
∆Q Generative Models:
Modeling Time-Variation in Network Quality

1st Bjørn Ivar Teigen
Department of Informatics

University of Oslo
Oslo, Norway

bjornite@ifi.uio.no

2nd Neil Davies
Predictable Network Solutions Limited

Stonehouse, United Kingdom
neil.davies@pnsol.com

3nd Peter Thompson
Predictable Network Solutions Limited

Bristol, United Kingdom
peter.thompson@pnsol.com

4rd Kai Olav Ellefsen
Department of Informatics

University of Oslo
Oslo, Norway

kaiolae@ifi.uio.no

5th Tor Skeie
Department of Informatics

University of Oslo
Oslo, Norway

tskeie@ifi.uio.no

6th Jim Torresen
Department of Informatics

University of Oslo
Oslo, Norway

jimtoer@ifi.uio.no

Abstract—This work introduces a class of network perfor-
mance models designed to capture variations in network quality
on diverse timescales. By explicitly modeling how quality changes
over time, the proposed models enable computation of perfor-
mance metrics that are beyond the scope of steady-state methods
such as Markov chains. We use the quality attenuation (∆Q)
metric to quantify network quality, and ∆Q generative models
specify how quality attenuation varies over time. Variation over
time is modeled using a finite state machine with timed state
transitions. We show how the models can be used to shed light on
practical problems by presenting novel results for the problem
of buffer sizing. In addition to the buffer sizing results, this
work presents the ∆Q generative model structure and the basic
algorithms needed to work with the models.

Index Terms—Computer network performance, ∆Q, Quality
attenuation, Buffer sizing

I. INTRODUCTION

Internet protocols such as TCP [1] and QUIC [2] are
designed to adapt to network performance variations. However,
the response time of these protocols is limited by the delay
of feedback signals. Therefore, it is important to develop
an understanding of performance variations on timescales
that are too small for end-to-end adaptation to react, but
still large enough to affect queuing behavior and application
performance. In the literature, there are two main approaches
to model variations in network performance: Steady-state
analysis, which captures system behavior as an average over
all of time, and simulation which captures performance in
specifically modeled scenarios with great accuracy. This work
proposes a way to interpolate between steady-state methods
and simulation by defining a class of models where the
timescale of performance variations is itself variable.

Internet throughput has improved much over the last few
decades, and in some places, it has now reached a point
where more bandwidth does not significantly improve the
end-user experience [3]. Perhaps because of the diminishing

returns of increased bandwidth, research on improving internet
quality is increasingly focused on how to deliver reliable low
latency. Much of the work on how to deliver reliable low
latency address issues related to the design and configuration
of queuing algorithms. Queuing, also known as buffering, is
known to be a significant source of latency variation in the
Internet [4]. Queues are necessary to smooth out variations
in the relative magnitude of supply and demand of network
resources. Some buffering is helpful, but too much buffering,
often referred to as bufferbloat, is undesirable because it intro-
duces excessive latency [4]. However, what excessive latency
means in this context is not fully understood. The answer
undoubtedly depends on the situation, but it is nevertheless
possible to derive theoretical descriptions of the required trade-
offs. Recent theoretical advances [5], [6] have shed some much
needed light on this issue, but the methods for sizing buffers
are still mostly based on experimentation. The introduction
and deployment of new congestion control algorithms such as
BBR [7] and L4S [8] makes buffer sizing even more com-
plicated because the interactions between queuing algorithms
and congestion control algorithms are becoming more complex
and varied.

There has been increasing interest in novel queuing algo-
rithms in recent years [9]–[11]. Several of these algorithms,
such as CoDel [9], PIE [10], and CAKE [11], rely on a con-
figured set-point for the desired amount of queuing. Finding
the best set-point is non-trivial and dependent on the specific
behavior of the link. Our results shed new light on the trade-
offs of buffer sizing decisions.

We propose ∆Q generative models in this paper. This class
of models was developed while investigating the problem
of buffer sizing over links with varying capacity. The con-
tributions of this paper is to define a model structure and
to motivate the level of complexity by showing how the
proposed structure can help shed light on the buffer sizing

978-3-903176-51-5 © 2022 IFIP

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

233



issue. We believe this class of models is also well suited to
machine learning and, as such, represents a step toward data-
driven methods for the development and design of network
performance models. A ∆Q generative model learned from a
data set of observed network behavior may pick up on patterns
of performance variation that are not typically implemented in
network simulation work. To keep this paper focused on the
model definition and why and how the models are useful, the
challenge of efficient learning with ∆Q generative models will
be explored in future work.

II. BACKGROUND AND RELATED WORK

This section describes selected literature related to time-
varying network quality and the ∆Q network quality metric.

Queuing theory is the mathematical background for analysis
of queuing systems. Kendall first described how queuing
systems can be solved by analyzing embedded Markov chains
[12]. The power of this method lies in the ability to rapidly
and precisely compute the long-term average performance of
complex queuing systems. This method of analysis is not
directly applicable to systems where the service rate varies
as a function of time. Liu and Whitt [13] study a fluid
model of a general class of time-varying queues and describe
the performance functions. ∆Q generative models further
generalize the description of the server compared to [13] by
adding the possibility of packet loss.

Much work has gone into studying the behavior of TCP
over the internet [14]. Studying the behavior of TCP, especially
when looking at the interaction of multiple flows, is to study
the effects of variable network capacity because TCP dynam-
ically varies the load it places on the network in somewhat
predictable ways. Research on congestion control over variable
links like 5G [15] is also exploring similar issues by empir-
ically studying how different congestion control algorithms
deal with the capacity variation patterns specific to 5G net-
works. Srivastava et al. [16] explore the performance of several
congestion control algorithms over an emulated 5G mmWave
link. Their method, replaying the recorded performance of a
link, is similar to how ∆Q generative models can be used in
simulation and emulation studies. Our models generalize the
method by allowing the description of link behaviour to be
stochastic.

Goyal, Alizadeh, and Anderson [6] explore an optimal end-
to-end congestion controller for links with varying capacity
using mathematical modeling. Their central assumption is
that capacity changes can be modeled as a Markov process
evaluated every round-trip time. Our models of link behavior
differ in how the link capacity changes, where our proposed
model is the most general of the two.

Quality attenuation is a network quality metric that captures
the latency and packet loss performance of packet-switched
networks. A method for measuring quality attenuation has
been standardized by the Broadband Forum [17]. The quality
attenuation metric has been developed through several decades
of academic work, but it is not widely known in the research
community. Therefore, we give a brief description here. The

quality attenuation metric combines latency and packet loss
into a single variable where packet loss is modeled as infinite
latency. Equation 1 formally defines a quality attenuation value
as a probability density function P (t) paired with a real
number P (∞) such that 0 ≤ P (∞) ≤ 1. P (t) describes
the probability density over all possible latency values, and
P (∞) describes the probability of packet loss (we can think
of packet loss as infinite latency). We use “∆Q” to abbreviate
quality attenuation. A ∆Q value can be plotted as a cumulative
density function (CDF) with a maximum value of 1−P (∞).

∆Q := [P (t), P (∞)], t ∈ R+ (1)

Haeri et al. [18] present a framework for reasoning about
the timeliness of outcomes. They also use the notion of quality
attenuation (∆Q). Their methods are suitable for packet-
switched networks where traffic can incur both losses and
delays when traversing a link. The authors describe one of the
most useful features of ∆Q; the fact that ∆Q values can be
composed both sequentially and in parallel. Haeri’s framework
captures the distributed nature of networked applications and
provides tools for reasoning about how communication delays
affect application outcomes. In Haeri’s model, there can be
many paths between two outcomes, and each path is modeled
as a stochastic process, but there is no notion of a single
path varying over time. That is to say, all samples of the
same path are assumed to be independently selected from the
same distribution, regardless of the timing between subsequent
samples. The main difference between our work and [18] is
that our class of models includes variation as a function of
time.

III. A CLASS OF GENERATIVE MODELS FOR TIME-VARYING
NETWORK PERFORMANCE

This section defines our proposed class of models and
describes some basic algorithms needed to work with models
from the class. The class of models has been designed with
a few key properties in mind. We want the models to be able
to:

• Include delay and packet loss as possible observations
• Capture temporal structure at any timescale
• Model any sequence of observations
• Reduce to an expected value description when there is no

temporal structure
• Facilitate learning from recorded network traces
The proposed model is our best attempt at finding a minimal

structure with all of these properties.

A. Model definition

A ∆Q generative model is a 5-tuple (S,∆QS, DS
loss, P, T )

where S is a finite set of states called the state space. Each state
s ∈ S has an associated ∆Q value labeled ∆Qs ∈ ∆QS. ∆QS

is the set of quality attenuation values for all states. DS
loss is

the set of Dloss for all states, where Dloss is a probability
distribution describing the amount of time it takes to lose

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

234



{ti}
(S,∆QS,

DS
loss, P, T )

Waiting
Area

Service
Node

Fig. 1: The ∆Q generative model describes how the service
node changes over time

a packet. P is a transition matrix describing the probability
of moving from state s to state s′ for each pair of states
s, s′ ∈ S. We use the notation P (s, s′) for the probability of
moving from state s to state s′. T (s) is a function describing
the distribution of time spent in state s before moving to a
state s′ ∈ S. This class of models allows us to generate
arbitrary patterns of ∆Q variation as a function of time.
The models allow us to capture the appropriate amount of
temporal structure because very high-frequency variation can
be averaged out and summarized by the ∆Q values of each of
the states s. Capacity variation on the timescales we care about
can be modeled as time-dependent state changes. The models
describe the service pattern of a network interface. Figure 1
shows a FIFO queue where the server is described by a ∆Q
generative model.

The sequence of states, s(t), is a discrete function of the
continuous variable t describing the state of the system at
each point in time. The sequence {t0, t1, ...} is a discrete set
of times at which observations are made, and the sequence
{ot0 , ot1 , ...} are the observed quality attenuation values at
each of the times {t0, t1, ...}. Figure 2 shows the relationship
between ∆Q generative models, observations, and expected
value descriptions of observations.

Given a model M, we can choose to sample the model at
any set of times {t0, ..., tn}. Suppose the goal is to capture the
performance of a specific application across the network. In
that case, it makes sense to select a set of sampling times
that reflect the pattern of packet arrivals generated by the
application in question. Having decided on a set of sampling
times, generating a set of observations from M amounts to
running the model forward from a starting state. We can
generate trajectories through the model by randomly selecting
which edge to transverse according to the probabilities of
P and dwelling in state s according to a random sample
from T (s). When t0 amount of time has been simulated, we
generate a latency (or loss!) value ot0 according to the ∆Q of
the state the model happens to be in at time t0, s(t0).

B. Computing the average service time

Given a model M, what is the average service time? Here,
Kendall’s methods come to the rescue [12]. The rationale for
using a ∆Q generative model is to get higher fidelity de-
scriptions of network performance than what can be achieved

with time-average methods. However, knowing the long-term
average delay can still be helpful. The average service time
can be used to decide what the utilization factor (the value
of ρ) is for a given arrival pattern, and it can be used to find
the maximum long-term average throughput of the interface.
The transition matrix P contains the information we need to
evaluate which state the system is in immediately after chang-
ing state because P defines an embedded Markov chain. We
find the steady-state of the state distribution of the embedded
Markov chain by computing the eigenvectors of the transition
matrix and choosing the (normalized) eigenvector with the
largest eigenvalue. Because the time spent in each state is not
equal, we need to weigh the steady-state distribution of the
embedded Markov chain by the average time spent in each
state (this is given by T ) to find the probability of finding the
system in each state at a randomly sampled point in time.

Having calculated how likely it is to find the system in
each of its possible states at a random point in time, we
can use the probabilistic choice operator for ∆Q values [18]
to compute the steady-state ∆Q. We denote the long-term
average quality attenuation by ∆QM. We can think of this
as the quality attenuation we expect to observe if we do not
have any information about the state of M. The average of a
∆Q value is infinity if there is a non-zero chance of packet
loss. However, we can also think of a ∆Q value as describing
the time it takes a network interface to process a packet. From
this perspective, it makes sense to specify the duration of a
loss, that is, the amount of time it takes to fail to transmit a
packet. We define the average of a ∆Q value in equation 2,
where Dloss is the latency distribution over processing times
for lost packets.

E[∆Q] = avg(P (t))∗(1−P (∞))+P (∞)∗avg(Dloss) (2)

The average of ∆QM, E[∆QM], is the average service time
of the model M. The long-term average throughput of M is,
therefore, 1

E[∆QM]
times the average payload size of a packet.

Given a specific arrival pattern, we can use the average service
time to compute the utilization ρ.

IV. AN EXAMPLE MODEL:
COMPUTING NECESSARY QUEUING DELAY

In this section, we work through a concrete example show-
ing both how ∆Q generative models can be used and how
they provide value. We describe the simplest model that
adds more temporal structure than a steady-state approach,
and show how the chosen example can inform buffer sizing
decisions in real-world scenarios. We analyze the model both
mathematically and using Monte Carlo simulation. The Monte
Carlo simulation method applies to all ∆Q generative models.
In contrast, the mathematical analysis only works in this
case because the chosen model is simple enough to facilitate
tractable mathematics. We show that both methods of analysis
produce the same results.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

235



Observations
{oi}

Observation sequence
{(ti, oti)}

∆Q generative model
M

Expected value descriptions:
PDF ({oi}), mean({oi}),

std({oi})

Time is abstracted away Time is explicitly considered

Forget {ti}

Compute E(M)

Learn Sample at {ti}Compute statistics

Fig. 2: The relationships between ∆Q generative models, expected value methods and observations of network performance.

A. Problem statement

This section develops a simple example model, which we
call the square wave approximation, and shows how ∆Q
generative models can be used to reason about the relationship
between queuing delay and throughput. This section shows
that the temporal information captured by the functions T of
the proposed model class can be crucial for good modeling of
network behavior. The mathematical analysis in this section
assumes a fluid-flow approximation of network traffic, whereas
the Monte Carlo simulation uses packetized traffic.

Consider a communications interface capable of sending
information at a maximum rate of C Mbit/s. Periodically, the
interface is disturbed so that capacity drops by a factor 1/r
to C/r Mbit/s. We let the capacity of the interface vary as
a square wave. One reason for choosing a square wave is
that it serves as a bounding worst-case for capacity variations.
The square wave approximation treats capacity changes as
instantaneous step changes and therefore captures the kind of
capacity variation that is most difficult to adapt to. In addition,
a square wave makes the mathematics relatively simple.

We also assume that the interface spends an equal amount of
time at each capacity before the capacity changes again (so the
square wave’s duty cycle is 50%). We normalize all service and
arrival time values by treating them as multiples of the service
time at the maximum rate. The described service pattern is
labeled S(t) in Figure 3(a), where normalized service time is
on the y-axis, and time is on the x-axis. We denote the period
of the square wave by κ and the frequency of the square wave
as f = 1

κ . An important observation is that the long-term
average latency distribution for the proposed service pattern is
the same for all values of κ. Figure 4 shows the model as a
state transition diagram.

We assume a traffic flow is attempting to utilize the varying
capacity interface fully. A reasonable strategy for achieving
100% utilization is to send packets at a constant rate equal
to the average rate of the link. This strategy maximizes link
utilization while avoiding the need to phase-match sender rate
variations with the variations of the bottleneck interface.

B. Analysis

The average service rate, Cavg , of the square wave is the
average of the two rates C and C/r, calculated as shown in
equation 3.

(a) Time per arrival and per service

0 κ 2κ

Time

− r−1
r+1

0

r−1
r+1

q̇(t)

q(t)0

(r−1)κ
(r+1)2

(b) Queue depth and queue growth rate

Fig. 3: A square-wave service pattern with constant arrival rate
at the average service rate, and plots of the resulting q(t) and
q̇(t).

∆Qs0 = 1/C ∆Qs1 = r/C

T (s0) = κ/2

T (s1) = κ/2

Fig. 4: The example model. The probabilities P (s0, s1) =
P (s1, s0) = 1 have been left out to improve readability.

Cavg =
C + C

r

2
=

rC + C

2r
=

(r + 1)C

2r
(3)

The average service time when the interface is running at
100% capacity is proportional to 1/C, as shown by equation 4.
For a general ∆Q generative model, the method described in
section III-B can be used to calculate the average service rate

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

236



and consequently also the constant arrival rate that achieves
100% utilization.

A(t) = avg(S(t)) =
1

Cavg
=

2r

(r + 1)C
=

2r

r + 1

1

C
(4)

Figure 3(a) shows per-packet arrival and service time for
the case where time per arrival is 2r/(r + 1), which is the
average value of the service time at 100% utilization. Given
that the values for the arrival and service times are expressed
as multiples of 1/C, we can compute values for the length
of the queue at the interface. The queue grows or shrinks
at a rate defined by equation 5. Because the packet arrival
rate is kept constant, the length of the queue measured in
seconds is the integral of equation 5 over time, with the caveat
that queue delay cannot become negative. Equation 6 shows
how to compute the value of q(t) assuming q(0) = 0 and
taking into account that the queue depth cannot be negative.
Figure 3(b) shows values for the derivative of the queue depth,
q̇(t), and the queue depth, q(t). Because the factor 1/C is
present in both the numerator and denominator of equation 5,
the growth rate of the queue is independent of C. However,
for this analysis to be a good approximation to real networks
where data is transmitted as packets where each packet uses
a single rate, we require that the duration of single packet
transmissions at the slowest rate is much smaller than κ

2 .

q̇(t) =
Service time − Time per arrival

Service time
=

S(t)−A(t)

S(t)
(5)

q(t) =

∫ t

0

S(t)−A(t)

S(t)
dt−min(0,min

∫ t

0

S(t)−A(t)

S(t)
dt)

(6)
For the case of a square wave service rate and 100% link

utilization, the maximum queue size is equal to the size of the
green area (or 1/r the size of the red area) in figure 3(a), as
expressed in equation 7.

max(q) =

(
2r

r + 1
− 1

)
κ

2
=

(r − 1)κ

(r + 1)2
(7)

Figure 5 shows the peak delay at 100% utilization (ρ = 1)
for different values of f = 1/κ and r. The plot represents
the minimum delay that must be accepted for a constant-
rate arrival pattern to achieve 100% utilization of the modeled
interface with no packet losses. It is possible to achieve lower
delays, but that requires either lowering utilization, accepting
packet losses, or a combination of these.

If we select a target peak delay, ⌈q⌉, and insist on no packet
loss, how much must we reduce utilization to achieve our
goals? Inspecting figure 6(b) we can see that in the interval
from time 0 to κ/2, our target peak delay means we must limit
the slope at which the queue grows. Assuming the queue is
empty at time 0, we can derive equation 8. Observe that q(t)
is a straight line in the interval 0 to κ/2, and that S(t) = r
in the interval 0 to κ/2. Since the derivative q̇(t) is given by
S(t)−A(t)

S(t) , equation 8 follows.

Fig. 5: Peak queuing delay as a function of the frequency
of capacity changes for different values of r with 100% link
utilization

⌈q⌉ = κ

2
∗ S(t)−A(t)

S(t)
=

κ(r −A(t))

2r
(8)

Now, we solve equation 8 for A(t), and arrive at equation
9. We can now compute the maximum average value for A(t)
which, given r and κ, keeps the peak delay below a certain
target value ⌈q⌉ (here we assume ⌈q⌉ is less than the maximum
q(t) of equation 7).

A⌈q⌉(t) = r(1− 2⌈q⌉f) (9)

Reducing the arrival rate below the average service rate
will reduce link utilization, but how much? We now derive
an expression for the link utilization as a function of ⌈q⌉. Let
link utilization be defined as the achieved fraction of maximum
average throughput. Since throughput is inversely proportional
to the per-packet processing time, utilization can be expressed
in terms of the average per-packet arrival times A(t) and
A⌈q⌉(t). Equation 10 gives the link utilization fraction as a
function of r, f and ⌈q⌉.

U⌈q⌉ =
A(t)

A⌈q⌉(t)
=

(2r)/(r + 1)

r(1− 2⌈q⌉f)
=

2

(1− 2⌈q⌉f)(r + 1)
(10)

Figure 7 shows the value of U⌈q⌉ for different values of r
and ⌈q⌉. As we can see, the link utilization drops rapidly when
the frequency of capacity changes drops below the threshold
where ⌈q⌉ becomes smaller than the max(q) of equation 7.
Conversely, achieving high link utilization when ⌈q⌉ is small
puts requirements on the frequency of capacity changes.

For a general ∆Q generative model, it may not be possible
to derive an equation for the trade-off between utilization and
⌈q⌉. It is, however, possible to run a Monte Carlo simulation at
different utilization levels and plot the resulting peak queuing
delays. Figure 8 shows both analytical results and the results
of a Monte Carlo simulation for the case where r = 2 and
f = 100 Hz. The analytical results are derived by solving
equation 10 for ⌈q⌉ and inserting values for r, f and U⌈q⌉. The

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

237



(a) Time per arrival and per service

0 κ 2κ

Time

− r−1
r+1

0

r−1
r+1

q̇(t)

q(t)0

dqe

(r−1)κ
(r+1)2

(b) Queue depth and queue growth rate

Fig. 6: A square-wave service pattern with constant arrival rate
at the average service rate, and plots of the resulting q(t) and
q̇(t) when delay is bounded at ⌈q⌉

0 100 200 300 400 500

Frequency

0.5

0.6

0.7

0.8

0.9

1.0

U
dq
e

r = 2, dqe = 0.01s

r = 2, dqe = 0.001s

r = 3, dqe = 0.01s

r = 3, dqe = 0.001s

Fig. 7: Maximum utilization that keeps peak delay below ⌈q⌉
as a function of square wave frequency

simulation is performed using a discrete event simulator. Simu-
lations are run for two seconds of simulated time, accounting
for 200 periods at the selected 100Hz frequency. The peak
packet rate is set to 81000 packets a second in the simulator,
corresponding to a typical 1 Gb/s link with maximum packet
size of 1500 bytes. Since this particular model is deterministic,
there is no need to run multiple random seeds, but this would
obviously be necessary in the general case.

V. DISCUSSION

We can sum up the results of our analysis as follows:
We have derived expressions to quantify the relationship
between delay and utilization when the service rate varies
as a square wave, and no packets are lost. Additionally, we

0.0 0.2 0.4 0.6 0.8 1.0

Utilization

0.0000

0.0005

0.0010

0.0015

P
ea

k
la

te
n

cy
(s

)

Simulated r=2 f=100

Analytical result

Fig. 8: Peak latency as a function of utilization assuming no
packet loss

have shown that a Monte Carlo simulation-based approach
applicable to all ∆Q generative models produces the same
results as mathematical analysis of the square wave model.

We believe the square wave model is a reasonable first-order
approximation to the behavior of network interfaces where
transmit rate is uncertain. There are many examples of bearers
subject to capacity variations on many different timescales
in the current Internet. WiFi rates vary based on channel
conditions, and effective PON and DOCSIS rates vary based
on how many time slots a user is assigned. Both the channel
conditions and the time-slot allocation can change in 4G, 5G,
and in WiFi networks since WiFi 6. There is no reason to
believe a square wave service pattern is particularly common
in these network technologies. However, since the analysis is
applicable to single periods of duration κ, the results may
be reasonable approximations for temporary capacity drops
of duration κ/2. This makes our results a potentially helpful
point of reference for designing queuing policies and tuning
end-to-end congestion control algorithms running over these
technologies.

Congestion control algorithms such as TCP [1] or QUIC
[2] can react and adapt to changes in network capacity. These
algorithms observe end-to-end behavior such as packet loss
and latency, make inferences about the capacity of the end-to-
end connection, and adjust their transmission rate accordingly.
One might argue that the presence of congestion control
algorithms invalidates our assumption of a constant arrival
rate at the average service rate. However, because of signaling
delay, these algorithms cannot react immediately to changes
in network capacity. We believe our conclusions about the
coupling between queuing delay, packet loss, and utilization
are good approximations when κ/2 is smaller than the round-
trip time, even in the presence of end-to-end congestion con-
trollers. Round-trip times in the Internet are often on the order
of tens to hundreds of milliseconds, and so for the purposes of
analyzing Internet applications, results for frequencies above
10 Hz seem reasonable.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

238



VI. CONCLUSION

We have defined a novel class of models for reasoning
about variations in network quality and described the basic
algorithms needed to work with the models. Our results
show that the models capture features that are important for
buffer sizing. ∆Q generative models define a general format
for describing network capacity variations. Such a format
may serve as the interface between real-world networks and
theoretical modeling and analysis because the model class can
facilitate stochastic descriptions of recorded network traces.
More work is needed to realize this possibility. Future work
will explore machine learning of ∆Q generative models, and
implement emulation of network behavior in a testbed based
on ∆Q generative models. Learned models may pick up on
sources of capacity variation that are not typically modeled in
simulation studies, and thereby add to the robustness of results
from simulation and emulation studies.

REFERENCES

[1] V. Jacobson, “Congestion avoidance and control,” in
Symposium Proceedings on Communications Architec-
tures and Protocols, SIGCOMM 1988, New York, New
York, USA: Association for Computing Machinery, Inc,
Aug. 1988, pp. 314–329, ISBN: 0897912799. DOI: 10.
1145/52324.52356. [Online]. Available: http://portal .
acm.org/citation.cfm?doid=52324.52356.

[2] A. Langley, A. Riddoch, A. Wilk, et al., “The QUIC
Transport Protocol: Design and Internet-Scale Deploy-
ment,” Proceedings of the Conference of the ACM Spe-
cial Interest Group on Data Communication, vol. 14,
2017. DOI: 10.1145/3098822. [Online]. Available: https:
//doi.org/10.1145/3098822.3098842.

[3] J. Kennedy, G. Armitage, and J. Thomas, “Household
bandwidth and the ’need for speed’ Evaluating the
impact of active queue management for home internet
traffic,” Australian Journal of Telecommunications and
the Digital Economy, vol. 5, no. 2, pp. 113–130, Jun.
2017, ISSN: 22031693. DOI: 10.18080/ajtde.v5n2.99.

[4] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers
in the Internet: Networks without effective AQM may
again be vulnerable to congestion collapse,” Queue,
vol. 9, no. 11, pp. 40–54, Nov. 2011, ISSN: 15427749.
DOI: 10.1145/2063166.2071893.

[5] B. Spang, S. Arslan, and N. McKeown, “Updating
the Theory of Buffer Sizing,” Performance Evaluation,
vol. 151, Sep. 2021, ISSN: 01665316. DOI: 10.48550/
arxiv.2109.11693. [Online]. Available: https://arxiv.org/
abs/2109.11693v1.

[6] P. Goyal, M. Alizadeh, and T. E. Anderson, “Optimal
Congestion Control for Time-varying Wireless Links,”
Feb. 2022. [Online]. Available: http : / / arxiv. org / abs /
2202.04321.

[7] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh,
and V. Jacobson, “BBR: Congestion-Based Congestion
Control,” Queue, vol. 14, no. 5, pp. 20–53, Oct. 2016,
ISSN: 1542-7730. DOI: 10.1145/3012426.3022184.

[8] B. Briscoe, K. D. Schepper, M. Bagnulo, and G. White,
“Low Latency, Low Loss, Scalable Throughput (L4S)
Internet Service: Architecture,” Internet Engineering
Task Force, Tech. Rep. draft-ietf-tsvwg-l4s-arch-10, Jul.
2021. [Online]. Available: https://datatracker.ietf.org/
doc/html/draft-ietf-tsvwg-l4s-arch-10.

[9] K. Nichols and V. Jacobson, “Controlling queue delay,”
Queue, vol. 10, no. 5, May 2012, ISSN: 15427730. DOI:
10.1145/2208917.2209336.

[10] R. Pan, P. Natarajan, C. Piglione, et al., “PIE: A
lightweight control scheme to address the bufferbloat
problem,” in IEEE International Conference on High
Performance Switching and Routing, HPSR, 2013,
pp. 148–155. DOI: 10.1109/HPSR.2013.6602305.

[11] T. Høiland-Jørgensen, D. Täht, J. Morton, T. Hoiland-
Jorgensen, D. Taht, and J. Morton, Piece of CAKE: A
Comprehensive Queue Management Solution for Home
Gateways, Sep. 2018. DOI: 10.1109/LANMAN.2018.
8475045. [Online]. Available: http://arxiv.org/abs/1804.
07617.

[12] D. G. Kendall, “Stochastic Processes Occurring in the
Theory of Queues and their Analysis by the Method of
the Imbedded Markov Chain,” The Annals of Mathemat-
ical Statistics, vol. 24, no. 3, pp. 338–354, Sep. 1953,
ISSN: 0003-4851. DOI: 10 . 1214 / aoms / 1177728975.
[Online]. Available: http : / / projecteuclid . org / euclid .
aoms/1177728975.

[13] Y. Liu and W. Whitt, “The Gt/GI/st+GI many-server
fluid queue,” Queueing Systems, vol. 71, no. 4, pp. 405–
444, Mar. 2012, ISSN: 15729443. DOI: 10.1007/S11134-
012-9291-0/FIGURES/7.

[14] M. Welzl, “Network congestion control : managing
Internet traffic,” p. 263, 2005.

[15] H. Haile, K. J. Grinnemo, S. Ferlin, P. Hurtig, and A.
Brunstrom, “End-to-end congestion control approaches
for high throughput and low delay in 4G/5G cellular
networks,” Computer Networks, vol. 186, p. 107 692,
Feb. 2021, ISSN: 13891286. DOI: 10 .1016/ j .comnet .
2020.107692.

[16] A. Srivastava, F. Fund, and S. S. Panwar, “An experi-
mental evaluation of low latency congestion control for
mmWave links,” IEEE INFOCOM 2020 - IEEE Con-
ference on Computer Communications Workshops, IN-
FOCOM WKSHPS 2020, pp. 352–357, Jul. 2020. DOI:
10.1109/INFOCOMWKSHPS50562.2020.9162881.

[17] Broadband Forum, “TR-452.1 Quality Attenuation
Measurement Architecture and Requirements,” Tech.
Rep., 2020. [Online]. Available: https : / / www .
broadband-forum.org/download/TR-452.1.pdf.

[18] S. Haeri, P. Thompson, N. Davies, P. Van Roy, K.
Hammond, and J. Chapman, “Mind Your Outcomes:
The ∆QSD Paradigm for Quality-Centric Systems De-
velopment and Its Application to a Blockchain Case
Study,” Computers, vol. 11, no. 3, p. 45, Mar. 2022.
DOI: 10.3390/COMPUTERS11030045.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

239


	29



