
ReLI: Real-Time Lightweight
Byzantine Consensus in Low-Power IoT-Systems

Himanshu Goyal, Manish Kausik H, Sudipta Saha
School of Electrical Sciences, Indian Institute of Technology Bhubaneswar.

Email: {hg11, mkh10, sudipta}@iitbbs.ac.in

Abstract—IoT/WSN assisted smart-systems are making our
living easier and more comfortable in various aspects. However,
there is always a chance of malfunctioning in such massive
decentralized systems in crucial moments because of one or more
components of the system getting compromised. For instance,
monitoring systems installed to watch the status of a bridge
may unknowingly suppress the recent deterioration in the status
because of some compromised sensing devices. Byzantine fault
tolerance support is highly essential in combating the presence
of such smart devices with malicious intentions. However, ex-
isting solutions for consensus or data aggregation in IoT/WSN
systems either assume non-Byzantine node failures or use only
simulation/theoretical models to address the existence of Byzan-
tine nodes. Theoretically, a decentralized system can effectively
tolerate Byzantine characteristics of up to a certain fraction of
the nodes. However, to achieve even that, the nodes need to
interact extensively and share data with each other which makes
it challenging for such solutions to get practically realized and
produce outcomes in real-time, especially in resource-constrained
IoT systems. In this work, we adopt Synchronous-Transmission
based mechanisms and propose a framework ReLI to efficiently
achieve Byzantine consensus in low-power IoT systems. We show
that ReLI can operate up to 80% faster and consume up to 78%
lesser radio-on time compared to the traditional implementation
of the strategy in a publicly available IoT/WSN testbed containing
45 nodes.
Index Terms—Byzantine Fault Tolerance, Synchronous-
Transmission, Concurrent-Transmissions, Wireless Sensor
Networks, Internet of Things (IoT).

I. INTRODUCTION
Human civilization tends to depend more on the use of

smart systems. Technologies such as Internet-of-Things (IoT)
and Wireless Sensor Networks (WSN) play crucial roles in
building these smart systems. A smart system operate through
decentralized collaboration among a large number of indepen-
dent IoT devices. For instance, in an automated surveillance
system[1], the independent devices equipped with a camera
or microphone are installed at various places to cover the
area under surveillance and collaboratively monitor the area.
Similarly, many devices with appropriate sensing capabilities
are installed in a structure monitoring system [2], covering the
vital parts of the structure (e.g., a bridge or a building). The
status of the target structure is obtained through a collaborative
effort among these devices. Similar scenarios can be obtained
from other smart systems [3] such as smart-grid, intelligent-
transportation systems, industry-4.0, etc.

Unfortunately, any IoT device in any such smart system is
susceptible to various unexpected issues, e.g., software errors,
failures, or even various types of attacks. These issues can

significantly disturb the overall integrity of a smart-system and
may also result in false reporting while interacting with the
end-users-leading to catastrophic effects. For instance, while
monitoring a critical structure, a compromised IoT device may
wrongly report the status of a component. Similarly, in a flock
of UAVs with some mission, such issues may cause some of
the UAVs to deviate from the target, which in turn may lead
to an overall failure of the mission incurring a significant loss.

Fault-tolerant consensus protocols [4] play a vital role in
establishing the trustworthiness of a system despite node
failures. Such failures can be either non-Byzantine or Byzan-
tine. Consensus protocols to handle non-Byzantine failure
assume a weak failure model, e.g., simple fail-stop or node
crash. They are primarily used in systems within a controlled
environment, e.g., a data center, where only the authenticated
users operate them. In contrast, consensus protocols capable
of handling Byzantine failures [5], entail more comprehensive
failure models where nodes can be compromised and have
malicious intent behind participation. They are applicable for
both open and decentralized systems, e.g., BlockChain [6].

Unlike handling non-Byzantine failures, the challenges in
dealing with Byzantine failures are quite different and much
harder to address. The works [7, 8] show how to manage non-
Byzantine failures in low-power IoT-system efficiently just
by using a network-wide max finding operation where the
nodes do not need to share the actual data with each other.
However, in contrast, to manage Byzantine faults, the devices
do need to share the actual opinions/messages to come to a
conclusion that naturally involves multiple rounds of many-
to-many/all-to-all data-sharing among the nodes. This makes
the protocol quite complex and communication-intensive for
resource-constrained IoT/WSN systems.

RF transmissions under traditional Asynchronous-
Transmission (AT) based communication strategies are
primarily independent and uncoordinated. Due to the
broadcast-driven nature of the wireless medium, AT-based
communications, therefore, incur quite high chance of
collision among the packets transmitted by different nodes,
especially when data traffic goes higher. Complex applications
like many-to-many/all-to-all data-sharing, hence, drastically
degrade under AT with the increase in the number of source
nodes. In contrast, in many recent works Synchronous-
Transmission (ST) based strategies [9] have shown their
superiority over AT. In particular, under ST, the transmissions
of the packets from different nodes are explicitly time-

978-3-903176-51-5 © 2022 IFIP

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

275

aligned with each other. This helps the protocols to exploit
special physical layer phenomena called Capture-Effect (CE)/
Constructive-Interference (CI) to achieve highly reliable
end-to-end data-sharing consuming very low-energy in the
devices. In this work we adopt ST based communication
mechanisms to design a framework, referred to as ReLI, to
mitigate the Byzantine failures in low-power IoT-systems.

The primary contribution of the work is summarized below.
• We leverage ST-based communication mechanisms to

design an efficient framework ReLI to accomplish Byzan-
tine fault tolerance for resource-constrained low-power
IoT systems.

• Special design considerations are adopted to make the
strategy scalable and further optimize the overall comple-
tion time as well as energy consumption in the devices.

• ReLI has been implemented in Contiki operating system
for TelosB devices. It has been extensively tested in both
network simulator as well as publicly available IoT/WSN
testbeds.

The rest of the paper is organized as follows. The section
II provides a glance at the existing works to address non-
Byzantine and Byzantine fault-tolerant protocols and their
applicability in the context of low-power IoT systems. Section
III provides the necessary background regarding Byzantine
fault tolerance as well as the ST-based data-sharing strategies
used in this work. Section IV provides details of the design
and implementation of the proposed framework ReLI. Finally,
Section VI demonstrates an in-depth evaluation of ReLI in
network simulator and testbeds.

II. RELATED WORK
Non-Byzantine node failures have been considered in sev-

eral works [10]. Paxos [11] is one of the earliest and
most well-known non-Byzantine consensus protocols, which
is later expanded to the protocol Raft [10]. Both Raft and
Paxos have been extensively used in many permission-based
environments, e.g., Google’s globally distributed File Sys-
tem [12], BlockChain enabled Hyperledger Fabric, [13] etc.
Byzantine consensus is a significant component in the im-
plementation of BlockChain technology [4]. For instance,
BlockChain-assisted crypto-currency BitCoin [6] uses Proof-
of-work (PoW); PPCoin[14] uses Proof-of-Stake (PoS) to
mitigate the possibility of Byzantine node failures. However,
such solutions are computation intensive and it make them
unfeasible for IoT systems.

Efficient many-to-many interactions, data sharing, and con-
sensus in resource-constrained IoT/WSN systems have been
addressed in many works [9]. However, very few of these
works deal with the issue of fault tolerance. A recent work,
Wireless-Paxos [8], ports the protocol Paxos [11] to a low-
power IoT/WSN system. It achieves an in-network fault-
tolerant consensus solution by leveraging the aggregation
property of another protocol, Chaos [15]. However, it targets
only crash faults and cannot take care of Byzantine failures.
Some recent works [16, 17, 18] try to bring the BlockChain
service to IoT devices where the Byzantine fault-tolerant
consensus is carried out with the help from the cloud. Such

split architecture, although works, induces a significant delay
and potential issues under higher demand.

The work Practical Byzantine Fault Tolerant [19] (PBFT)
consensus demonstrates a substantially different approach. In
particular it shows how Byzantine fault tolerance can be
achieved through appropriate collaboration among the partic-
ipants instead of solely depending on specific issues such as
computation capabilities in the participating nodes (as done
by PoW, PoS). Gradually PBFT became quite popular. The
work [20] shows the application of PBFT in BlockChain-
based audit systems to solve multiple security concerns in
the consensus algorithms. The work [21] done at Renault
Automobile Corp. demonstrates the application of PBFT for
the smooth processing of insurance claims. PBFT has also
gained attention in industrial IoT [22] applications.

However, communication overhead has been one of the
significant challenges in realizing PBFT for real-world smart-
systems. There have been attempts to improve the performance
of the basic PBFT protocol. For instance, the work [19]
reduces the complexity from exponential [23] to polynomial.
A class of works [24, 25] has been done to make the protocol
suitable for IoT systems. For instance, Pengs et al. [26] pro-
pose a credit-based mechanism using reinforcement learning to
reduce the communication among the participants. The set of
works [27, 28] attempts to make PBFT scalable by adopting a
divide-and-conquer approach where the system is first divided
into multiple layers/groups and subsequently, the problem is
addressed separately in each of these groups. Finally, the group
leaders collaborate with each other to come to a conclusion.
However, these works only show a simulation or theoretical
validation of the concepts. In contrast, in the current work,
we take an endeavor to design a lightweight, low-latency, and
scalable realization of PBFT for real-IoT systems.

III. BACKGROUND
A class of existing solutions to mitigate the existence

of Byzantine nodes exploit the computational capability of
the participating nodes. However, a typical IoT/WSN device
mostly lacks enough processing capability to realize these
strategies. The approach shown in PBFT [19] demonstrates
how to achieve Byzantine Consensus with only inter-device
communication. Unfortunately, strict energy-constraint in the
tiny devices used in IoT/WSN systems heavily restricts their
communication ability. In addition, uncoordinated transmis-
sions in traditional Asynchronous-Transmission (AT) based
protocols in these systems waste a lot of throughput and energy
in the devices due to collisions among the packets, making it
even harder to meet the communication requirements to realize
PBFT.

Recently there have been quite a lot of developments in ST-
based strategies [9]. These works demonstrate high reliability
and low-latency communication in systems comprising a large
number of nodes. We leverage ST in designing our framework
ReLI to achieve PBFT in IoT/WSN. In the following, we first
briefly describe ST and the specific protocols used in this
work.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

276

COMMIT ReLI

PSBFT

PRE-
PREPARE PREPARE COMMIT

Multi-view consensusSingle view consensusLaunch

PRE-PREPARE PREPARE

Execute

No (a)

1
2 3

6

4

5

Yes

One-to-
all many-to-

many

many-to-
many

(b)

(c)
Consensus
acheived?

Fig. 1. (a) Flow diagram of a standard PBFT execution. Timing diagram of (b) Practical Synchronous Byzantine Fault Tolerant (PSBFT) and (c) ReLI.

A. ST-based protocols
Achieving tight time synchronization is the primary re-

quirement for ST. The pioneering work Glossy [29] shows
how to accomplish the same through lightweight software-
based strategy and hence gain the benefit of ST in resource-
constrained off-the-shelf IoT devices through a purely decen-
tralized setting. There has been immense development in this
field through many recent works [9]. In the current work, we
mainly use three distinct protocols, Glossy [29], MiniCast [30],
and Chaos [15], to serve our purpose. These are briefly
described below.

Glossy: Glossy[29] demonstrates how ST can be exploited
to achieve efficient one-to-all flooding over a large multi-hop
network setting. The protocol starts with a designated initiator
node transmitting the first packet, triggering the transmissions
from its first-hop neighbors. Unlike AT, all the first-hop nodes
simultaneously transmit their packets (having precisely the
same content), which results in physical layer CE in the
receiver radios of the second-hop nodes. The process continues
this way until the flood reaches the entire network.

Chaos: Data aggregation is typical in WSN/IoT [31].
Chaos[15] exploits ST to achieve fast network-wide data ag-
gregation. Unlike Glossy, it allows different nodes to transmit
different data at the same time slot. It has been shown that
specific data aggregations operations which do not depend on
the number of times a node can contribute, i.e., not-sensitive
to “double counting”, such as max, min, etc., can be very
efficiently computed by Chaos over an extensive decentralized
system. Chaos can also carry out network-wide sharing of
data from multiple source nodes. However, due to much larger
packet size, it takes much longer to converge.

MiniCast: Many-to-many/All-to-all data-sharing has been
an essential requirement in IoT/WSN systems. Glossy success-
fully conveys the data from one node to all other nodes in the
network. The work LWB naively [32] achieves many-to-many
sharing through sequential repetition of Glossy floods one-
by-one from all the source nodes. However, wide separation
among the floods makes LWB perform poorly with more nodes
and large areas. Conversely, Chaos achieves many-to-many
data sharing by allowing different nodes to share different data
at the same time slot and taking advantage of CE to achieve
all-to-all data sharing. However, the performance of data-
sharing in Chaos is poor than aggregation, especially when
the amount of data to be shared is large. The work MiniCast
[30] achieves compact execution of multiple floods originating
from different source nodes by minimizing the inter-flood gaps

with the help of a packet-level TDMA schedule. MiniCast has
been shown to outperform LWB and Chaos with a wide margin
for all-to-all-data sharing.

As shown in [9], there are quite a few other existing all-to-
all data sharing strategies. However, these works either extend
LWB or Chaos or are based on the concept of MiniCast.
These works mostly use multi-channel facilities or efficient
network-coding strategies to enhance the performance of the
base protocols. A prime part of the realization of PBFT in
IoT/WSN needs to deal with massive data-sharing among the
participating nodes. Therefore, in-principle any efficient data-
sharing strategy can work. However, use of these protocols
in raw mode will not bring the desired performance because
of massive requirements and scalability issues. MiniCast has
been used to serve the need in several recent works in different
domains, e.g., Electric-Vehicles [33], SmartGrid [34, 35],
Multi-Party-Computation [36]. There has been recent works to
show how MiniCast can be made more efficient and scalable
too [37, 38, 39]. To keep it simple and focus on these prime
targets, in this work, we exploit MiniCast, and Glossy to fulfill
the needs. We also use Chaos to support a special need in the
design, as detailed in Section IV.

B. PBFT
To resolve non-Byzantine failures, first, the query under

consideration is shared with all the nodes in the system, and
then replies are collected. Since the nodes are not supposed to
reply incorrectly, the reception of at least 50% of the system
participants would ensure a consensus. In contrast, under
Byzantine failures, a node forms agreement by discussing the
issue with the other nodes in the system. Specifically, in PBFT,
how many other nodes are replying with the same answer for
a particular query is considered as a crucial issue. Formally, a
quorum is defined as the minimum number of nodes to pass a
decision in an assembly. In PBFT, a node to achieve consensus
amidst various types of failures needs to reach a quorum.
The minimum number of nodes necessary to be present in
a system to enable every node to reach a quorum despite the
presence of at most f non-Byzantine failures is 2f + 1 [19].
Conversely, under non-Byzantine failures, for N number of
nodes, the quorum size is N

2 +1. Under Byzantine failures, in
contrast, quorum size is 2N

3 + 1 [40].
A node that requests for consensus is referred to as a client

node. The request from the client is conveyed to a designated
primary node which triggers the consensus process composed
of five phases, as depicted in Fig. 1(a). A simplified description

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

277

of these phases is given below.

1) LAUNCH: A client node (c) initiates the process by
sending a request message Req to the primary node.

2) PRE-PREPARE: The primary node broadcasts Req to
all the participating nodes.

3) PREPARE: All the nodes in the system validate the
correctness of the request in Req and broadcast a Prepare
message in the system conveying their opinion about
it. In this work we assume that the opinion shared by
the nodes follow a specific application dependent format
[41].

4) COMMIT: In this phase, every node first individually
decides whether it has reached quorum or not based on
the number of similar messages received in the previous
phase. If the number of alike messages is more than
2f +1, a node decides to go for commit otherwise, not.
In this phase also, the nodes share their decisions with
each other. We assume the data to be shared in this phase
to be binary (1 for YES and 0 for NO).

5) EXECUTE REPLY: After COMMIT, every node
checks how many nodes have achieved consensus. The
client considers its request Req to achieve consensus if
it receives f +1 similar opinions. Thus, if 2f +1 nodes
have reached quorum, a global consensus is assumed to
be achieved. However, when consensus is not achieved,
it goes to the VIEW-CHANGE phase.

6) VIEW-CHANGE: In PBFT, the three consecutive
phases PRE-PREPARE, PREPARE, and COMMIT to-
gether are considered to be a view formed under the
leadership of the current primary node. If a certain view
fails to result in consensus, a new primary node is
decided based on a globally defined rule. Next, the new
primary node starts the change of view and restarts the
process with the PRE-PREPARE phase. With f number
of traitors in the system, in the worst-case maximum
f + 1, view formations may be needed to achieve a
consensus.

In the following, we describe the design of ReLI. We assume
the sink/initiator node itself to play the role of a client as well
as the initial primary node.

IV. BASIC IDEA
The three phases employed by PBFT are pictorially ex-

plained in Fig. 1(a). In the PRE-PREPARE phase, the primary
node carries out a network-wide one-to-all sharing of the
query message while both the PREPARE and the COMMIT
phase execute a network-wide all-to-all interaction among the
nodes to exchange the opinion regarding the message, and
check how many nodes could reach the consensus, respec-
tively. All these phases thus involve an extensive number
of messages passing among the nodes. Moreover, possible
change of view may happen several times, which would bring
many repetitions of the three phases. ST-based data-sharing
protocols fundamentally try to optimize the communication
process by minimizing the packet collision and thus reducing
the use of the RF transceivers in the energy-constrained IoT

devices. However, to fulfill such heavy communication needs
to achieve Byzantine fault tolerance in IoT, even ST-based
protocols, if used in a very straightforward/naive way, may
quickly drain a considerable amount of energy in low-power
IoT/WSN devices.

Therefore, to optimize the performance, we make an in-
depth study of the Byzantine consensus process, especially
under ST, and come up with a set of observations as summa-
rized below.
A. All-to-all vs. many-to-many

Time and energy consumed in any phase in PBFT heavily
depend on the constraint that how many opinions a node must
acquire to proceed. In PREPARE and COMMIT phase of
PBFT every node needs to acquire enough alike messages
to reach quorum. From the definition of the quorum size for
Byzantine consensus, it can be observed that strict all-to-all
data-sharing may not always be necessary. Rather, it depends
on the actual number of traitors or faulty nodes. In a system
with N nodes, although PBFT can support max f traitors,
where N = 3f + 1, the actual number of traitors present
in the system in practice may be much lesser than f , say k
(k < f). In this situation, the necessary size of the quorum is
2k+1. Therefore, it’s enough to ensure that each node receives
at least 2k + 1 alike messages to reach quorum.

Note that for k traitors, the number of distinct mes-
sages/opinions that may differ from each other would be
maximum k. Thus, by the pigeonhole principle, it can be said
that a node would require to wait for messages from at max
3k+1 distinct nodes, which ensures at least 2k+1 messages
from the non-traitor nodes, and hence alike. For a random
distribution of k traitors, a node may need to wait for even
less as it may receive 2k + 1 alike messages much earlier.
Thus, knowledge regarding the number of traitors as well as
their distribution in the system can be exploited for easier
and faster convergence. We use this concept to simplify the
PREPARE phase further.

From a design point of view, a data-sharing mechanism
must provide enough control on the data-sharing process so
that system-wide execution can be done only until the desired
degree of coverage is achieved. In an ST based protocol,
there is a common parameter known as NTX which controls
the reliability of the process. Fundamentally it determines
how many times a node is supposed to repeat/forward the
packets from other nodes. In MiniCast it explicitly controls the
outreach of the floods originated from each source node. In this
work we appropriately tune the value of NTX to accomplish
the goal.
B. Restricted behavior of traitors under ST

Under traditional wired communication systems, unicast is
the default communication mode. A traitor node in unicast
gains enough scope to communicate differently to each of
its neighboring nodes as a response to a given query. In
a wireless medium, any communication happens by default
in broadcast mode. However, under AT, broadcasts are often
abstracted as unicast, which again can be exploited by the
traitors to create confusion. In contrast, ST explicitly uses a

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

278

1 2 3 4 5 6 7 8 9
0

20
40
60
80

100
Ne

tw
or

k
Co

ve
ra

ge

200x200
(a)

NTX−→
1 2 3 4 5 6 7 8 9

0
20
40
60
80

100

NTX−→

500x500
(b)

1 2 3 4 5 6 7 8 9
0

20
40
60
80

100

1000x1000
(c)

NTX−→
1 2 3 4 5 6 7

0
20
40
60
80

100

NTX

(d)

−→

10 nodes
30 nodes
50 nodes
70 nodes
FlockLab
DCube

Fig. 2. Percentage of data received by the nodes with the variation of NTX.

broadcast-driven communication framework to achieve a faster
spread of information. Under ST, the traitors, in order to avoid
quick detection and identification, hence, are kind of forced to
behave consistently to all of their neighbors. In addition, if a
traitor tries to share different data in consecutive or different
time-slots, it results in disturbances in any ST based process
that are easily visible. Thus, in turn, ST refrains a traitor from
changing the data while even forwarding. In conclusion, thus,
ST, in general, severely restricts the Byzantine capability of
a traitor. However, note that the traitors are still free to pass
wrong/imperfect opinions in their own packet/slot.

Based on these observations, we optimize the PBFT con-
sensus protocol and develop our proposed framework ReLI.

V. PROTOCOL DESIGN
The main design is discussed in the following section.

The PRE-PREPARE phase is designed using a customized
instance of Glossy. The query under consideration is first
disseminated by the initiator node (primary) to all the other
nodes in the system. Execution of Glossy, in general, happens
very fast over a large network setting. Subsequently, the
nodes start the PREPARE phase, where everyone shares its
opinion regarding the query with each other. An instance of
the protocol MiniCast [30] is used for this phase, as detailed
below.

PREPARE: This phase is supposed to use a round of
MiniCast based data-sharing among the nodes. A random
distribution of the traitors is assumed. The primary node first
makes an assessment of the approximate number of the traitors
in the system (say k). Based on k, it also derives the desired
value of NTX (see Section V-A for details) and shares the
same with the query packet (in PRE-PREPARE phase). In the
design of ReLI we tune the value of NTX appropriately so
that every node obtains enough opinions from its neighbors to
reach the quorum while the latency of the PREPARE phase
is minimized. The exact steps are detailed in the following
section. During PREPARE phase, every node keeps track of
how many alike messages are received.

COMMIT: In the COMMIT phase, it is enough to share a
single bit of information from each node indicating whether
the node could reach the quorum in the PREPARE phase. In
particular, a node sets a flag in case the variable nAlike goes
above 2k+ 1. Since no explicit data sharing is needed in this
phase, we use a customized version of the protocol Chaos to
serve the purpose. Chaos originally uses a single flag bit for
every node to track how many nodes have contributed to the
aggregation process. The execution stops when all the nodes
have contributed successfully. To serve our purpose, we add

one more flag bit for each node. It is set to ‘one’ in case
the corresponding node reaches the quorum. Thus, using just
two bits of contributions from each node allows the whole
COMMIT phase to run very fast and consume much less
energy even when the number of nodes is large.

VIEW-CHANGE or NTX-reassessment: At the end of
the COMMIT phase, every node in the network gets to know
how many nodes in the system have reached the consensus.
In case if the count goes higher or equal to 3k + 1, a global
consensus is assumed to be achieved. However, there can be
two distinct cases for consensus not getting reached. It may
be either due to a faulty primary node or due to insufficient
spread of information caused by limited execution of MiniCast
w.r.t the number of traitors in the system. Since exploring the
exact reason is not possible, at this stage, we first repeat the
PREPARE phase with the value of NTX one more than the
last used value (i.e., set NTX = NTX+1). We observe the
change in the COMMIT phase. If considerably more number
of nodes are found to be reaching quorum with the increased
NTX, it indicates a wrong assessment of the traitors in the
previous round. To rectify the same, we repeat the process
until a global consensus is reached. We save this new NTX
and use it next time onward. In case significant improvement
is not visible after increasing NTX by 1, the system goes for
VIEW-CHANGE, i.e., the primary node is changed as per a
globally pre-decided rule, and the same is repeated at max
k+1 number of times until consensus is reached.

Correct assessment of NTX is, thus, a very significant step
in the whole process. In the following, we detail this specific
issue.
A. Restricted data-sharing

During execution of MiniCast, transmissions happen in
chain of packets. The marker packets HD (Header) and TL
(Trailer) indicate the beginning and end of a chain. It starts
with the initiator node transmitting the data packet received
by the first-hop nodes. The chain transmitted by the first-hop
nodes triggers the transmission by the second-hop nodes and
so on. To optimize the data-sharing process in ReLI, NTX is
set to the minimum value that is enough for every node to
reach the quorum. Appropriate tuning of NTX brings a huge
difference in the performance as depicted in Section VI.

Local-coverage in MiniCast: When MiniCast runs with a
low NTX, every node is still supposed to successfully receive
a certain amount of data from its local neighborhood. To verify
this, we first study the behavior of MiniCast in Contiki network
simulator called Cooja and IoT/WSN testbeds, FlockLab [42]
and DCube [43]. Fig. 2 highlights the rise in the network cov-

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

279

TABLE I
ASSESSMENT OF NTX UNDER DIFFERENT EXPERIMENTAL SETTINGS.
Failure

percentage Simulation Testbeds
(%) 200X200 500X500 1000X1000 FlockLab DCube

0 2 2 3 2 2
33 3 3 4 3 3
66 3 4 5 3 5
100 4 5 7 6 7

0

500

1000

1500 200x200
(a)

La
te

nc
y(
m
s)

−→

500x500
(b)

−→

1000x1000
(c)

−→

0 33 66 100
0

550

1100

1650 200x200
(d)

Ra
di

o-
on

-ti
m

e(
m
s)

0 33 66 100

500x500
(e)

Failure % −→
0 33 66 100

1000x1000
(f)

PSBFT ReLI

Fig. 3. Latency and Radio-on-time in a 70-node simulation of PSBFT and
ReLI in over various network diameter.

erage with NTX for different network configurations. Based on
the number of nodes and the simulation area in Cooja, while
the value of NTX required to get 100% coverage is above
7, to achieve even upto 70% coverage the required value of
NTX is found to be quite lesser. Fig. 2 (a)-(c) show these
results. The same trend is visible in testbed networks of DCube
and FlockLab, as shown in Fig. 2 (d). It is also visible that
the exact relationship depends on the specific network setting.
Therefore, deciding the correct value of NTX surely improves
the protocol performance.
B. PBFT based on naive use of ST

To compare the performance of ReLI, we also design
another platform where the ST-based primitives are applied
in a straightforward way without any optimization. We refer
to this strategy as Practical Synchronous Byzantine Fault
Tolerant or PSBFT protocol. It uses one Glossy instance
for PRE-PREPARE and two consecutive MiniCast instances
for PREPARE and COMMIT phases. In all these MiniCast
instances, we set NTX as the maximum value necessary in
the target network. Moreover, Fig. 1(b) and Fig. 1(c) show
the timing diagram of PSBFT and ReLI, respectively.

VI. EVALUATION
We implement both PSBFT and ReLI in Contiki OS for

TelosB motes. We experiment with the implementations in
both Cooja as well as IoT/WSN testbeds DCube and FlockLab
composed of 45 and 24 TelosB motes, respectively. The
success of ReLI largely depends on the right assessment
and determination of NTX. Therefore, we first carry out a
detailed evaluation of the NTX-assessment, but due to space
limitation, we skip the detailing. Table I shows the final values
of NTX obtained from this study. These are used for further
experiments with ReLI.

0
250
500
750

1000 Latency(a)

(i) FlockLab
0

200
400
600
800

1000 Radio-on-time(b)

0 33 66 100
0

400
800

1200
1600 Latency(c)

Failure % −→ (ii) DCube

Ti
m

e
(m
s)
−→

0 33 66 100
0

400
800

1200
1600 Radio-on-time(d)

Failure % −→
PSBFT ReLI

Fig. 4. Latency and Radio-on-time in execution of PSBFT and ReLI in
FlockLab and DCube.

A. Metrics
To compare the performance of ReLI and PSBFT, we use

following two metrics.
Latency: It is the time taken for a process to achieve the

consensus.
Radio-on time: It is the total time necessary for a node to

keep its radio ON to complete the execution of a protocol. It
is used to understand the energy consumption in a device. The
metrics are calculated in each device. They are presented as
an average over all the devices and all the iterations.
B. Results

ReLI and PSBFT are compared under the presence of the
Byzantine traitors in different network configurations through
simulation as well as testbeds. The number of traitors is varied
from zero to the maximum number that can be supported by
the algorithm (i.e., one-third of the number of nodes). Overall,
in all cases ReLI is found to be performing much better than
PSBFT, even when there are many traitors in the system.

Fig. 3 shows comparison results through simulation of the
protocols in a 70-node network over different deployment
areas, namely, 200×200 m2, 500×500 m2, and 1000×1000
m2. ReLI is found to be showing maximum improvement
when the deployment area is the largest. In particular, it per-
forms on average 55% and up to 73% faster and consumes on
average 53% and up to 71% lesser radio-on time compared to
PSBFT for a wide variation in the number of traitors assumed
to be randomly distributed over the network. Intrinsically,
higher area of deployment of the same number of devices
increases the diameter of the network which in turn cause
MiniCast to take substantially more time to carry out all-to-
all communication in PSBFT. In contrast, ReLI leverages the
concept of local coverage in MiniCast and manages to acquire
the minimum necessary messages only from the surroundings
accomplishing the goal faster.

In Flocklab, ReLI is found to perform on average 51% and
up to 55% faster while consuming on average 48% and up
to 53% lesser radio-on time compared to PSBFT. Similarly,
in DCube, ReLI performs on average 68% and up to 80%
faster while consuming on average 66% and up to 78% lesser

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

280

radio-on time compared to PSBFT. Note that the number of
nodes in DCube is almost double compared to FlockLab. This
is one of the prime reasons behind PSBFT taking larger time
in DCube than FlockLab. To further understand the scenario,
we separately run neighbor discovery protocol in both the
tetsbeds separately and found that compared to FlockLab,
DCube is substantially denser with many stronger links among
the nodes. This demonstrates that even under a large network
setting, ReLI can successfully exploit the strong connectivity
links in the network to execute substantially faster than PSBFT.

VII. CONCLUSION
Increasing dependence on smart systems not only brings

ease to living but also introduces the possibility of unexpected
problems because of the presence of smart traitors in the
system. Under resource-constrained IoT-setting its quite chal-
lenging to resolve such issues in general. Existing consensus
mechanisms for IoT/WSN can manage only non-Byzantine
faults. Byzantine faults, in contrast, has been either shown
through theory/simulations or are designed in a way that is not
suitable for low-power IoT-systems. To the best of our knowl-
edge, the current work is the first attempt to design an efficient
framework for execution of Byzantine fault resilient consensus
efficiently and practically in the low-power IoT/WSN systems.
To achieve the goal, we leverage Synchronous-Transmission
based communication mechanism and propose strategies to
optimize the performance under practical settings. Clever use
of frequency allocation [44] or Start-of-frame delimiter [45]
based lightweight separation of the tasks can further improve
the performance of the proposed strategy which is one of the
future directions of the current work.

REFERENCES
[1] V. A. Memos, K. E. Psannis, Y. Ishibashi, B.-G. Kim, and B. Gupta,

“An efficient algorithm for media-based surveillance system (eamsus) in
iot smart city framework,” Future Generation Computer Systems.

[2] A. P. Plageras, K. E. Psannis, C. Stergiou, H. Wang, and B. Gupta,
“Efficient iot-based sensor big data collection–processing and analysis
in smart buildings,” Future Generation Computer Systems.

[3] V. C. Gungor, B. Lu, and G. P. Hancke, “Opportunities and challenges
of wireless sensor networks in smart grid,” IEEE Trans. Ind. Electron.

[4] L. S. Sankar, M. Sindhu, and M. Sethumadhavan, “Survey of consensus
protocols on blockchain applications,” in IEEE ICACCS, 2017.

[5] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Trans. Program. Lang. Syst., 1982.

[6] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.”
[7] B. Al Nahas, S. Duquennoy, and O. Landsiedel, “Network-wide con-

sensus utilizing the capture effect in low-power wireless networks,” in
ACM SenSys, 2017.

[8] V. Poirot, B. Al Nahas, and O. Landsiedel, “Paxos made wireless:
Consensus in the air,” in EWSN, 2019.

[9] M. Zimmerling, L. Mottola, and S. Santini, “Synchronous transmissions
in low-power wireless: A survey of communication protocols and
network services,” ACM Comput. Surv., 2020.

[10] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in USENIX, 2014.

[11] L. Lamport, “Paxos made simple,” ACM SIGACT News, 2001.
[12] J. C. Corbett, J. Dean, and E. et al., “Spanner: Google’s globally

distributed database,” ACM Trans. Comput. Syst., 2013.
[13] E. Androulaki, A. Barger, and B. et al., “Hyperledger fabric: A dis-

tributed operating system for permissioned blockchains,” in EuroSys,
2018.

[14] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,” 2012.

[15] O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: Versatile and
efficient all-to-all data sharing and in-network processing at scale,” in

ACM SenSys, 2013.
[16] E. Schiller, E. Esati, S. R. Niya, and B. Stiller, “Blockchain on msp430

with ieee 802.15.4,” in IEEE LCN, 2020.
[17] C. Profentzas, M. Almgren, and O. Landsiedel, “Iotlogblock: Recording

off-line transactions of low-power iot devices using a blockchain,” in
IEEE LCN, 2019.

[18] C. Profentzas, M. Almgren, and O. Landsiedel, “Tinyevm: Off-chain
smart contracts on low-power iot devices,” in IEEE ICDCS, 2020.

[19] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in OSDI,
1999 (M. I. Seltzer and P. J. Leach, eds.), USENIX Association, 1999.

[20] A. Ahmad, M. Saad, and A. Mohaisen, “Secure and transparent audit
logs with blockaudit,” J. Netw. Comput. Appl, 2019.

[21] L. Gerrits, C. N. Samuel, R. Kromes, F. Verdier, S. Glock, and
P. Guitton-Ouhamou, “Experimental scalability study of consortium
blockchains with bft consensus for iot automotive use case,” in ACM
SenSys, 2021.

[22] S. K. Dwivedi, P. Roy, C. Karda, S. Agrawal, and R. Amin, “Blockchain-
based internet of things and industrial iot: a comprehensive survey,”
Security and Communication Networks, 2021.

[23] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” Journal of the ACM (JACM), 1980.

[24] J. Chang and F. Liu, “A byzantine sensing network based on majority-
consensus data aggregation mechanism,” Sensors, 2021.

[25] Y. Meshcheryakov, A. Melman, O. Evsutin, V. Morozov, and Y. Kouch-
eryavy, “On performance of pbft blockchain consensus algorithm for
iot-applications with constrained devices,” IEEE Access, 2021.

[26] P. Chen, D. Han, T.-H. Weng, K.-C. Li, and A. Castiglione, “A novel
byzantine fault tolerance consensus for green iot with intelligence based
on reinforcement,” JISA, Elsevier, 2021.

[27] W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, and M. A. Imran, “A scalable
multi-layer pbft consensus for blockchain,” IEEE TPDS, 2020.

[28] L. Zhang and Q. Li, “Research on consensus efficiency based on
practical byzantine fault tolerance,” in IEEE ICMIC, 2018.

[29] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with glossy,” in ACM IPSN, 2011.

[30] S. Saha, O. Landsiedel, and M. C. Chan, “Efficient many-to-many data
sharing using synchronous transmission and tdma,” in IEEE DCOSS,
2017.

[31] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
an acquisitional query processing system for sensor networks,” ACM
TODS, 2005.

[32] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power
wireless bus,” in ACM SenSys, 2012.

[33] J. Debadarshini and S. Saha, “Efficient coordination among electrical
vehicles: An iot-assisted approach,” in IEEE INFOCOM, 2022.

[34] J.Debadarshini and S. Saha, “Collaborative load management in smart
home area network,” IEEE ICDCS 2022 [To appear].

[35] J. Debadarshini, S. Saha, and S. Samantaray, “Decentralized load
management in han: An iot-assisted approach,” IEEE SmartGridComm
2022 [To appear].

[36] H. Goyal and S. Saha, “Multi-party computation in iot for privacy-
preservation,” IEEE ICDCS 2022 [To appear].

[37] M. Tummala and S. Saha, “Concurrent transmission based data sharing
with run-time variation of tdma schedule,” in IEEE LCN, 2020.

[38] M. Tummala, M. Kausik H, and S. Saha, “Flexicast: A structure-adaptive
protocol for efficient data-sharing in iot,” IEEE CNSM 2022 [To appear].

[39] J. Debadarshini and S. Saha, “Divide, conquer and merge for internet-
of-things,” IEEE DCOSS 2022 [To appear].

[40] M. Van Steen and A. Tanenbaum, “Distributed systems principles and
paradigms,” Network, 2002.

[41] T. Distler, “Byzantine fault-tolerant state-machine replication from a
systems perspective,” ACM Comput. Surv., 2021.

[42] R. Trüb, R. Da Forno, L. Sigrist, L. Mühlebach, A. Biri, J. Beutel, and
L. Thiele, “FlockLab 2: Multi-Modal Testing and Validation for Wireless
IoT,” in CPS-IoTBench 2020.

[43] M. Schuß, C. A. Boano, M. Weber, and K. Römer, “A competition to
push the dependability of low-power wireless protocols to the edge,” in
EWSN, 2017.

[44] J. Debadarshini, C. Shekhar, and S. Saha, “Fine-grained frequencies
for simultaneous intra-group one-to-all dissemination,” in IEEE MASS,
2020.

[45] J. Debadarshini, S. Saha, O. Landsiedel, and M. Choon Chan, “Start of
frame delimiters (sfds) for simultaneous intra-group one-to-all dissemi-
nation,” in IEEE LCN, 2020.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

281

	35

