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Abstract—Anomaly detection is the key to Quality of Service
(QoS) in many modern systems. Logs, which record the run-
time information of system, are widely used for anomaly detec-
tion. The security of the log-based anomaly detection has not
been well investigated. In this paper, we conduct an empirical
study on black-box attacks on log-based anomaly detection.
We investigate eight different methods on log attacking and
compare their performance on various log parsing methods and
log anomaly detection models. We propose a method to evaluate
the imperceptibility of log attacking methods. In our experiments,
we evaluate the performance on the attack methods on two
real log datasets. The results of our experiments show that
LogBug outperforms the others in almost all situations. We also
compare the imperceptibility of various attack methods and find a
trade-off between performance and imperceptibility, where better
attack performance means worse imperceptibility. To the best of
our knowledge, this is the first work to investigate and compare
the attack models on log-based anomaly detection.

I. INTRODUCTION

Anomaly detection has been a critical task in the develop-

ment of a reliable computer system. A good anomaly detection

model can prevent high damage caused by anomalies, which

is important for service management and system maintenance.

In an operating system or other software system, logs are

commonly used to record significant events and system status.

System logs are one of the most important data sources

for anomaly detection and system monitoring because they

contain notable events and run-time status.

Log-based anomaly detection has been widely studied in

previous research [1], [2]. Anomaly detection models usually

take parsed logs as input and regard anomaly detection as

a binary classification problem. Previous work has studied

anomaly detection from different perspectives. Some studies

aim at improving anomaly detection performance by employ-

ing novel machine learning or deep learning models [2], [3].

The goal of DeepLog [4] is to explore how to build an

anomaly detection model from unlabeled data. LogRobust [1]

is proposed to improve the robustness of anomaly detection

models. However, the security of the log-based anomaly

detection has not been well investigated yet. Some minor

modifications to a part of the logs could change the semantics

of raw log data and even completely deviate the returned

results (e.g., misclassifying the anomalies, errors and failures

of the systems). LogBug [5] is the first study to investigate log-

related black-box attacks. It developed a real-time black-box

attack approach to reduce the accuracy of log parser. However,

it focuses solely on how to attack log parsers, ignoring the

impact of log-based anomaly detection algorithms. Anomaly

detection is a more practical task compared to log parsing, and

it may be employed in real-world applications directly [1], [2].

In this work, we conduct a systematic review on the impact of

various black-box attacks against log-based anomaly detection

methods.

In this paper, we investigate eight different log attack

methods. These log attack methods can be classified into three

categories: word transformation, sequence transformation and

LogBug. Word transformation and sequence transformation

are inspired by text-related attacks [6]. LogBug is an adver-

sarial logs generation method, proposed in [5]. We compare

the performance of those attack methods on three log parsing

approaches and five log-based anomaly detection models. We

also provide a metric to measure how imperceptible log attack

methods are.

In our experiments, we evaluated the performance of the

attack methods on real log datasets including HDFS and

Openstack. Our experimental results demonstrate that prefix

transformation of LogBug achieves the best performance in

different settings. We also evaluate the imperceptibility of dif-

ferent attack methods and find that better attack performance

results in worse imperceptibility.

Our work provides a pipeline for generating a variety of

log-related black-box attack methods that can be used to test

the robustness of anomaly detection models. Furthermore,

attacked log data can be used as an adversarial training data set

to help improve anomaly detection models in the future [6].

The key contributions of this paper can be summarized as

follows:

• This is the first work of the same kind that comprehen-

sively evaluates the performance of attack models against

log parsing and anomaly detection algorithms.

• We propose a metric to evaluate the imperceptibility of

log attack methods.

• We provide a pipeline to evaluate the robustness of

anomaly detection models.
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The rest of the paper is organized as follows. We introduce

the background of our work in Section II. The architecture

design and attack methods are described in Section III. Sec-

tion IV describes the experimental settings, and metrics to

evaluate the performance of attack methods. We present our

experiment results in Section V. Related work is introduced

in Section VI. Finally, in Section VII, we conclude our work

and state possible future work.

II. BACKGROUND

In this section, we will briefly introduce three log parsing

and the log-based anomaly detection models that we will use

in our evaluation.

A. Log Parsing

Modern systems often generate a large volume of logs to

record run-time status. These logs are typically unstructured

and free-textual, which need to be properly parsed before they

are used for anomaly detection [7]. Log parsing is the process

of converting unstructured messages into structured formats

that include timestamps, log levels, templates, and parameters.

Many existing studies focus on log parsing [3], [8]–[13].

In this work, we select three common log parsing methods to

evaluate the effectiveness of attacking methods. Most specif-

ically, Spell [11] employs the longest common sub-sequence

algorithm to parse logs in a streaming manner. Drain [12]

applies a fixed-depth tree structure to parse log messages

and extracts common templates. Paddy [13], an information

retrieval based log parsing method, which uses a dynamic

dictionary structure to speed up log parsing. Among these

three methods, Paddy achieves the best performance compared

to many other log parser methods [13]. These three methods

are all online parsing methods and they do not require all log

data to be available before parsing.

B. Log-based Anomaly Detection

Since system logs record noteworthy events and run-time

status, they are one of the most important data sources for

anomaly detection [2].

Existing log-based anomaly detection methods can be

broadly classified into two categories based on the type of

detection model: machine learning based and deep learning

based. Statistical machine learning models (such as support

vector machine and clustering) are used in machine learning-

based methods to detect anomalies. These methods first extract

log events from parsed logs and then convert log events into

indexes feature spaces. For example, we assume that there are

five types of log events in a corpus. One log template sequence

is [E1, E2, E5, E2]. This sequence can be converted into one-

hot vector [1, 2, 0, 0, 1] as a feature vector. These vectors are

used to train machine learning based detection model.

Deep learning models take a log stream as a natural

language sequence that can take advantage of the semantic

information in logs. For example, DeepLog [4] employs a

stacked long short-term memory (LSTM) network [14] to

encode log templates and then use another LSTM module to

predict the next log. According to previous studies [1], [2], [4],

anomaly detection methods based on deep learning outperform

statistical machine learning models.

To investigate the performance of log attacks for different

detection methods, we use three statistical machine learning

models and two deep learning-based models in this paper.

III. LOG ATTACKS

In this section, we first give an overview of log attacking,

then introduce three log attacking methods, respectively.

A. Overview

We first give the problem definition of log attacks. We

assume that X denotes system logs. A log parser can be

defined as converter F : X −→ Y , where Y presents the set of

log event templates. Log-based anomaly detection models take

log templates Y and predict whether it is anomaly, which can

be defined as G : Y −→ Z . For a log sequence x ∈ X , anomaly

detection model can predict correct label z = G(F(x)), where

z ∈ Z . A log attacker possibly modifies a log sequence x as

x̂, which deviates the anomaly detection model to generate

a wrong label ẑ = G(F(x̂)), where z �= ẑ. The deviated

accuracy of log-based anomaly detection model represents the

effectiveness of log attacks and the similarity of x and x̂ means

the imperceptibility of attacks. We will introduce the details

of evaluation methods in our experiment section.

The framework of log attacks is shown in Figure 1. Log-

based anomaly detection systems first collect and save raw

logs. We assume that anomaly detection systems are trained

with non-attacked logs. A log attacker enters some sample logs

and modifies some input logs when launching a log attack.

The modified logs will perturb the log parsing methods (e.g.,

Spell [11]) and produce some wrong log templates. Anomaly

detection models (e.g., SVM [15]) take the log templates

containing some incorrect information as inputs. Finally, log

attacks aim to reduce the precision and recall of anomaly

detection model.

Log attacks can be classified into three categories: word

transformation, sequence transformation and LogBug [5].

Word transformation modifies tokens in raw logs, such as

randomly swapping some words in one log. Sequence trans-

formation is to modify raw logs at sequence level. Log-based

anomaly detection models usually use a sequence of logs as

input and sequence-level information is also important for

anomaly detection [2], [16]. Sequence transformation shuffles

a sub-sequence in log sequence or randomly select an log

event and repeat it several times in a log sequence. Sequence

transformation does not modify the content of raw logs, so this

method will not affect the result of log parsing. LogBug is an

adversarial logs generation method, proposed in [5]. LogBug

modifies the input logs using two different transformation

methods: keyword and/or prefix transformation.
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1. blockMap updated: 10.250.14.224:50010 is 
added to blk_-1608999687919862906 size 
91178

2. Receiving block blk_7503483334202473044 
src: /10.251.215.16:55695 dest: 
/10.251.215.16:50010

3. Received block blk_-1608999687919862906 
src: /10.251.215.16:52002 dest: 
/10.251.215.16:50010 of size 91178

4. Served block blk_-1608999687919862906 to 
/10.251.127.243

Event templates:
1. blockMap updated: <*> is 

added to <*> size <*>
2. Received block <*> src: 

/<*> dest: /<*> of size 
<*>

Log Parsing methods:
Spell, Drain, Paddy, etc.

Machine learning based 
methods:
• SVM
• Logistic Regression
• Logclustering
Deep learning based
methods:
• LSTM

Log Parsing Anomaly Detection

Word 
transformation

Sequence 
transformation

LogBug

Log Collection Log Attacker

Fig. 1. Overview of black-box attacks to log-based anomaly detection.

B. Word Transformation

As introduced in [16], system logs are semi-structured texts

“print”-ed by certain procedures of system and a log stream

can be regarded as a natural language sequence. As a result,

in a log-related black-box attack, text attack methods can be

used.

TABLE I
WORD-LEVEL LOG ATTACK.

Original log:
Received block blk a of size 67108864 from block blk b

Swap in log:
Received block blk a of from 67108864 size block blk b

Drop in log:
Received block blk a of size 67108864 from block blk b
Grammar error in log:
Reived block blk a of size 67108864 from block blk cde

We implement three common word-level attack methods in

the word transformation part: swap, drop and grammar error.

As illustrated in Table I, the original log is Received block
blk a of size 67108864 from block blk b, which is from HDFS

log dataset. Swap in log is to randomly swap two tokens in

a raw log line. For example, we swap the token from and

size in the original log. Drop in log is to randomly remove

a few tokens from the original log message. In this case, we

remove the token block and blk b. Grammar error in log is

to randomly select some tokens and inject spelling mistakes

into them by removing or adding some content. As shown in

Table I, we replace the token Received with Reived and blk b
with blk cde.

Word transformation is a token-level attack on raw logs that

can have a direct impact on log parsing results. For example,

the original log in Table I can be parsed as a template Received
block * of size * from block *. If we use the drop method,

the template would change to Received * from block. As a

result, word transformation may produce a new parsed log

or an unknown parsed log that is fed into anomaly detection

models, causing the detection models’ results to deviate or be

misclassified.

C. Sequence Transformation

Log data is considered as natural time series data or natural

language sequence. A sequence of logs is used as input in

many log-based anomaly detection models. The importance

of sequence-level information in anomaly detection has been

demonstrated [2], [4]. Inspired by [2], who proposed a method

to simulate unstable log sequences, we design three sequence-

level log attack methods, namely deletion, insertion, and

shuffle.

TABLE II
SEQUENCE-LEVEL LOG ATTACK

Original log sequence:
Log 1 −→ Log 2 −→ Log 3 −→ Log 4 −→ Log 5

Deletion in sequence:
Log 1 −→ Log 2 −→ Log 3 −→ Log 4 −→ Log 5

Shuffle in sequence:
Log 1 −→ Log 4 −→ Log 2 −→ Log 3 −→ Log 5

Insertion in sequence:
Log 1 −→ Log 2 −→ Log 3 −→ Log 3 −→ Log 4 −→ Log 5

As shown in Table II, the original log sequence is [Log
1, Log 2, Log 3, Log 4, Log 5]. Deletion in sequence is to

randomly remove one log from the original log sequences. For

example, delete Log 3 to get the deviated log sequence. Shuffle

in sequence is to shuffle a sub-sequence in log sequence. For

example, we change [Log 2, Log 3, Log 4] to [Log 4, Log 2,
Log 3]. Insertion in sequence means that we randomly select

a log event and repeat it several times in a log sequence.

Since sequence transformation does not modify the content

of raw logs, this method will not affect the result of log

parsing. Sequence transformation, on the other hand, affects

sequence-level information and results in unstable log data [2].

D. LogBug

LogBug can universally perturb different system logs with-

out the knowledge of log parser [5]. LogBug first denotes

a function τ(x) to evaluate the risk degree of each log x.

Assume that a log x has a risk degree, indicating how critical

the log x is to the system. LogBug aims at reducing τ(x) to

a lower risk degree by deviating the log x. To increase the
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stealthiness of the attack, it will modify the current log x to x̂
by minimizing the Euclidean distance ||v(x) − v(x̂)||, where

v(x) is the TF-IDF vector of x.

As illustrated in [5], LogBug modifies the input logs using

two different transformation methods: keyword and/or prefix

transformation. Keyword transformation generates candidate

adversarial logs by recursively adding, removing or replacing

the keywords in x. It’s similar to the word transformation,

but the goal is to reduce the degree of risk and minimize

the distance. Because of the objective limitation, keyword

transformation in LogBug has less randomness than word

transformation approaches.

Prefix transformation performs more efficient attack with

slightly more modifications. It modifies the prefix of the

logs to generate the adversarial logs with low-risk event

templates. First, the attacker uses their previously collected

event templates as a database, prefix transformation locates

and/or replace the prefixes by using the database. Prefix

transformation, however, may diverge the log contents more

than keyword transformation if the prefix tree entries are very

different.

IV. EXPERIMENT SETTING

A. Datasets

We conduct our experiments on two real log datasets: the

HDFS dataset [17] and the OpenStack dataset [4]. The detailed

information on the two datasets are described as follows:

(1) HDFS: The HDFS dataset is collected through running

Hadoop-based jobs on more than two hundred Amazon’s EC2

nodes. It consists of 11,175,629 logs. Developers manually

labeled anomalies through handcrafted rules. Each HDFS log

contains a unique block ID for each block operation. We

use block ID as identifier to build log sequences. There are

575,061 blocks of logs in the dataset, among which 16,838

blocks were labeled as anomalous.

(2) OpenStack: OpenStack dataset is generated on Cloud-

Lab, which is a cloud operating system including large pools

of computer, storage, and networking resources. It contains

70,746 INFO level logs and three types of anomalies. Open-

Stack data is grouped into different sessions by instance ID.

There are 503 instances labeled as anomalous.

In the following experiments, we leverage the front 80%

(according to the timestamps of logs) as the training data, and

the remaining 20% as the testing data. In our log attacking

experiments, we assume that log-based anomaly detection

models are trained on non-attacked data. As a result, we train

our anomaly detection models using non-attacked training data

and then test the dataset using various log attacking methods

before evaluating these attack methods. Moreover, because the

above datasets were manually labeled, we take these labels as

the ground truth for evaluation.

B. Evaluation Metrics

We evaluate log attacks from two perspectives: effectiveness

of attacks and imperceptibility of attacks.

1) Reduced F1-score: We use reduced F1-score to evaluate

the effectiveness of log attacks. Anomaly detection is a binary

classification task, where F1-score is an important metric to

evaluate detection models. F1-score is the harmonic average

of Precision and Recall. We use F1-score to stands for the

performance of anomaly detection model. Therefore, reduced

F1-score is used to evaluate the effectiveness of log attacks.

2) Imperceptibility: Log data, unlike image data or general

text data, is a type of time series data. The log attacker’s

imperceptibility includes not only the differences at the single

log message level, but also the changes at the log sequence

level.

We use Levenshtein edit distance [18] to evaluate the

dissimilarity between the original log and the attacked log

from both the single log message level and the log sequence

level. Edit distance is a metric to quantify the dissimilarity

between two strings by counting the minimum number of

operations required to transform one string into the other.

We compute imperceptibility from both single log message

level and log sequence level. For example, the original log

sequence is S1 and the attacked log sequence is S2, where

S1 = {l1, l2, ..., ln} and S2 = {l′1, l′2, ..., l′n}. The impercepti-

bility of S1 and S2 is computed as follows:

Imperceptibility =
1

2
(
1

n

n∑
k=1

Dis(lk, l
′
k)+Dis(S1, S2)) (1)

where Dis represents the Levenshtein edit distance. The

minimum value of imperceptibility is 0 and its maximum value

is 1. Smaller imperceptibility values mean that the attacked

logs are more similar to original logs and harder to detect.

In order to normalize the imperceptibility metric into 0-1, we

add 1/2 as weight.

C. Implementation

We investigate three log parsing methods and five anomaly

detection models including three machine learning based mod-

els and two deep learning based models. These log parsing

methods are briefly described as follows:

• Spell [11]: Spell employs the longest common sub-

sequence algorithm to parse logs in a streaming manner.

• Drain [12]: Drain applies a fixed-depth tree structure to

parse log messages and extracts common templates.

• Paddy [13]: Paddy is an information retrieval based log

parsing method, which designs a dynamic dictionary

structure to improve the performance of log parsing.

The anomaly detection methods used in this paper are listed as

follows, where LogCluster, SVM and LR are machine learning

based models and DeepLog and LogRobust belong to deep

learning based models.

• LogCluster (LC) [15]: LogCluster takes anomaly detec-

tion as a clustering problem. It employs a knowledge

base to reduce redundancy by previously examining log

sequences.
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TABLE III
EVALUATION ON HDFS DATA SET. WT MEANS WORD TRANSFORMATION,

ST MEANS SEQUENCE TRANSFORMATION, GE PRESENTS GRAMMAR

ERROR.

LC SVM LR DL LogR Ave.

Ori. F1 0.91 0.95 0.78 0.96 0.97 -

WT
Wrap 0.84 0.89 0.65 0.89 0.95 0.07
Drop 0.90 0.94 0.71 0.91 0.96 0.03
GE 0.85 0.88 0.68 0.86 0.95 0.07

ST
Delete 0.88 0.93 0.74 0.91 0.96 0.03
Shuffle 0.91 0.95 0.78 0.91 0.93 0.018
Insert 0.87 0.93 0.73 0.93 0.95 0.032

LogBug
Keyword 0.78 0.74 0.63 0.91 0.93 0.116
Prefix 0.72 0.69 0.62 0.86 0.89 0.158

• SVM [7]: Support vector machine (SVM) is a classifi-

cation algorithm, which first converts log sequences to

count vectors and then learns a set of support vectors to

detect outlier.

• LR [19]: Logistic regression (LR) is similar to SVM [7].

It also uses count vectors as input and then applies LR

as its supervised learning algorithm.

• DeepLog (DL) [4]: DeepLog is a deep neural network

model using LSTM to model a system log as a natural

language sequence.

• LogRobust (LogR) [1]: LogRobust extracts semantic in-

formation of log events and represents them as semantic

vectors. It utilizes an attention-based Bi-LSTM model to

detect anomalous log sequences.

For word transformation and sequence transformation at-

tacks, we randomly select 5% log of the total test data to

attack. We wrap or drop words in log record only once to

make those operations be compared fairly. We utilize LogBug

to create modified test data in which all the log lines with

level ‘WARN’ are deviated. The modified log lines account

for only 6% of the total test data.

V. RESULTS

A. Attacks to Different Detection Models

In this part, we evaluate the performance of the eight types

of black-box attacks on different anomaly detection methods

on the HDFS and Openstack log data, where we use Drain [12]

as our log parser.

Table III shows the performance of different log attack

methods over the HDFS data set. The first row is the original

F1-scores and the others are the F1-scores of attacked models.

We can see that the original F1-scores are very high (i.e., more

than 90%) for all five anomaly detection methods on HDFS log

dataset. Compared to the original results, prefix transformation

of LogBug can drastically reduce by 19% for LogCluster and

26% for SVM. In an average setting, prefix transformation can

reduce the F1-scores of different log anomaly detection models

by 15.8% points. The results confirm that black-box attacks

can degrade the performance of anomaly detection models

significantly.

TABLE IV
EVALUATION ON OPENSTACK DATA SET. WT MEANS WORD

TRANSFORMATION, ST MEANS SEQUENCE TRANSFORMATION, GE
PRESENTS GRAMMAR ERROR.

LC SVM LR DL LogR Ave.

Ori. F1 0.42 0.64 0.62 0.95 0.82 -

WT
Wrap 0.38 0.57 0.55 0.87 0.74 0.068
Drop 0.41 0.61 0.57 0.89 0.79 0.036
GE 0.38 0.56 0.53 0.83 0.75 0.08

ST
Delete 0.40 0.61 0.58 0.92 0.79 0.03
Shuffle 0.42 0.64 0.62 0.91 0.77 0.018
Insert 0.39 0.61 0.57 0.91 0.79 0.036

LogBug
Keyword 0.38 0.49 0.57 0.87 0.77 0.074
Prefix 0.34 0.44 0.48 0.82 0.72 0.13

Furthermore, the reduced F1-scores of all attack methods

are not the same. Prefix transformation of LogBug achieves

the highest reduction on all attack models and keyword

transformation of LogBug also performs better than word

transformation and sequence transformation. It is because that

word transformation and sequence transformation randomly

select the log of the test data to attack. On contract, LogBug

attacks log lines with level ‘WARN’. This finding shows that

the ‘WARN’ level log lines are more important for anomaly

detection. We also observe that sequence transformation is the

weakest attack type. The first reason is that LogCluster, SVM

and LR models use count vectors as their features and these

features are order independent. Therefore, shuffling has no

impact on the performance of these models. The second reason

is that word transformation or LogBug is to modify raw logs

at word level and they both affect the result of log parsing and

generate new log templates. Sequence transformation does not

modify the content of raw logs and only affects the sequence-

level information. The results demonstrate that anomaly de-

tection models rely more on word-level information than

sequence-level information.

We also conducted our experiments on the Openstack data

set and the results are shown in Table IV. Similar to the

Table III, the last row is the original F1-scores and others are

the reduced F1-scores. We can see that prefix transformation

of LogBug has the highest impact on F1-score reduction on

all detection models. It also implies that ‘WARN’ level log is

important for Openstack dataset. How to find vulnerable logs

to attack is an interesting research direction in the future.

Some additional insights can be derived from word transfor-

mation attack. Wrap and GrammarError performs better than

drop in log since drop in log may remove some unimportant

tokens from log and does not impact the result of log parsing.

On the Openstack dataset, the sequence transformation is also

the weakest attack type compared to word transformation and

LogBug, which confirms that word-level information is more

important than sequence-level in Openstack dataset.

B. Attacks to Different Log Parsers

In this section, we compare the performance of black-

box attacks to different log parser methods. We conduct our
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TABLE V
EVALUATION ON HDFS DATA SET WITH DIFFERENT LOG PARSERS.

Spell Drain Paddy Aver.

Original F1 0.90 0.97 0.95 -

Word Trans.
Wrap 0.85 0.95 0.94 0.03
Drop 0.89 0.96 0.95 0.01
GrammarError 0.83 0.95 0.93 0.04

LogBug
Keyword 0.81 0.93 0.92 0.05
Prefix 0.75 0.89 0.84 0.11

Average Drop 0.07 0.03 0.03 -

TABLE VI
IMPERCEPTIBILITY ON HDFS DATA SET. ATTACKER WITH SMALLER

IMPERCEPTIBILITY VALUE IS HARDER TO DETECT.

Word Transformation Sequence Transformation LogBug
Wrap Drop GE Delete Shufle Insert Keyword Prefix
0.32 0.25 0.27 0.14 0.19 0.11 0.37 0.41

experiments on the HDFS dataset and use LogRobust as

our anomaly detection model. Since sequence transformation

methods do not affect the result of log parsing, we only

compare word transformation and LogBug.

We can observe from Table V that prefix transformation of

LogBug achieves the highest F1-score reduction with different

log parsers and LogBug outperforms than word transforma-

tion. It also shows that prefix transformation of LogBug is the

most effective attack model on log-based anomaly detection

algorithms. Several additional insights can be learned from the

next-to-last row. The reduced F1-score of all the log parsers

are not the same since their algorithms would generate slightly

different results on the same deviated logs. We can find that

Spell is the most vulnerable to attack compared to Drain

or Paddy. It it because Spell uses the longest common sub-

sequence algorithm to parse logs and it cannot find a proper

sub-sequence in deviated logs. The result reveals that Drain

and Paddy are robust against log data attack.

C. Imperceptibility

In this section, we compare the imperceptibility of dif-

ferent log attack methods. As mentioned in Section IV-B2,

imperceptibility is an important evaluation metric for log

attackers. Imperceptibility means that the modified logs are

closer to the original logs and difficult to identify. Different

from image data or general text data, we propose a new method

to compute imperceptibility from both single log message level

and log sequence level. We only compute the imperceptibility

of attacked log sequences.

As shown in Table VI, we evaluate the imperceptibility of

different log attack methods. Smaller imperceptibility values

mean that attacked logs are more similar to original logs

and harder to detect. We can observe that insert of sequence

transformation method achieves the best imperceptibility over

these attack methods, it is because that sequence transfor-

mation methods do not modify the content of raw log and

only affect imperceptibility at the sequence level. Table VI

shows that deviated logs generated from LogBug have lower

similarity than other methods, which means that the LogBug

attack is easier to be detected. Some additional insights can be

derived from the relationship between the attack performance

and the imperceptibility. Better attack performance results

in worse imperceptibility, indicating a trade-off between the

effectiveness and the concealability.

VI. RELATED WORK

System logs can be used to record the runtime status or

events in almost all computer systems. There have been many

studies on log-based anomaly detection [4], [7], [20]–[22].

We have introduced the background of log-based anomaly

detection in Section II-B. The robustness of log-based anomaly

detection models is critical. We choose this problem not only

because it is challenging, but also because anomaly detection

models are widely used in many safety and security sensitive

applications, e.g., online computing platform [17] or cloud

service [4].

The first study to investigate log-related black-box attacks

is LogBug [5]. The authors developed a real-time black-box

attack approach for deviating log parser detection accuracy

by gently altering logs without knowing the log parser’s

learning model and settings. LogBug, on the other hand,

only considered how to attack log parsers and ignored the

influence of log-based anomaly detection models. Compared

to log parsing, anomaly detection is a more practical task

and it can be used in real-world scenarios directly [20], [21],

[23]. Therefore, our work systematically analyzes the impact

of different black-box attacks to various log-based anomaly

detection methods.

Recently existing automatic log anomaly detection ap-

proaches [16] regard a log stream as a natural language

sequence and leverage some natural language processing

methods to improve log anomaly detection. Therefore, the

intuitions and methods in text related attack methods can be

applied in log attack. Many algorithms can generate adversar-

ial texts to perturb the learning models [6]. [24] addressed

three attack types: dropping, adding, and swapping inter-

nal characters within words. [25] proposed a word deletion

method with greedy search. [26] introduced a word-level

attack method, which incorporates the semantic-based word

substitution method and particle swarm optimization-based

search algorithm. Text attack is not the focus of our work,

therefore we choose three common word-level attack methods

in our experiments. Referring to log structure’s features, we

propose a sequence-level log attack method, which will shuffle

a sub-sequence or randomly repeat a log event.

Black-box attacks not only help understand the vulnera-

bilities and security of log-based anomaly detection systems

but also can be used to generate adversarial data to improve

the performance of detection model [6]. In [1] and [2],

they introduced how to synthesize the unstable log sequences

data to evaluate the robustness of anomaly detection models.

More diversity log data can be generated as a result of our
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study, which can be used as training data to improve model

robustness.

VII. CONCLUSION

In this paper we take the first step to study black-box attacks

to log-based anomaly detection models. We investigate eight

different log attack methods including word-level transfor-

mation and sequence-level transformation. We compare the

performance of those attack methods on different log parsing

approaches and log-based anomaly detection models. Our

experimental results demonstrate that prefix transformation

of LogBug achieves the best performance in various settings

and sequence transformation is the weakest attack method.

We also propose a metric to evaluate the imperceptibility of

log attack methods. Our experiment demonstrates there is a

trade-off where better attack performance results in worse

imperceptibility.

One of the future directions of our work is to utilize the

attacked log data to train log parsers and log-based anomaly

detection models. This will be able to improve the robustness

of anomaly detection models and help models models better

defend against attacks.
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