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Abstract—Flow monitoring allows to obtain an aggregated
network traffic view that can be leveraged for subsequent
analysis. Since network management tasks like flow-based traffic
classification or prediction benefit from broader data views, the
flow tracking scope used to export required traffic metadata
can be enlarged: First, coherent packet streams can not only be
monitored in a unidirectional but also bidirectional context that
combines interrelated forward and backward direction views.
Second, time-based subflow management for both contexts sepa-
rates observed packet streams into consecutive windows covering
a particular fraction to gain higher data granularity. To support
these diversified traffic views in combination with variable feature
sets for demand-driven data export serving different traffic
analysis tasks, flow tracking and export strategies are required
to operate in a dynamic manner. This paper proposes a flow
monitoring approach enabling to track the four aforementioned
scopes while adapting timeout-based data export operating on
programmable switches. A multi-level system architecture and
an adaptive protocol ensure flexible sharing and analysis of data
records. Evaluations show that exported data can be used to
improve analysis outcomes, whereby the considered data scope
affects achieved accuracy but also the monitoring overhead.

Index Terms—Flow Monitoring, Flow Tracking, Flow Export,
Traffic Analysis, Programmable Switches

I. INTRODUCTION

Network traffic in modern environments is subject to com-
plex patterns and conditions. This is due to ever growing
network architectures comprised of various sub-networks and
a constantly increasing number of interconnected systems.
While these run different platforms and a variety of network
services, experienced dynamics are high. For example, traffic
volumes fluctuate because the number of individual packet
streams having diversified properties and the amount of trans-
mitted data vary over time [1]. As a consequence, management
complexity w.r.t. traffic analysis is challenging.

Flow monitoring can be run to collect an aggregated data
basis serving as decision input for flow-based traffic analysis.
Since the available data view contained in each obtained
metadata record affects analysis outcomes, the tracking scope
for observed packet streams can be enlarged: First, streams be-
longing to the same network communication can be monitored
either in a unidirectional or bidirectional scope that consider
forward and backward direction contexts in an isolated or
combined manner. Second, consecutive windows of smaller
time scales can be maintained on uni- and bidirectional packet
streams, thus enabling various granularities for tracked data
features and their timely resolution. Due to enhanced data
views, these diversified scopes ensure accurate traffic analysis.

To support sophisticated management decisions in an open
or closed loop cycle, machine learning (ML) methods can as-
sist in establishing traffic classification or prediction systems.
While these can leverage the aforementioned flow scopes,
for example, flow level network intrusion detection strategies
are enabled to precisely differentiate between benign and
malicious traffic in order to enforce proper flow control [2].
Because required data scopes and feature sets vary for different
management tasks, monitoring approaches need to be adaptive.

Fostered by the paradigms Software-Defined Networking
(SDN) and Programming Protocol-independent Packet Proces-
sors (P4), switch architectures are currently evolving. Devices
equipped with a programmable data plane enable flexible
provisioning of network functions and, e.g., due to Linux-
based network operating systems (NOS), dynamic assistance
through locally running agent processes. In addition, tasks
that require a global network view or exceed local processing
capabilities can be assisted by entities located in centralized
SDN controllers. Since data plane, NOS and controller level
hold individual capabilities w.r.t. their available data view,
system resources and processing scalability, hybrid solutions
being deployed on multiple levels offer large practicability.

Programmable switches allow for fine-grained feature col-
lection while operating at packet level. As an example, times-
tamps can be determined with high precision to overcome
challenges like inaccurate computation of flow duration and
derived throughput due to improper timestamp resolution [3].
This ensures accurate data views that can, for example, be
used for precise flow-based traffic classification [2] or traffic
prediction estimating likely arising flow loads [1] [3].

This paper presents a flow monitoring approach entitled
FlowMoni holding the following main contributions:
• A multi-level architecture for flow data tracking, export and

collection allowing traffic analysis at a centralized SDN
controller and distributed switch level is proposed.

• Accordingly, an adaptive data export protocol supporting
four flow scopes with flexible feature sets is introduced.

• Differentiated data export w.r.t. multiple collectors com-
bined with in-network data preprocessing is enabled.

• The accuracy benefit of leveraging diversified data views
for flow-based traffic classification in the context of network
intrusion detection is exemplarily measured.

• The monitoring overhead w.r.t. processing time, export data
volume, latency impact and memory demand is estimated.

• The code base is publicly available to ensure reproducibility.
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II. RELATED WORK
[4] tracks network flows on programmable data planes

with P4 to share maintained data records with a collector.
Compared to [4], this paper extends flow tracking considering
four scopes: First, besides monitoring unidirectional packet
streams, interrelated bidirectional ones are tracked as com-
bined data view. Second, window-based subflow data scopes
of higher granularity are supported for both contexts.

[5] proposes a flow monitoring system that relies on
programmable data planes with P4 and aims at providing
insights on heavy hitter flows. As soon as a particular flow
reaches a first packet threshold, detailed monitoring is run and
in case the observed packet count exceeds another limit, data
collection is initiated by a controller using crawler packets.
In contrast, this paper considers timeout-based tracking and
export operation to enable a general flow-based traffic view
rather than focusing on heavy hitters. In addition, data tracking
and export is entirely run in-network at switch level, whereby
a NOS agent that runs monitoring in collaboration with a data
plane module pushes preprocessed data records to collectors.

[6] presents an approach for accurate flow data record
generation. At data plane level, a microflow generator tracks
data for observed packet streams at short timescales. At CPU
level, a microflow aggregator buffers and aggregates shared
microflow records to flow records that are afterwards sent to a
collector. Compared to [6], this paper runs data tracking and
corresponding record construction entirely in the data plane,
whereby a NOS agent supports data export management. Thus,
the cooperative behavior between data plane and CPU level is
the same as in [6] but with different motivation. In addition, the
concept of subdividing a packet stream is adopted by including
a subflow scope that respects a trade-off between increased
monitoring granularity and associated export complexity.

[7] introduces a strategy for flow level monitoring that
decouples data collection from feature statistics computation.
A cache with grouped packet vectors is operated within the
data plane. Entries contain a sequence of timestamp and
per-packet feature value tuples that describe the observed
trend for short timescales and are shared as data stream with
collector instances on external servers that run subsequent
feature computation and downstream analysis. In comparison
to [7], this paper focuses on the coherent tracking of per-flow
feature data for considered flow scopes instead of continuously
streaming per-packet data. Although this is related to a loss of
granularity, it reduces export complexity and volume to enable
in-network traffic analysis at switch level in addition to those
running at collectors located in SDN controller platforms.
Commonalities and Differences to NetFlow[8] & IPFIX[9]:
First, considered export conditions, i.e., timeout-based opera-
tion, and the support for uni- and bidirectional flow tracking
are similar, whereby the approach presented in this paper also
allows to maintain subflow data views on streams from both
contexts. Second, while newer protocol versions of NetFlow
and IPFIX support more flexible data collection w.r.t. feature
templates, considered properties have to be available as gen-
erally registered or vendor-specific data fields. In contrast to

this, the introduced approach employs programmable switch
platforms as operational basis, thus ensuring a highly adaptive
feature tracking protocol due to configurable packet process-
ing. Third, the possibility for differentiated monitoring w.r.t.
multiple collectors receiving data in demand-driven formats is
also common with NetFlow and IPFIX. However, besides data
processing and analysis at centralized controllers running a
collector instance, the proposed multi-level tracking and export
architecture at switch level comprised of data plane module
and NOS agent not only enables in-network data preprocessing
but also distributed analysis, which is challenging for closed
switch platforms and vendor-specific implementations.

III. TRAFFIC ANALYSIS USE-CASE:
FLOW-BASED NETWORK INTRUSION DETECTION

In order to enable traffic analysis, flow metadata is con-
tinuously monitored based on observed packet sequences and
shared as a stream of data records. Therefore, FlowMoni runs
flow tracking and export at a network switch providing a flow-
based traffic view that is collected and sent to downstream
analysis either at distributed switch or centralized SDN con-
troller level. This way, obtained data views can be leveraged
to maintain traffic classification or prediction systems in order
to derive sophisticated network management decisions.

For example, intrusion detection methods can be applied,
whereby flow-based classifiers differentiate between benign
and malicious traffic to enforce flow control based on obtained
decisions, e.g., applying permit, drop or throttling policies
to affected streams during packet forwarding. [2] proposes a
hierarchichal architecture and strategy for intrusion detection
that consumes flow metadata as input to run distributed,
lightweight in-network flow classification analysis at switch
level being backed by more advanced and compute-intensive
classification methods at higher hierarchy tiers located in cen-
tralized controller platforms running in cloud infrastructures.

While considering flow-based intrusion detection as exem-
plary network management task, this paper mainly focuses on
the data collection part required to obtain diversified data bases
serving as decision input for downstream traffic analysis.

IV. FLOWMONI APPROACH

A. Flow Scopes and Tracking
Multiple data tracking scopes are supported during flow

monitoring to diversify and enlarge the flow-based data view
that can be leveraged for subsequent traffic analysis: While
the flow scope tracks unidirectional packet streams, the biflow
view focuses on interrelated bidirectional packet sequences.
Thus, whereas flow metadata describes forward and backward
direction by separate data records, biflow metadata summarizes
both contexts at once. In addition, to track timely trends with
higher granularity, metadata can be maintained for successive
time windows on uni- or bidirectional packet streams, i.e.,
leading to subflow and bisubflow scopes respectively.

Hash tables are used to hold flow data statistics, whereby nf

states their size and hence the number of supported slots. To
map packets to coherent streams, flow 5-tuple data is utilized
to compute a hash value leveraged as unified flow identifier.
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While this strategy can be applied to unidirectional scopes
directly, tracking bidirectional views requires additional steps:
For example, first, IP addresses and port numbers have to be
sorted before hashing to ensure consistent flow identification.
Second, to account forward and backward data contexts, 5-
tuple data of each packet has to be compared to the one
observed in a flow’s first packet to identify the direction.

To intentionally exclude particular flows from data tracking,
header criteria- and hash-based filters can be applied.
B. Flow Features

Table I summarizes the initially supported flow feature set.
Besides flow 5-tuple data, properties are categorized into raw
and computed ones. Packet headers, metadata and timestamps
provided by switch platforms serve as data collection sources.

TABLE I: FlowMoni Flow Features.
Type Features Sources

5-Tuple Source/Destination IP & Port, Protocol Packet Header (IP / TCP / UDP)

Raw

Start & End Timestamp Switch Clock Times
Number of Packets & Bytes Switch Packet & Byte Counter
TCP Flags Mask & Counts Packet Header (TCP)

Packet Lengths & Inter-Arrival Times Packet Metadata &
(min, max, (weighted) moving average) Switch Clock Times

Computed Duration (Activity Time) Start & End Timestamps
Throughput (Packet & Bit Rate) Packet & Byte Count, Duration

In case of bidirectional instead of unidirectional data views,
raw and computed data features are maintained for forward
and backward direction. Additionally, throughput rates in
terms of transmitted packets and bytes from both contexts are
put into relation to determine up-down- and down-up-ratios.

If window-based data views are managed, packet and byte
counters as well as packet length and inter-arrival time features
are tracked as raw data for each elapsed time window. In
case of running window management for bidirectional views,
this again applies to forward and backward direction contexts
separately. Based on feature data obtained for individual win-
dows, several statistics are computed as well, i.e., minimum,
maximum, mean, median and standard deviation values.
C. High-Level System Overview

The system architecture consists of deployed FlowMoni
Exporter and Collector instances (Figure 1).
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Fig. 1: FlowMoni High-Level Deployment Architecture.
The exporter is comprised of FlowMoni Module that is

part of the packet processing pipeline on a programmable
switch and FlowMoni Agent that runs as process within the
NOS. Both perform data tracking and export collaboratively.
FlowMoni Collector either also runs locally in the switch’s

NOS or on a centralized SDN controller platform deployed
on an external server. After receiving exported data, records
are stored in a flow database for delayed analysis purposes

(offline use-cases) or streamed for downstream evaluation
in flow analysis applications (online scenarios). While ML-
based methods like Random Forest (RF) or Deep Neural
Network (DNN) instances are applied to streamed data for
flow-based traffic analysis, the collector serves as streaming
server and associated apps as clients. Each collector registers
at an exporter to request data required by assigned apps.

A direct link, i.e., connected to a switch’s CPU port, is used
to exchange export packets between modules and associated
agents. The latter also establish a management channel towards
exposed runtime APIs to run module configuration and another
one towards assigned collectors to push exported data records.

Reasons for this multi-level export architecture are as fol-
lows: Although the module runs flow tracking at data plane
level, compute capabilities at this stage are limited. Therefore,
the agent at CPU level in the NOS is required to assist in data
export operation, i.e., retrieving maintained metadata from data
plane, preparing record messages and sending those towards a
collector. In addition, the NOS agent offers the potential to run
in-network data preprocessing steps at switch level that need
to be applied before record sharing. Examples are filtering
or selecting particular feature subsets from exported data,
to run address anonymization or to enrich further metadata
properties. Afterwards, preprocessing continues at a collector,
e.g., to derive or compute additional features, before feeding
finally prepared data to downstream traffic analysis applica-
tions. The option to deploy the collector and associated apps at
local switch or external server level allows to run lightweight
and compute-intensive analysis tasks, whereby the available
data view is either local or global. Likewise, combined multi-
step analysis methods are possible. This way, scenarios that
consider to run ML-based traffic analysis distributedly over
the network on switches or in centralized controller platforms
are enabled, e.g., flow classification and prediction strategies
similar to [2] or [1] and [3] respectively.
D. Operational Strategy

Data export is triggered based on flow level active and
inactive timeout hits as well as in case of detecting finished or
reset TCP connections. The rationales for incorporating these
conditions to provide a general flow-based traffic view are as
follows: The first enforces metadata export for a particular
flow after continuously observing packet activity during time
interval wA, which is of relevance for tracking long-lasting
packet streams. The second initiates metadata export for a
flow in case no packet activity is observed for the time frame
wI , which is of relevance for ended streams that are not
handled by the third condition identifying traceably ended TCP
connections for which immediate export is possible.

In case subflow or bisubflow data scopes are tracked, the
active timeout is set as multiple of the used window size wS

to obtain consistent data, i.e., wA = n ∗ wS .
If the inactive timeout is hit or a TCP connection traceably

ends while maintaining subflow or bisubflow scopes, the last
window may contain truncated and timely limited data that is
handled by a weighting strategy to balance feature data for
statistics computation w.r.t. observed window lengths.
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Since an active timeout hit and a traceable termination of
TCP connections for a particular flow can be detected at
module level, packets including corresponding data records
are pushed to the agent. Regarding inactive timeout hits, the
agent is required to identify inactive streams in collaboration
with the associated module and request related export packets
asynchronously by sending respective trigger packets (inactiv-
ity management). Thus, each time the export timer wE expires,
the agent queries the first plus last packet timestamps for flows
maintained in the assigned module and evaluates a hit w.r.t.
wI . While this is due to no further packet activity being able
to trigger data export, there is one exception: In case the same
flow hash is computed after flow-based time interval wI has
elapsed and the next inactivity management iteration w.r.t. wE

was not run by the agent yet, export can be initiated directly
in the module before continuing data tracking.

As soon as the agent receives a raw record, preprocessing is
run before pushing the prepared message towards the intended
collector. Therefore, in case of subflow management, window-
based data is extracted and used to compute subflow statistics
that are appended to the initial base record. In addition, a set of
data preparation steps ensures flexible data export for multiple
registered collectors. This way, individual scope and feature
requirements or constrained data sharing can be respected.

While feature filtering applies filter expressions for par-
ticular feature sets to reduce the number of exported data
records, feature selection applies selector expressions to limit
the number of exported features per record. Hence, a dynamic
protocol that supports the export of records in an arbitrary
format with regard to the available feature set is enabled. The
initial set of preprocessing operations can be extended, for
example, with feature enrichment or anonymization strategies.

Whereas aforementioned preprocessing steps are run on
agent side, data preparation continues at collector side that
performs feature computation to determine additional proper-
ties before data is shared with analysis apps. Further tasks like
data aggregation and normalization are feasible as well.

V. EVALUATION

A. Experimental Environment
Whereas the export module is implemented as P416 program

built for the software switch behavioral model v2 (bmv2), the
export agent and collector are run using Python scripts1. The
CPU port of a switch instance is used for packet exchange
between the implemented module and agent. Scapy library is
utilized to build and send as well as to sniff and parse packets.
The agent leverages a P4 runtime library for exposed thrift API
and gRPC message interfaces to run module configuration and
flow inactivity management over a TCP-based channel. UDP
communication between the agent and collector is enabled
using libraries socket and struct. Exported data is stored in
files and subsequently loaded for analysis in separate scripts.
While tcpreplay is used to inject packet traces into the switch
for flow data tracking and export evaluation, iperf is used to
intentionally generate flows required for evaluation measures.

1https://gitlab.cs.hs-fulda.de/flow-routing/cnsm2022/flow monitoring

B. Experiments

1) Flow Export Datasets: Two network security datasets
are considered for exemplary data export. First, a subset of
CIC-IDS2017 dataset [10] is used (CIC-IDS). Besides benign
packet data, malicious traffic corresponds to (Distributed)
Denial of Service ((D)DoS), botnet and port scan attacks.
Second, CIC-DOS2017 dataset [11] is employed (CIC-DOS).
Packet data includes benign and DoS attack traffic.

For each dataset, data for supported scopes is exported from
included sub-datasets having individual packet traces and af-
terwards merged into common sets. Hash table sizes nf = 220

are used to ensure a low level of hash collisions. In case of
collision, packet data is excluded from flow monitoring. The
export timer wE as well as the active and inactive timeouts
wA and wI are set to 16 s while the subflow window size wS

is 4 s. These values are chosen to balance the analysis aspects
of timely available data exports and decent flow lengths.

Table II lists obtained record counts for flow and biflow data
views. Compared to tracking unidirectional packet streams, the
combined view on interrelated bidirectional ones reduces the
number of data records significantly. Since not all observed
packet streams are bidirectional, the reduction ratio depends
on the corresponding proportion. In addition, the number of
flow and subflow as well as biflow and bisubflow data records
are close due to similar tracking mechanisms.

TABLE II: Data Record Counts (in K samples).
CIC-IDS CIC-DOS

Flows Biflows Flows Biflows
3 911 2 081 522 363

The ratio of occurred packet-based hash collisions remains
low in all export iterations (<0.1%). Because the majority of
packet data is processed during flow monitoring, comprehen-
sive data views are ensured for subsequent analysis.

2) Flow-based Traffic Classification Analysis: Data exports
are used for flow-based intrusion detection. Therefore, traffic
classification is treated as binary task differentiating between
benign and malicious flows. To compare the classification
performance associated with leveraging diversified data views,
achieved accuracy scores are determined for each flow scope.

Exported data is labeled based on IP addresses and times-
tamps. After computed features are determined, flow 5-tuple
data plus timestamps are excluded from classification to reduce
the tendency for overfitting and allow for generalization.

RF and DNN classifiers are evaluated to consider two
popular ML algorithms that may be of relevance for different
traffic analysis tasks using flow metadata as decision input.
scikit-learn and Keras libraries are used to build classifiers
with exemplary hyper-parameters. While parameter sensitivity
is abstracted, this paper does not aim at classifier optimization
or comparison but rather on confirming the analysis benefits
associated with diversified flow data scopes.

Tables III and IV summarize achieved accuracies. Result
trends are similar for both classifiers and datasets but have
varying dimensions. Although scores are already high for
classifying flow data, except for one deviation, enlarged biflow
and subflow views improve measured accuracies.
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TABLE III: Classification Accuracy (RF, in %).
Dataset Traffic Data Scope

Flows Subflows Biflows Bisubflows
CIC-IDS 98.392 98.428 99.784 99.791
CIC-DOS 98.025 98.115 98.158 98.295

TABLE IV: Classification Accuracy (DNN, in %).
Dataset Traffic Data Scope

Flows Subflows Biflows Bisubflows
CIC-IDS 98.213 98.287 99.709 99.719
CIC-DOS 96.958 97.556 96.685 98.129

To further investigate the benefits of running subflow man-
agement during uni- and bidirectional data tracking, accuracy
scores are determined while reducing the analysis basis to just
include metadata for packet streams that saturate at least 1, 2
or 3 windows (Tables V to VII). Again, result trends apply to
both datasets and classifiers with individual dimension.
TABLE V: Window-based Data Record Counts (inK samples).

Windows CIC-IDS CIC-DOS
Flows Biflows Flows Biflows

1 1 238 661 127 78
2 1 002 525 85 54
3 182 98 43 30

First, the number of data samples included in the reduced
datasets decreases for a larger window count. Second, except
deviations, the higher the number of saturated windows, the
higher the accuracy improvements for subflow management.
TABLE VI: Window-based Classification Accuracy (RF, %).

Dataset Windows Traffic Data Scope
Flows Subflows Biflows Bisubflows

CIC-IDS
1 99.968 + 0.018 99.959 + 0.028
2 99.968 + 0.021 99.952 + 0.037
3 99.853 + 0.104 99.757 + 0.198

CIC-DOS
1 97.565 + 0.430 97.380 + 0.672
2 97.317 + 0.714 97.032 + 1.045
3 97.208 + 1.331 96.837 + 1.791

TABLE VII: Window-based Classification Accuracy (DNN, %).
Dataset Windows Traffic Data Scope

Flows Subflows Biflows Bisubflows

CIC-IDS
1 99.848 + 0.066 99.905 + 0.011
2 99.875 + 0.053 99.895 + 0.014
3 99.285 + 0.342 99.445 + 0.095

CIC-DOS
1 95.398 + 1.292 97.337 + 0.085
2 94.833 + 1.498 96.993 + 0.084
3 93.814 + 2.348 96.583 + 0.182

Depending on increases or decreases for enlarging the uni-
to a bidirectional view, i.e., using biflow instead of flow data
scopes, subflow benefits for the bidirectional context may be
higher or lower as for the unidirectional one.

As a consequence, leveraging wider data views enabled
by running the proposed flow monitoring approach ensures
improved attack detection rates, thus allowing to precisely
differentiate between benign and malicious traffic. Although
only slight accuracy improvements are achieved in some
experiments, they are of high relevance, especially in the
case of network intrusion detection. Even relatively low error
rates may lead to many badly classified flows such that
malicious packet streams remain undiscovered or benign ones
are mistakenly affected by mitigation policy enforcement.
Hence, seemingly high accuracy values close to or even above
99% do not necessarily correspond to acceptable conditions.

3) Flow Export Overhead: The control path overhead be-
tween export module and agent w.r.t. processing times and
volumes associated with supported flow scopes is estimated.
Therefore, times to query data for flow inactivity management
while using different hash table sizes (Table VIII) as well as to
send export request packets and handle respective responses
(Table IX) are measured. The lengths of these packets that
include export metadata and data records are also given.
TABLE VIII: Query Times for Inactivity Management (in ms).
Hash Table Size 212 214 216 218 220

Average Time 43.76 133.81 482.45 1 716.29 6 781.69

The time to retrieve data from register arrays rises signifi-
cantly for increasing hash table sizes. Each collection cycle
involves gathering three register arrays, i.e., flow activity
flags plus first and last seen packet timestamps, whereby the
more slots are available, the more register objects have to be
accessed in order to expose contained data via runtime APIs.

TABLE IX: Export Packet Processing Times (in ms).
Packet Type Traffic Data Scope

Flows Subflows Biflows Bisubflows
Export Request 0.47 0.48 0.47 0.48

Export Response 1.06 3.46 1.47 5.49

First, since the format and processing behavior for export
requests is similar for all flow scopes, packets have a uniform
length (19 bytes) and processing times are approximately con-
stant. Second, due to different feature sets and record formats,
the size of export response packets varies for diversified data
views, i.e., 100, 252, 167 and 471 bytes for flow, subflow,
biflow and bisubflow scopes, whereby 4 individual windows
are exemplarily considered. Compared to flows, the export
response sizes for subflows, biflows and bisubflows grow about
2.52×, 1.67× and 4.71× respectively.

In line with an increased data volume, processing times
for export response packets rise w.r.t. different flow scopes.
Compared to flows, on average, times for handling responses
containing subflow, biflow or bisubflow data grow approxi-
mately 3.26×, 1.39× and 5.18×. As a consequence, while up
to ≈2 100 export request packets can be sent per second, about
940, 290, 680 and 180 responses can be handled each second.
Whereas these rates correspond to a single data processing
instance, rates can be increased using parallelism at agent
level running multiple workers concurrently. This is necessary
to cope with export rates encountered in practical network
environments. For example, ≈4 000 and ≈500 data records are
exported per second at central switches in a university network
at daytime peaks and during nighttime respectively [1].

4) Flow Latency Impact: The flow latency impact experi-
enced due to flow monitoring-related packet processing over-
head is determined. Measurements are run for all flow scopes
while differentiating three tracking levels (feature groups):
First, entirely skipping flow monitoring operation while run-
ning pure packet forwarding (none) serves as reference for
comparison. Second, monitoring a flow’s 5-tuple and first plus
last seen timestamp data (basic) allows to estimate general
tracking and export impact associated with, for example, flow-
based hash computation, timer and timeout management or the
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evaluation of export conditions. Third, tracking all supported
flow features (all) enables to measure the total overhead.

Because flow data tracking and most parts of export man-
agement, i.e., timers, condition checks and record construction,
are run in the switch’s ingress pipeline part, the difference
between egress and ingress pipeline entry timestamps is
computed and treated as an estimate to approximate packet
processing times w.r.t. flow monitoring operation (Table X).
Running iperf measurements to determine flow level latency
impacts provides similar trends, although obtained values are
slightly higher since the measurement scope is enlarged.

TABLE X: Flow Latency Impact (in ms).
Feature
Group

Traffic Data Scope
Flows Subflows Biflows Bisubflows

none 0.02 0.02 0.02 0.02
basic 0.84 0.89 0.90 0.95

all 0.92 1.06 0.94 1.28

As expected, the required time for packet forwarding with-
out any flow monitoring operation is similar for all flow scopes
(none). Using the flow data view as reference, enlarging the
data scope is associated with latency overhead because biflow
views require to track forward and backward direction in a
combined manner and subflow as well as bisubflow ones to
maintain windows on uni- and bidirectional packet streams.
For each scope, the main increase is caused by general track-
ing and export management (basic) while maintaining pure
feature data (all) adds slight delays as well, whereby the ones
for subflow management are significantly higher compared
to those for respective base views. Compared to flows, on
average, overall latency rises about 1.15×, 1.02× and 1.39×
for subflow, biflow and bisubflow scopes respectively.

5) Switch Memory Allocation: Table XI outlines memory
requirements for maintaining a single data record for supported
flow scopes. Because pure record data occupation is consid-
ered, additional overhead due to general export management
like activity tracking and timeout evaluation is abstracted.
Feature data is accounted as 8, 16, 32 or 48 bit values. While
memory sizes stated for flows serve as reference, the values
provided for subflows and biflows are relative to these whereas
the ones for bisubflows are relative to biflow requirements.
Overall, a subflow, biflow and bisubflow data record occupies
about 2.90×, 1.84× and 5.64× the memory of a flow one.

TABLE XI: Data Plane Memory Requirements (in bit).
Flow Features Traffic Data Scope

Flows Subflows Biflows Bisubflows
flow 5-tuple data 2× 32 (addresses) + 2× 16 (ports) + 8 (protocol)
TCP flags mask 8 ×1

×2

×1TCP flag counts 8× 16
packet & byte count 2× 32 + n × 2× 32 +2× n × 2× 32

packet lengths 3× 32 +3× n × 32 +3× 2× n × 32
start & end timestamps 2× 48 ×1 ×1

inter-arrival times 3× 48 +3× n × 48 +3× 2× n × 48

overall (n = 4windows) 640
640+ n× 304

(1 856) 1 176
1176+2×n×304

(3 608)

For example, Intel Tofino 3 chip architectures support up to
eight match-action pipelines each with 160Mbit of SRAM,
i.e., 1 280Mbit in total [12]. Since register and counter objects
are used for data tracking, SRAM capacities are occupied.
Using these capabilities as practical reference, about 250K,

86K, 136K or 44K flow, subflow, biflow or bisubflow data
records can theoretically be maintained per pipe and approxi-
mately 2 000K, 688K, 1 088K or 352K entries on the entire
switch platform. While reducing the feature set to packet and
byte counters plus flow duration to describe flow activity at a
basic level, tracking these features in conjunction with 5-tuple
data causes flow, subflow, biflow and bisubflow record sizes of
264, 520, 424 and 936 bit. Consequently, about 606K, 308K,
377K or 171K data records can be tracked per pipe and about
4 848K, 2 464K, 3 016K or 1 368K in the entire switch.

Running flow export on a core switch deployed in a data
center of a university campus network, traffic analysis revealed
that up to about 750K data entries are maintained in caches
during daytime while observed numbers drop below 100K
during nighttime and the weekend [1]. Using this environment
as practical reference while taking entire switch and not
pipeline level capabilities into account, tracking different flow
scopes with the aforementioned reduced feature set is feasible.
The same applies to flow and biflow data views if tracking all
features but might be challenging for sub- and bisubflow ones.

VI. DISCUSSION

FlowMoni protocol enables demand-driven data export:
First, a collector registers at an exporter and requests the data
scope and features required for downstream analysis apps.
Second, data is preprocessed at exporter and collector levels,
whereby steps running on a switch assist in collector-specific
data preparation prior to sharing. Moreover, FlowMoni archi-
tecture allows to run traffic analysis within a switch’s NOS and
in an SDN controller. Whereas the first enables to distribute
analysis load across the network, the latter enables more
sophisticated decisions due to increased analysis capabilities.

Because tracking and export behavior is based on timers and
timeouts to ensure data export, their specification defines the
accepted trade-off between timely available data records and
their granularity while also affecting the overhead with respect
to, e.g., export rate and data volume. First, the higher the active
timeout wA, the higher the time until data records for long-
lasting packet streams are exported and, due to aggregated
or average properties, the lower the granularity. In addition,
the number of exported data records decreases accordingly.
Second, the higher the inactive timeout wI , the longer the
time until streams are assumed inactive and data export can
be initiated while, except for recurring streams, the number of
exported data records is the same. Third, the timer wE defines
the interval at which records for inactive streams are requested,
whereby the higher the value, the higher the export delay and
the more bursty the export rate w.r.t. single iterations.

Enlarging the data tracking scope increases the memory
overhead and thus lowers the number of available monitoring
slots. Though a single bidirectional data record occupies about
double the memory required for a unidirectional one, the
accumulated overhead is approximately equal. This holds true
if most packet streams are bidirectional. Otherwise, the ratio
of both contexts decides the amount of occupied but unused
memory. Maintaining subflow views for uni- and bidirec-
tional contexts occupies significantly more memory, whereby
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the used window length and resulting number of individual
windows affects both memory demand and the resolution of
tracked data trends. The smaller wS , the higher the granularity
although more windows have to be maintained and vice versa.

As hashing is used to identify flows, collisions occur and
explicit handling is necessary to ensure consistent traffic views.

Due to extended packet processing, flow monitoring is
associated with additional delay that has to be accepted in
order to gain traffic insights. Since respective latency increases
may not be a valid option for all application types, property-
and hash-based filtering ensure differentiated flow monitoring.
Therefore, particular tracking scopes can be mapped to specific
applications or monitoring operation skipped entirely. This
way, available data views are intentionally limited or packet
streams fully excluded from traffic analysis.

For all supported flow scopes, main latency increases are
caused by general data export management whereas each
tracked feature adds slight delay as well but the estimated sum
for pure tracking of all considered properties is considerably
lower compared to the first. As expected, measured latencies
depend on the tracked flow scope and grow with enlarged
data views due to higher packet processing overhead, whereby
times for subflow management are significantly higher com-
pared to ones for respective flow and biflow scopes.

The control path overhead in terms of data volume and
processing times with respect to exchanged export packets
including data records rises for flow scopes with broader data
views. While this is due to larger message sizes and more
complex processing behavior, there is a high dependency on
implementation quality and the employed switch architecture.
First, since packets are shared between exporter module and
agent at data plane and NOS level respectively, packet sniffing
and manipulation are required to provide efficiency and scala-
bility to cope with high export packet rates in dynamic network
environments. Second, agent level query times for retrieving
data plane register and counter objects required to run flow
inactivity management as well as associated data volumes
highly depend on the exposed runtime APIs, whereby the
higher the number of supported monitoring slots, the higher
the query overhead. One direction for optimization is to move
query operation to lightweight raw packet exchange, hence
decoupling inactivity management from any runtime API.

Latency and control path overhead measurements provide
estimates. In practice, there is a high dependency on the used
switch platform with significant differences between virtual,
software-based deployments relying on CPU performance and
real systems equipped with hardware chips. Nonetheless, rela-
tive result trends from the experiments are transferable though
their dimension and related absolute measures vary.

Although a diversified data scope is associated with an
increased overhead, more sophisticated traffic analysis deci-
sions are enabled. Though the flow classification performance
achieved in the network intrusion detection scenario is already
quite high for leveraging flow data views, using biflow data
scopes that combine forward and backward contexts raises
accuracy scores. Likewise, more granular sub- and bisubflow

data views allow for further accuracy improvements. This way,
an enhanced differentiation between benign and malicious
traffic is ensured, which helps to considerably reduce false
positive and negative rates. Even slight accuracy increases
associated with data views from enlarged flow scopes are of
high relevance because otherwise occurring network attacks
are not revealed and a significant proportion of benign and
malicious packet streams is affected by improper flow control.

VII. CONCLUSION AND FUTURE WORK

FlowMoni runs data tracking and export to collect flow-
based traffic views serving as decision input for subsequent
data analysis tasks like ML-supported flow classification or
prediction. Whereas an export module and assisting agent
are deployed on data plane and NOS level to perform flow
monitoring in a collaborative manner, obtained data records
are pushed to collectors with downstream analysis apps. Since
these are run in a switch’s NOS or at an SDN controller,
distributed and lightweight as well as centralized and intensive
tasks are enabled. This architecture offers a new way to
analyze diversified traffic contexts and granularities at different
network layers, either in an isolated or combined manner, i.e.,
multi-step analysis. Therefore, an adaptive protocol including
various data preprocessing steps while respecting four different
flow scopes with enlarged data views and flexible feature
sets ensures demand-driven data sharing. The considered data
scope affects both analysis benefits and monitoring overhead.
FlowMoni is planned to be ported on a hardware switch

run in a university network to analyze practical suitability.
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[3] C. Hardegen, B. Pfülb, S. Rieger, and A. Gepperth, “Predicting Network
Flow Characteristics using Deep Learning and Real-World Network
Traffic”, IEEE Transactions on Network and Service Management, 2020.

[4] J. Hill, M. Aloserij, and P. Grosso, “Tracking Network Flows with P4”,
IEEE/ACM Innovating the Network for Data-Intensive Science, 2019.

[5] L. Castanheira, R. Parizotto, and A. E. Schaeffer-Filho, “FlowStalker:
Comprehensive Traffic Flow Monitoring on the Data Plane using P4”,
IEEE International Conference on Communications, 2019.

[6] J. Sonchack, E. Keller, A. J. Aviv, and J. M. Smith, “TurboFlow:
Information Rich Flow Record Generation on Commodity Switches”,
ACM EuroSys Conference, 2018.

[7] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith, “Scaling
Hardware Accelerated Network Monitoring to Concurrent and Dynamic
Queries With *Flow”, USENIX Annual Technical Conference, 2018.

[8] B. Claise, “Cisco Systems NetFlow Services Export Version 9”, Request
for Comments 3954, 2004.

[9] B. Claise, B. Trammell, and P. Aitken, “Specification of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of Flow Infor-
mation”, Request for Comments 7011, 2013.

[10] I. Sharafaldin, A. H. Lashkari, and A. Ghorbani, “Toward Generating a
New Intrusion Detection Dataset and Intrusion Traffic Characterization”,
International Conference on Information Systems Security and Privacy, 2018.

[11] H. H. Jazi, H. Gonzalez, N. Stakhanova, and A. A. Ghorbani, “Detecting
HTTP-based Application Layer DoS Attacks on Web Servers in the
Presence of Sampling”, Computer Networks, 2017.

[12] “Intel Tofino 3 Intelligent Fabric Processor Brief”, intel.com/content/www/
us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

260


	32



