a set
of agents g ∈ {1, . . . , N} collaborate towards a common
objective J . In the most general case, each agent g follows an
independent policy πg and the objective maxθ̄ J (πθ̄), where
θ̄ = {θ1, . . . , θN} is the set of policies followed by each agent.
The gradient of the multi-agent objective can then be described
by adapting equation 2 to incorporate a set of collaborating
agents. Equation 3

∇θ̄J (πθ̄) = Eτ∼πθ̄

 T∑
t=0

g∈Ig∑
rg

Aπg

t ∇θ̄ log πθ̄ (a
g
t | s

g
t )

 (3)

formalizes our approach, where each agent first aggregates
partial rewards from a collaborating set of agents Ig , then
performs a standard sum across time-steps. Since each agent
g can be present in several collaboration sets Ig , the rewards
dependency impact on θ̄ propagates through the system as
described in section V.

III. RELATED WORK

Currently, there are two main approaches to tackling RL multi-
agent systems. In the first, independent learning (IL), each
agent acts independently, using Q-learning or policy-based
algorithms, and only perceive each other as part of the environ-
ment. A second approach is to use centralized training, with a
richer observation of the environment, and then decentralized
execution (CTDE). Within the CTDE category, MADDPG [9],
a multi-agent adaption of the standard DDPG policy algorithm,
trains a decentralized actor but centralized critic by observing
a joint state-action space. Another approach, COMA [15],
trains a counterfactual multi-agent policy using an adaptation
to the actor advantage estimation. Again, COMA needs to
observe the joint agent state-action space during training.
Value decomposition networks [16] (VDN) and QMIX [17],
an extension to VDN, are value-based approaches where each
agent Q-value network shares centralized gradient information
during training. Compared against the relative complexity of
CTDE, IL approaches are simple and in some cases can
be effective and competitive against CTDE [18]. From [18]
it seems clear that in those cases where IL underperforms,
the cause is failure to infer an appropriate credit assignment
between collaborating agents in a non-stationary environment.
In this work, we propose an approach that combines the
simplicity of IL with a partial reward sharing mechanism
between a select subset of collaborating agents. In contrast
to CTDE it does not assume, but can benefit from, central
simulator-based training. We make no assumptions of access
to a complete action or state space during training or execution.
The method is especially suited to continuous learning in net-
working scenarios where access to both state and action space
is limited but communication channels between independent
agents are readily available.

IV. SYSTEM OVERVIEW

A. Problem Description

The LTE and the 5G radio system support Orthogonal Fre-
quency Division Multiple Access (OFDMA) [19] where all
sectors share the same set of frequency resources to allow
higher spectral efficiency. This flexibility can lead to high
levels of interference between allocated radio resources at
cell boundaries and thus degraded quality of service for
users in such high-interference zones. The problem of in-
terfering cells in a RAN system is particularly challenging
with the deployment of 5G and increasingly dense small cell
deployments, heterogeneous networks (HetNet) and ad hoc
configurations [20]. Fig. 1 illustrates two such scenarios with
significant user distributions at cell edges, and a dense hot-
spot (Fig. 1, inset) with users clustered at intersecting cell
boundaries. With this challenge in mind, detailed manual cell
planning becomes difficult and the need for self-organizing
approaches ever more important. In LTE and 5G, one of the
most basic units of end-user resource allocation is a physical
resource block (PRB). A PRB is a contiguous unit of spectrum
(Hz) and time (ms or sub-ms), depending on the particular
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Fig. 1. Cell Edge Distribution and centered hot-spot distribution (inset)

radio standard and generation [19]. In dense configurations, at
cell edges, there can be high levels of interference between
transmitters when PRBs are allocated in an uncoordinated
fashion. In self-learning approaches, the advantage of a MARL
solution over SARL lies in the fact that it more closely aligns
to both the hardware and software implementation architecture
of a RAN with distributed computation and data. As such, we
can utilize existing RAN computation nodes, without the need
for expensive, centralized, data processing infrastructure. In
section V-A2, we describe a distributed and sample efficient
actor-critic RL algorithm which we call DAC (distributed
actor-critic).

B. System Model

The system model has been described in detail in a previous
paper [4] that focused on a single-agent solution, but we
provide a condensed description here for the sake of complete-
ness. It consists of two principal parts. First, a static part which
is configured and created at the start of each training episode,
described by a configuration tuple S. Second, a dynamic part
which evolves by applying system scheduling decisions a to
an environment configured by S at each time-step within a
training episode. The model consists of a set of cells C, beams
B, and available PRBs R per beam. A beam is associated with
a cell and all PRBs in R are available in each beam. Each
beam has transmit power W; gain pattern G used for fading
calculations by a propagation model P . A set of users U is
applied to represent service demand and these can be fixed
or assigned according to a mobility model, as described in
section VI.

From S, we obtain a received signal power (RSP) for every
user by applying P . PRBs are disabled within beams by
decreasing the transmit powers by a fixed ratio, according to
a PRB schedule a, and subsequently applying a stochastic fast
fading model D separately over individual PRB in R, yielding
a set of unique RSP samples per PRB. For each PRB, ap-
proximate signal-to-noise-and-interference-ratios (SINR) are

calculated by summing over R × B × U . In our RL setting,
we designate the resulting SINRs the observable states of the
modeled system. As a final step, a radio resource management
scheduling [21] algorithm M is applied to all active PRB,
as determined by a. Different targets (i.e. performance or
fairness) can be applied in M and the specifics of how to
estimate RL rewards for these are described in section V-B.
This chain of operations, is applied for each schedule TTI
(Time Transmission Interval) and results in a realized spectral
efficiency e, and updated system state of which the observable
part is s. In our RL setting, we use three specific metrics of uti-
lization: 1) System spectral efficiency (SSE) [22] in b/s/Hz,
which in our current model has a maximum theoretical value
of ∼ 4.3 b/s/Hz. 2) Fairness, a fractional measure of how
fair the scheduling allocation is across all available users or
devices U , where 1 means completely fair. 3) PRB utilization
(Ruse), a fractional measure of the PRBs needed to achieve
SSE or fairness utilization, where 1 means all system PRBs
are in use. Given the problem setting described in IV-A, the
goal of our RL method is to create PRB activation schedules,
a, which maximize SSE, or SSE and fairness, while at the
same time minimizing system resources (Ruse) needed to
achieve this. In a SARL setting, as described in [4], a single
schedule a is generated and applied to the system model. In
a MARL setting, as described herein, an agent per beam B,
generates independent schedules a, with a distributed reward
assignment sharing scheme (section V) used to ensure multi-
agent convergence towards a common objective.

V. METHOD

In our MARL setting, there are two key contributing com-
ponents: 1) A method, as specified in algorithm 1, to select
the user devices most likely to provide useful measurement
samples for training and, subsequently, a mechanism to select
cooperating agents. 2) A distributed MARL algorithm, as
outlined in algorithm 2, that efficiently selects and distributes
reward assignment among cooperating agents. The approach
is sample efficient as it selects the training observation space
with most potential from a much larger set, actively selects
groups of cooperating agents per agent and allows for the
possibility of down-sampling credit assignment information
between cooperating agents. In this MARL setting, each agent
follows an independent policy π, and interacts with the local
environment through an action a, upon which the environment
will update its internal local state and produce a local reward
r and a new (local observable) state s′. Consistency with
eqn. 3 would necessitate that these parameters be tagged
g to indicate agent local scope, but to simplify notation,
we shall assume this is implicit in our method description.
Each independent agent policy π(a|s), applied to s, is the
probability of choosing the action a given s, and the objective
of an MARL agent is to learn the best a given local state s for
a specific optimization objective. As independently operating
agents will not necessarily converge towards a common multi-
agent operating goal, contributing reward or credit assignment
needs to shared between agents.
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Algorithm 1: Collaborating agent selection
Data:
·Set of devices U that can measure and report RSRP pu, for
device u, relative to one or more beams b where u ∈ U
·Set of measurement reports Pu of pbu for b observed by u
·Set of collaborating agents g ∈ GN of size N controlling
beam b
Result:
· Og , set of best devices u observed by g
· Ig set of agents which g, periodically, shares reward with,
where, I ⊆ G

1 async each agent g ∈ G
2 Using all Pu reported to g, build Og , a set of D best pbu

observed
3 Og ← argmaxD (Pu)
4 send-to Og to all g ∈ G
5 async each agent g ∈ G
6 Set of report Oi where i← 1..N − 1 and g ̸= i from

collaborating agents
7 Lg[N ] : an array of size N
8 for i← 1..N − 1 do
9 Lg[i] ← |Og ∩ Oi|

10 end
11 Ig ← argmaxB (Lg)

A. Sample and Cooperating Agent Selection

1) Sample Selection: In many MARL settings, agents present
in the system may not necessarily be equally dependent
on chosen actions by all other agents. In these scenarios,
distributing reward or credit assignment information across
all agents may be resource and time-consuming. Algorithm 1
is a method to determine which agents are most likely to
benefit from reward/credit assignment exchange transactions.
A set of devices U can observe and report received signal
reference power (RSRP), pbu, relative to a set of beams Bu.
Each beam has a controlling agent g, with a total of N agents
in the system. Using Pu, a set of reports of pbu, reported to
each agent g, Og the set of best D devices observed by g is
created and distributed to all other agents in GN (Lines 3 - 4).
Each agent g, collects the sets of Oi̸=g from other available
agents. A set of agents, Lg , that have maximum potential for
reward conflict through independent action selection, is created
through calculating the observation space intersection between
a given agent observation space Og and other, available, agent
observation spaces Oi (Line 9), communicated through an
implementation specific agent network. From Lg , a set of
cooperating agents Ig of size B, is determined, and will
subsequently share reward assignment information (Line 11).
2) Distributed MARL Algorithm: Algorithm 2 is composed
of two asynchronously running threads of computation. The
first (Line 5) uses a periodically updated observation space
Og and set of credit assignment cooperating agents, Ig , for
each agent instance g, to guide policy action selection and
trajectory recording. Each agent, g ∈ G, acts independently in
action selection from its policy πθ(s). All agents g then apply
the sampled action to the system model in a time synchronous
step (specific for the radio domain scheduling algorithm) to

the system model (Line 10). The local agent actions a are
Bernoulli vectors of size |R|, each variable specifying if a
resource block in R should be active or not. In the single
agent case, the total policy action space is 2|R|×|B|, while in
the multi-agent case, it is reduced to 2|R|. Each system model
iteration produces an updated (local observable) state s and
a realised system efficiency eg per agent. The updated state
space has shape |R|×|Og|×

∣∣I∗g ∣∣, where I∗g indicates inclusion
of agent g, in addition to its collaborators. Realized system
efficiency has shape |R| × |Og| and is considered a partial
reward p vector until aggregated in a later step. The agent
trajectory τg is recorded for each time-step t. At coordinated
system policy update events each agent g exchanges its partial
reward vectors, τgp, from τg with collaborating agents in Ig .
An optional down-sampling step Φ can be applied on the
reward vector and is a way to trade transfer reward samples
against learning accuracy (section V-D).

The second thread of computation for each agent (Line 18)
aggregates partial reward assignment from all collaborating
agents and updates the individual agent policy. Each agent
policy π is parameterized by θ, implemented as a neural
network [11]. A new aggregated reward vector pg (Line 24)
is constructed for each agent g by combining the trajectory
partial reward components τgp with partial rewards from
collaborators. Optionally, down-sampling can be applied to
τgp and the action space log probability distribution (Line 26),
if incoming partial rewards have been down-sampled before
distribution. An effective agent reward from action a, including
the impact on cooperating agents in Ig can constructed by
applying a chosen target function (Line 25, as described in
section V-B. Each agent objective function J (πθ) maximizes
the expected reward r for collaborating agents, and the policy
gradient theorem [14] ensures that the gradient of J (πθ) can
be can be incrementally calculated across the (down-sampled)
trajectory τ as done in Lines 28-31. Agent advantage function
Aπθ

g (s, a) encodes the estimation of target reward derived in
Line 25, and we employ an actor-critic [23] architecture as
described section V-C. The parameterized policy π(a | s; θ)
is updated using the objective function gradient and a chosen
learning rate through back-propagation (Line 33) [11], [24].

B. Reward Target Functions

Many possible reward functions can be applied to our system
setting but in this work we consider two: 1) maximum through-
put (MT), and 2) proportional fair (PF). MT attempts to max-
imize SSE across all resource blocks with no consideration to
user fairness. Equation 4 shows how reward can be estimated
for an MT goal. The aggregated reward vector pg for agent g is
summed and then averaged across the state space size observed
by an agent. In the PF case we attempt to balance throughput
against fairness. To achieve this we need to maintain running
throughput averages, TO over the state space observed by
devices in Og . This vector is then exponentiated with a weight
w, to guide fairness, and a larger w will improve fairness at
the cost of throughput. The aggregated reward vector pg is
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Algorithm 2: Distributed RL Algorithm - DAC
1 Initialize for g ∈ G:
2 Weights of parameterized policy network θ
3 Learning rate α; Initial state s0; Trajectory: τ
4 (Ig,Og)← periodically from algorithm 1
5 async each agent g ∈ G
6 foreach TTI: t ∈ T do
7 s ∼ Og

8 Sample action a← πθ(s)
9 Apply system model time synchronously

10 time-sync {s, p← eg} ← {P,D,S (a) ,M}
11 Record trajectory: τg ← {s, a, p}t
12 if update policy event then
13 send-to collaborating agents
14 ▷ optional down-sample across t

15 p← Φ
(
τgp

)
16 end
17 end
18 async update policy event
19 ∇θJ (πθ)← 0
20 R = {} : List to collect partial rewards
21 receive partial rewards p from all g ∈ Ig
22 R.append(p)
23 ▷ merge partial rewards

24 pg ← array(Φ
(
τgp

)
·R)

25 Derive reward r ← Targ(pg)
26 L ← Φ(log πθ(a|s))
27 foreach step i in τ do
28 ∆θi = -∇θLAπθ

g (si, ai)
29 ∇θJ (πθ)← ∇θJ (πθ) + ∆θi
30 end
31 ∇θJ (πθ)← mean(∇θJ (πθ))
32 ▷ Update policy parameters through back-propagation and reset τ

33 θ ← θ + α∇θJ (πθ)
34 Reset τ

then normalized with Tw
O and the result averaged across the

observed state space as shown in equation 5.

rmt =

∑
g pg

|R| × |Og| ×
∣∣I∗g ∣∣

(4)
rpf =

∑
g

Pg

Tw
O

|R| × |Og| ×
∣∣I∗g ∣∣ (5)

C. Advantage Function

We use a standard actor-critic architecture where the advantage
function is estimated for each agent, g, as in eqn. 6.

Aπθ
g (st, at) = Qπθ

g (st, at)− V πθ
g (st) (6)

Where Qπθ
g , is estimated as rt + V πθ

g (st+1) and V πθ
g is

estimated from each actor’s separate critic neural network.

D. Partial Reward Down-Sampling

Down-sampling, denoted by Φ in algorithm 2, is a method to
reduce the number of rewards samples shared between coop-
erating agents at the expense of learned policy effectiveness.
An agent partial reward trajectory, τgp, is down-sampled by
averaging rewards across a discrete number of consecutive
time-steps (N ), before distribution to cooperating agents in
Ig . A complimentary Φ operation, using the same N , must
be performed on log πθ(a|s) in each agent receiving a partial

reward. The effective result of down-sampling is to group the
likelihood of Bernoulli action combinations across aggregates
of discrete time-steps.

E. Sample Efficiency

As in [4], we assume that the SARL implementation has access
to the complete state and action space. The MARL has only
partial access to the state space and this is determined by the
number of reporting devices Og and collaborating agents I∗g .
For the purpose of this work we define the observation sample
efficiency, o = |R|×|B|×|U|

|R|×|Og|×|I∗
g |

, as the ratio of SARL to MARL
state space, with a higher o being preferable.

VI. EXPERIMENTAL RESULTS

To evaluate our distributed multi-agent actor-critic (DAC)
algorithm we compare against the SSE, Ruse and fairness met-
rics generated against a single agent actor-critic implementa-
tion (SAC, in this context) operating in the same system model
with equivalent configurations. Both the SA(RL) and MA(RL)
results are compared against two baselines: 1) RUSE-1, using
a Ruse of one, with allR in all beams B utilized. 2) RUSE-R, a
random binomial schedule using a Ruse factor, R, equal to that
produced by the SA or MA algorithms. As shown in previous
work [4], the SA algorithm will always learn a working policy
that gives significantly higher SSE at lower Ruse, and thus
better energy efficiency. We use distinct experimental set-ups
with increasingly more challenging learning complexity. As
our method is designed to minimize cell edge interference, we
tune our traffic models to reflect this. During system model
execution, algorithm 2 executes for a specified number of TTI
iterations that constitute an episode. A number of episode
trajectories are collected into a batch, at which point the policy
is updated, as described in algorithm 2. The algorithm learning
phase terminates when the policy π(s) entropy average across
all agents converges towards zero and stabilizes, or when
the episode number exceeds 10000. In DAC implementation,
we set

∣∣I∗g ∣∣ = 4 (i.e three cooperating agents and self) and
|Og| = 3 for all experiments unless otherwise noted. In these
cases, the sample efficiency, o, as defined in section V-E is
≈ 20, meaning that the DAC implementation sees, on average,
5% of the SA. In general, training DAC takes in the order of
3-5 times the number of episodes required by SAC (≈ 1500
vs ≈ 4500− 7500). We use two system model orientation
configurations. The first sets up a cell beam orientation, with
center and opposing beams where cell edge interference will
be high, as illustrated in Fig. 1. The second generates a
random, seed-based, network configuration with ad hoc cell
locations and beam orientations. For both configurations, we
apply the following static system model settings: |C| = 3,
|B| = 9, |U| = 27, W = 30dBm and system dimensions
z = 1km2. Learning rate was set to α = 1.5× 10−5 and is a
critical success parameter, while γ is not. We use one of four
user distribution models for the duration of each experiment:
D-1) stationary user (UE) placement around cell edges for
experiment duration; D-2) cell edge placement according to a
normal distribution, and new user placement generated each
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Fig. 2. Experiment set 1: MT, stationary UE pattern, RB = 6

episode (see Fig. 1 for visualization); D-3) hot-spot user mo-
bility at cell and beam intersections, and new user placement
generated each episode (see Fig. 1-inset); D-4) uniformly
random user placement each episode.

A. Experiment Set 1: Stationary Users

Experiment set 1 uses a stationary cell edge UE distribution
(D-1). Fig. 2 shows the MT target result with similar SAC
and DAC SSE gains, at 19% and 35% respectively, against
RUSE-1 and RUSE-R baselines. Fairness is similar for SAC
and DAC at ≈ 0.34, while fairness for both SAC and DAC
binomial random schedules (SAC-RUSE and DAC-RUSE,
respectively) is slightly higher as a random schedule will,
on average, expose more users to the scheduler. Of note is
that both RL algorithms achieve significantly better SSE at
much lower Ruse (≈ 0.78) compared to RUSE-1. Fig. 2-
inset shows the importance of selecting a sufficient number
of cooperating agents |I∗g |, with four being optimal in this
case. Below three DAC performs worse than all baselines, with
|I∗g | = 1 equivalent to an independent AC algorithm (IL with
no reward sharing). This clearly demonstrates the importance
of our partial reward sharing approach.

B. Experiment Set 2: MT Cell Edge Mobility

Experiment 2 uses MT target and an aggressive mobility model
according to D-2 and R = 15, for each B. Fig. 3 shows
SAC and DAC results to be comparable, with a very modest
decrease in DAC SSE for both baselines. Fig. 4 shows the
result of down-sampling experiment 2, according to alg. 2 and
section V-D, with rates 2 and 5 (DS 2 and DS 5, respectively).
This demonstrates the potential to reduce the partial reward
sample volumes between agents with a factor of 2 and 5, while
trading SSE efficiency and training time (episodes), which for
this experiment was: DS 0 ≈ 5200; DS 2 ≈ 8500; DS 5
terminated at 10000.

C. Experiment Set 3: PF Cell Edge Mobility

Experiment 3 uses a similar configuration to experiment 2 but
with a PF target. Fig. 5 shows SSE comparable (slightly lower
for DAC) gains for SAC and DAC using a fairness weight
w = 0.5, which tends towards moderate overall fairness. Ruse
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Fig. 3. Experiment set 2: MT, cell edge mobility, RB=15
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for DAC is slightly higher (≈ 0.89 vs ≈ 0.84) but fairness is
comparable at (≈ 0.68).

D. Experiment Set 4: MT Random ad hoc Configurations

Experiment 4 uses a random, seed-based, network configu-
ration with ad hoc cell locations and beam orientations. New
users are randomly placed each episode according to model D-
4. Fig. 6 shows average utilization metrics across 10 randomly
generated ad hoc configurations. DAC-1 sets

∣∣I∗g ∣∣ = 4 and
|Og| = 3 and underperforms SAC by an unacceptable margin.
DAC-2 increases cooperating agents and number of sample
reporting devices to

∣∣I∗g ∣∣ = 5 and |Og| = 5, respectively. As
a result sample efficiency, o, is reduced (≈ 20 for DAC-1 and
≈ 12 for DAC-2) but SSE % gain is considerably increased.
DAC-2 Ruse is slightly higher compared to SAC (≈ 0.69 vs
≈ 0.64), but we consider this an acceptable compromise given
the very favourable implementation characteristics of DAC.

VII. CONCLUSION

Self-learning methods, such as reinforcement learning, show
vast potential as core enabling techniques in automating and
optimizing the operation of complex systems such as LTE and
5G. To be widely applicable in these systems, however, it
must be possible to deploy the methods in resource-limited
and highly distributed settings. Other characteristics such as
the ability to continuously learn while in operation, and
sample efficiency while observing and distributing data are
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also essential. The distributed multi-agent actor-critic (DAC)
using partial-reward sharing demonstrated in this work meets
these criteria. We show that our multi-agent approach performs
on par with a single-agent equivalent in many cases and to
within a few percentage points (2-5%), on average, in many
challenging ad hoc cases. While we strongly believe DAC is
suitable for use in many real-world multi-agent environments
but acknowledge there are currently some design limitations
that need to be addressed in future work. One important
enhancement is the incorporation of agents using diverse
reward functions. Currently DAC can only successfully operate
in environments where the same reward function is used by
all cooperating agents.
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