
Integrated Network and End-host Policy
Management for Network Slicing

Alexander Rabitsch∗, Themistoklis Anagnostopoulos†, Karl-Johan Grinnemo∗, Joseph McNamara‡,
Anne-Marie Bosneag‡, Michail Alexandros Kourtis†, George Xilouris†, Özgü Alay§, and Anna Brunstrom∗

∗Karlstad University, Karlstad, Sweden
alexander.rabitsch@kau.se karl-johan.grinnemo@kau.se anna.brunstrom@kau.se

†NCSR Demokritos, Athens, Greece
thmanagnostopoulos@iit.demokritos.gr akourtis@iit.demokritos.gr xilouris@iit.demokritos.gr

‡Ericsson, Athlone, Ireland
joseph.mcnamara@ericsson.com anne.marie.cristina.bosneag@ericsson.com

§University of Oslo, Oslo, Norway
ozgua@ifi.uio.no

Abstract—5G mobile networks introduce the concept of net-
work slicing, the functionality of creating virtual networks on
top of shared physical infrastructure. Such slices can be tailored
to various vertical services. A single User Equipment (UE) may
be served by multiple network slice instances simultaneously,
which opens up the possibility of dynamically steering traffic in
response to the specific needs of individual applications – and as
a reaction to events inside the network, e.g., network failures.

This paper presents the PoLicy-based Architecture for Net-
work Slicing (PLANS). In this policy framework, the network
slice management entity in the 5G core and the UE can coop-
eratively optimize the usage of the available network slices via
policy systems installed both inside the network and on the UE.
The PLANS architecture has been implemented and evaluated in
a 5G testbed. For two different case studies, we show how such
a system can be leveraged to provide optimized services and
increased robustness against network failures. First, we consider
a drone autopilot scenario, and demonstrate how PLANS can
reduce network-slice recovery time by more than 90%. Second,
we illustrate for a 360◦video streaming scenario how PLANS
can help prevent video quality degradation when a network slice
becomes unavailable.

Index Terms—5G, network slicing, transport services, user
equipment, policy system

I. INTRODUCTION

In a traditional mobile network, all communications must
share the same resources. However, the requirements of some
applications may conflict with each other. It is, therefore,
very challenging to satisfy all requirements concurrently.
Consequently, 3GPP has introduced the network slicing con-
cept in 5G for managing such diverse requirements. The
network slicing paradigm leverages virtualization techniques
to create multiple, isolated, virtual end-to-end Network Slice
Instances (NSI) on top of a shared physical network, whose
properties can be tailored towards specific requirements.

At the heart of the network slicing architecture is the slice
manager. This entity manages and monitors the network slices
throughout their lifetime. The slice manager has a holistic view
of the network, enabling it to effectively manage the network’s
resources while ensuring that the Quality of Service (QoS)

requirements on the different NSIs are fulfilled. In order to
effectively adapt to the dynamics of live networks, the slice
manager must be able to monitor the health and status of
its slices. In scenarios where a slice fails to live up to the
agreed-upon service level agreements, including worst-case
scenarios, such as when one or more network functions fail
and connectivity is lost, the slice manager must take the
appropriate actions to resolve the issue as soon as possible.
Close coupling between the slice manager and the User
Equipment (UE) services can help maintain connectivity, even
in adverse scenarios.

This paper presents the PoLicy-based Architecture for Net-
work Slicing (PLANS), an extensive policy framework for
network slice management. We build upon our previous
work [1], where we extended the network slice management
concept to include the dynamic configuration of the network
stack on the UE devices. In this work, we consider a more
comprehensive, policy-based framework where policy engines
installed inside the network and on the UE devices cooperate
to flexibly manage the network’s resources. In two separate
case studies, we show how such a framework can benefit
different applications: a low-latency drone control flow and
360◦video streaming.

The rest of this paper is structured as follows: Section II
provides a background on the network slicing concept and
policy engines. Section III introduces the overall system design
of the proposed framework. Section IV presents an example of
how the proposed framework can be implemented in practice.
Section V presents the two above mentioned case studies.
Section VI discusses some considerations for implementing
PLANS in 3GPP networks, and Section VII presents related
work. The paper concludes with Section VIII.

II. BACKGROUND

This section presents relevant background information on
some of the key technologies behind the proposed system.

978-3-903176-51-5 © 2022 IFIP

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

226



A. Network Slicing

The network slicing concept was conceived to satisfy an
increasing emergence of various services with unique require-
ments, such as Industry 4.0, connected vehicles, e-Health,
among many others.

An NSI is defined in [2] as a set of network functions
and the resources for these network functions, which are ar-
ranged and configured to form a complete logical network that
meets specific characteristics in terms of available bandwidth,
latency, or QoS, among others described in 5QI (5G QoS
Indicator). An NSI contains a list of Network Slice Subnet
Instances (NSSI), which in turn are comprised of the Network
Functions (NFs) and information about the interconnections
between them, including the topology and individual link
requirements (e.g., QoS attributes). The NSI is created from a
NEtwork Slice Template (NEST).

The lifecycle of an NSI comprises four distinct phases:
a preparation phase, an instantiation, configuration and ac-
tivation phase, a run-time phase, and a decommissioning
phase [3]. The slice manager, i.e., the Network Slice Man-
agement Function (NSMF), is responsible for managing the
lifecycle of an NSI. The slice manager is ready to process
incoming requests for communication services, provided that
the preparatory tasks, such as network slice design and net-
work slice pre-provisioning, have been done. When the slice
manager receives a service request, it selects a NEST that
can provide the agreed service requirements and commissions
an NSI consisting of shared and/or slice-specific radio access
network and core network functions. During the run-time
phase, the slice manager creates performance management
jobs for the NFs in each NSSI to generate performance data
of a network slice instance and monitor thresholds for selected
performance parameters.

B. Policy Engines

The PLANS framework integrates policy systems in the
network and the end host. Therefore, as an introduction to
policy systems, we present the APEX policy system, which is
used inside the 5G core in the proposed framework. Next, we
introduce the Transport Services architecture, which we use
for policy management on the UE.

1) The APEX Policy System: The Adaptive Policy Execu-
tion Engine (APEX)1 is a versatile and powerful policy engine
that enables automatic optimization in 5G networks. APEX
is an open-source tool that is part of the Open Network Au-
tomation Platform (ONAP) that offers an easy way to integrate
with various systems requiring an automated decision-making
element without the need to use any other ONAP components.

The APEX policy engine supports automatic decision-
making by accepting input events and requests from other
components, routing the input to the appropriate policies, com-
puting the policy results, and generating response events/ac-
tions to be processed by other components. One characteristic

1https://docs.onap.org/projects/onap-policy-parent/en/latest/apex/apex.html,
Accessed on: February 2022.

Triggering
System

Actioning
 System

Trigger Actions

Context
(retreived in real time) 

Incoming Context Outgoing Context

Domain Goals

Policy Engine (APEX)

Policy

Business Goals

Fig. 1: The general APEX architecture.

of APEX is that it can handle adaptive policies, i.e., policies
that can modify their behavior based on system and network
conditions. Figure 1 presents the general APEX architecture.

The following are the main components of APEX: (i) the
Triggering System, which receives events that can trigger a
policy. The connection supports standard technologies, such
as messaging systems, e.g., Kafka and Websockets, file input,
and standard input, (ii) the Actioning System, which sends the
result of a policy. Like the triggering system, the interface
supports messaging systems and file output / standard output,
and (iii) Policies, which are defined in a Universal Execution
Policy Specification (UEPS). They are directly executable in
an APEX engine. Higher-level policy specifications or existing
policy languages can be easily translated into UEPS.

APEX is also able to provide context information for all
events. Context information can be read from any outside
source, and it is automatically shared between engine instances
in an APEX system. Information injected into the policy con-
text may impact the policies. This information may originate
from business or domain goals, information derived from
executions of the current policies, and context information
retrieved from other components.

2) Transport Services: Transport Services (TAPS) [4] is
an architecture that enables the decoupling of networked
applications from the underlying network stack. TAPS defines
a flexible, protocol-agnostic API, which enables an application
to request an abstract transport service based on the applica-
tion’s high- or low-level requirements. The TAPS architecture
is comprised of two parts: the TAPS API and the TAPS
Implementation, as illustrated in Figure 2.

Before the connection establishment, the application de-
scribes its properties, i.e., its intent, its requirements, and its
preferences, which may influence the selection of network path
between the local and remote end-points, the selection and
configuration of a transport protocol, as well as the security
features for the connection. The properties passed from the
application to the TAPS API are fed to a policy engine in
the TAPS Implementation. In combination with policies and
cached information, e.g., previous connections (which may
be provided by an external system), the policy component
uses the provided properties to generate a collection of can-
didate connections that best implement the service described
by the application. The final transport service used for the
communication is selected through a racing process [5]; a
generalized version of Happy Eyeballs [6]. The first candidate
to establish a connection to the remote host is then chosen for

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

227



A
pp

lic
at

io
n

C
on

ne
ct

io
n Candidate

Racing

Protocol Stack

TAPS
Implementation

Policy Engine

Cached state

System Policy

TA
P

S
A

P
I

External input

Control plane Data plane

Fig. 2: The Transport Services architecture.

UE Orchestration

Access Edge

Core

 P
ro

to
co

l 
 S

ta
ck

     NSI

3. Event
4. Policy Execution

Slice
Manager

Slice
Monitoring

NSI
Repository

Application(s)

TAPS

USCI

Network
Policy
Engine

1. Event

2. Policy
Execution

Fig. 3: An overview of the PLANS architecture. The building
blocks and communication channels are highlighted in red.

the communication.

III. SYSTEM DESIGN

A 5G network may serve a single UE with up to eight
NSI concurrently, which allows a UE to set up and dynam-
ically steer traffic over several network slices in response to
the specific needs of its hosted applications. PLANS is an
architecture that enables user-equipment-assisted network slice
selection to leverage this feature. The PLANS architecture is
depicted in Figure 3. The slice manager is responsible for
the lifecycles, i.e., the preparation, instantiation, runtime, and
decommission of NSIs, which comprise the data plane in the
access, edge, and core networks. The slice manager is also
responsible for mapping NEST requests to one of the network
slice types supported by the network slicing architecture and
monitoring all active network slices. The slice manager enlists
its internal network-side policy engine to optimize the usage
of the available network slices, and to quickly react to detected
network slice anomalies.

Upon detecting an anomaly, the slice manager informs
the network policy engine of the event (1). The network-
side policy engine may recommend that the slice manager
perform a series of actions (2). Such actions may involve
the orchestration layer, such as attempting to restart a failing
Network Service (NS). Another action may be to signal the

event to the UE devices connected to the anomalous slice (3).
Such information is exchanged via a control plane channel
between the slice manager and the UE Slice Configuration
Interface (USCI) on the UE.

The USCI, in turn, supplies this information to the local
policy unit of the TAPS implementation. The TAPS component
assists and offloads UE-hosted applications to establish trans-
port services that meet their QoS requirements. When a UE-
hosted application requests a connection via the TAPS API, the
TAPS policy engine directs communication to an appropriate
slice based on the application properties, information about
NSI properties and their current status, as well as pre-specified
transport policies, e.g., the preferred use of particular NSIs
over others. Learning about the failure of a network slice may
for instance invoke a policy that directs communication to a
backup slice (4).

Note that the whole communication chain does not neces-
sarily need to be invoked – this depends on the context of
the event. For non-critical scenarios, the initial action recom-
mended by the network-side policy engine may be to restart a
misbehaving NS, and thus stopping the communication chain
after step 2. However, suppose the concerned slice has a
history of failure; in that case, the policy may recommend
a different action, such as temporarily steering the traffic over
to a different slice and restarting the NS. In more critical
scenarios, the policy may instead have the slice manager
instruct the UE to immediately steer the traffic to another
network slice at the first signs of failure. Once the NS has
been restarted, PLANS may opt to move the traffic back to
the original slice. Listings 1-2 show examples of network-side
policies that may be triggered after an NS fails for the second
time, and after the restart of said NS, respectively.

Listing 1: Failing slice
example policy

{
"event": {

"type": "failingNS",
"slice_id": <slice_id>

}
"policy": {

"conditions": "failure_count": 1,
"interal_actions": "restart_slice",
"external_actions": {

"notify_admin": false,
"notify_ue": true

}
}

}

Listing 2: Slice restart
example policy

{
"event": {

"type": "restartedNS",
"slice_id": <slice_id>

}
"policy": {

"external_actions": {
"notify_admin": false,
"notify_ue": true

}
}

}

IV. IMPLEMENTATION

In this section, we describe how we have implemented and
integrated the main components within the PLANS architec-
ture. We would like to stress that PLANS is generic, and the
components do not rely on the specific implementations that
we cover here.

A. The Katana Slice Manager

The Katana Slice Manager2 is an open-source software com-
ponent responsible for creating, managing, and monitoring 5G

2https://github.com/medianetlab/katana-slice manager

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

228



network slice instances. It ties the platform coordination and
the underlying infrastructure, management, and orchestration
layers together. It communicates with the existing management
and orchestration layer components through a South Bound
Interface (SBI) to achieve this. Katana receives the NEtwork
Slice Template (NEST) through a RESTful North Bound
Interface (NBI). It provisions the slice, deploys the NS’s,
configures all the slice’s physical and virtual elements, and
activates the end-to-end operation.

The NEST is used for describing the parameters of a
network slice. A NEST must complement the slice creation
request a user sends to the Slice Manager to deploy a new
slice. Katana’s current implementation follows the NG.116
– Network Slice Template v2.0, defined by GSMA3. This
document aims to assist network slice providers in mapping
network slices’ use cases into generic attributes. Katana parses
the received NEST and, in conjunction with the supported
capabilities of the underlying infrastructure, defines the virtual
and physical functions that shall be deployed and configured
as part of the slice.

The Katana Slice Manager is built as a mesh of integrated
microservices working collectively to offer slice management
services. Each service is implemented as an independent
software module in an isolated container. The Slice Manager
architecture exploits the microservices approach with all the
communications between components on a message bus. The
key advantages of this architectural approach are that it offers
simplicity in building and maintaining applications, flexibility,
and scalability, and the containerized approach makes the
applications independent of the underlying system.

Further details about the Katana Slice Manager can be found
in [7].

B. The APEX Policy System

The APEX engine has been integrated into the Katana
slice manager software stack as a Docker container and
enables automated decisions related to slice optimizations. The
integration and workflow are shown in Figure 4. In our imple-
mentation, APEX receives triggering events from Prometheus,
which runs as part of the Slice Monitoring module. When
a specific part of a slice is failing or misbehaving, which
results in a failed virtual NS, Prometheus generates an alert
and sends it to the APEX policy engine via the internal Kafka
message bus (message 1 in Figure 4). APEX processes the
incoming alerts from Prometheus and recommends a series
of appropriate actions to Katana. The recommended actions
are based on the alert and the underlying system conditions
and may depend on the use case/slice type. Therefore, once a
trigger is received, a request is sent to get the policy context
for this slice (messages 2-3). This context can include the
history of issues that the slice has experienced and whether
they have been resolved or not (message 4). This context
information is used together with the trigger information to

3https://www.gsma.com/newsroom/all-documents/generic-network-slice-
template-v2-0/

Prometheus
Alert Manager

APEX Engine

Prometheus
Alert Manager

Network Slice
Policy

Network Slice
Policy

Policy
Context

Policy
Context

1 Slice Event 2 Request Slice
Information

4 Check Slice
context 

Internal Katana
API

Internal Katana
API

5 Policy Response

3 Response

Fig. 4: A diagram for the integration of APEX and Katana.

generate the policy response, which is then sent over a REST
API to the Katana slice manager (message 5), who will execute
the recommended action.

C. The NEAT Module and the UE Slice Configuration Inter-
face

On the UE, the policy system consists of two main compo-
nents; the NEAT TAPS Module and the UE Slice Configura-
tion Interface (USCI).

1) The NEAT TAPS Module: This work employs the New,
Evolutive API and Transport-Layer Architecture for the Inter-
net (NEAT) implementation of the TAPS architecture, which
we deploy on the UE devices. A NEAT-enabled application
may access the services of the NEAT module via the NEAT
User API. NEAT’s policy components are invoked at each
new communication session. The Policy Manager implements
the TAPS policy engine, the cached information is stored in
a so called Characteristics Information Base (CIB), and the
system policy in the Policy Information Base (PIB). Each
policy consists of a set of rules that map requirements to
a set of specific slices and protocol stack configurations.
The policy manager uses the information in the PIB and the
CIB to identify the most suitable network slice and protocol
configuration that satisfies the application’s requirements.

Applications on the UE may take advantage of a NEAT-
enabled proxy that runs on the UE, which grants applications
that do not natively support the NEAT API access to TAPS
capabilities. The Linux transparent proxy feature is used to
route traffic through the proxy, which terminates outgoing
connections and then establishes a new connection to the
original destination using the NEAT module.

2) The USCI: The USCI handles the communication be-
tween the Katana slice manager and the UE. When joining
the network, the UE registers itself at the slice manager to
subscribe to information on each connected slice. Once the
registration process is done, the USCI begins to periodically
poll for the latest information on the status of each slice.
The polling frequency is in the order of tens of seconds,
or even minutes, so as not to induce too much overhead
on the network. In addition to the polling, the USCI also
begins to listen for alert messages related to the subscribed
slices sent from the slice manager. The information received

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

229



from the slice manager, whether retrieved via polling or an
alert message, is then prepared by the USCI for use in the
NEAT module by adding the information to the CIB repository
managed by the NEAT Policy Manager. Furthermore, the
USCI also allows the slice manager to push policies to the
UE, which may be combined with the information in the CIB
to enforce a particular behavior from the UE.

Slice A

Client Server

Core A

Core B

WAN Emulator

gNodeB A

gNodeB BSlice B

Fig. 5: The network topology employed in the testbed setup.

V. CASE STUDIES

To highlight the benefits of the PLANS architecture, we
present two case studies, each showing a different use case.
First, we introduce the testbed setup used in our experiments.
Next, we present the two case studies: a low-latency drone
control scenario, and a 360◦-video streaming scenario. We
have also evaluated the PLANS architecture in a bulk-transfer
scenario, which we have left out for the sake of brevity.

A. Testbed setup

The PLANS architecture has been implemented in the
5GENESIS Athens platform [8]. Figure 5 depicts an overview
of the network topology. Slices A and B utilize the Amarisoft
Callbox SA system for enabling end-to-end 5G connectivity
at the testbed, configured with different prioritization and QoS
parameters to differentiate the communication capabilities of
each slice. The client and server nodes are physical servers that
reside at the edge and core locations of the Athens platform,
respectively. The transport network connecting the two loca-
tions comprises multiple OpenFlow-based switches controlled
by the Slice Manager to enable connectivity within the scope
of the defined network slices. In addition to the physical
SDN switches, a virtual WAN emulator based on Mininet
is added as part of the Slice B path, allowing the creation
of complex WAN topologies with various configurable QoS
characteristics.

To illustrate the benefit of the proposed architecture, we
use the communication channel between the UE and the slice
manager to notify the NEAT module on the UE when a slice
failure occurs. Using the information from Katana, the NEAT
policy system can take immediate action and resolve the issue
on the UE side instead of waiting until a failing slice returns
to a normal and stable state. We repeat the experiments with
the PLANS framework disabled as a baseline for comparison.

B. Case study 1 - Latency sensitive drone control flow

1) Experiment description: In this experiment, we replay a
packet trace from a latency-sensitive flow between the client

and the server captured from the PixHawk 4.0 drone autopilot.
The capture comprises MAVLink packets sent over the 5G
Radio Access Network (RAN) with navigation commands. We
employ the QUIC protocol and its datagram extension to send
the MAVLink packets and measure the latency between the
server and the UE. We trigger a failure on the primary slice
twice throughout the experiment. Since Slice A is optimized
for low latency, it is desired to let the MAVLink flow use this
slice as much as possible. The UE should be instructed to
steer the flow to Slice A as soon as it becomes available, only
resorting to Slice B if it is the only option. Therefore, we feed
APEX with the following policy:

(i) If a slice has no previous history of failure, the slice
manager attempts to correct the issue by restarting the
misbehaving NS and notifying the NEAT policy system
on the UE of the failure. In doing so, the NEAT module
can take immediate action by switching over to the other
slice; it directs the UDP packets that carry the QUIC flow
over the new slice. When the slice manager has resolved
the issue, NEAT is again notified.

(ii) If the slice has a history of failure, the slice manager is
instructed to notify the system administrator as well as
the NEAT module on the UE and take down the slice,
and in so doing, allow the administrator to inspect the
error.

2) Results: Figures 6 and 7 show the measured latency
in two example runs; the first is the baseline with PLANS
disabled and the second is with PLANS enabled. Although
Slice B is not optimized for low latency, Figure 7 clearly
illustrates the benefit of instructing the UE to temporarily
switch over the latency-sensitive traffic to a secondary slice
during an outage on the primary slice. The time required to
correct a failing slice varies but can take more than 100 s as
seen in Figure 6, i.e., an unacceptably long delay in a use
case such as this. Switching over to a secondary slice as soon
as the failure is detected during the outage of the primary
slice maintains the connectivity, though, in this case, with a
lower QoS. We want to emphasize that the lower QoS is due
to the particular configuration of the secondary slice and not
our proposed mechanism. Figure 8 shows the aggregate of the
results in the form of an ECDF plot. Rather than omitting
lost datagrams, they have been assigned a very long delay.
As Figure 8 tells, around 20% of the datagrams arrive late
(or not at all), even with PLANS enabled. This is because it
still requires some time for the system to detect that Slice A
is failing, and any datagram frames sent during this time are
likely to be lost. However, compared to the baseline results,
where less than 50% of the datagrams arrive in time, this is
still a massive improvement.

C. Case study 2 - 360◦video streaming

1) Experiment description: In this experiment, we emulate
the playback of a 360◦video on the UE, which experiences
a failure on Slice A after 45 s. We use dashc as a DASH
video client, which streams a video hosted on a DASH HTTP

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

230



0 50 100 150 200 250 300 350 400
Time (s)

0

20

40

60

80
10

0
La

te
nc

y 
(m

s)
Slice A
Slice B

Fig. 6: Baseline drone results with the
PLANS framework disabled.

0 50 100 150 200 250 300 350 400
Time (s)

0

20

40

60

80
10

0

La
te

nc
y 

(m
s)

Slice A
Slice B

Fig. 7: Drone results with the PLANS
framework enabled.

0 5 10 15 20 25 30 35 40
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

EC
D

F

PLANS
Baseline

Fig. 8: Latency measured over the two
slices, with and without PLANS.

0 20 40 60 80 100 120 140
Time (s)

0
10
20
30
40
50
60

B
uf

fe
r 

le
ve

l (
s)

PLANS
Baseline

Fig. 9: The 360◦video stream buffer
levels, in seconds, over time.

0 20 40 60 80 100 120 140
Time (s)

0
25
50
75

10
0

12
5

15
0

17
5

R
at

e 
(M

b
ps

)

PLANS
Baseline

Fig. 10: The 360◦video stream delivery
rate over time.

0 20 40 60 80 100 120 140
Time (s)

0

1

2

3

4

R
at

e 
(M

b
ps

)

PLANS
Baseline

Fig. 11: Representation rate over time.

ngnix server. This setup enables us to measure various QoE
metrics, such as the buffer level after each segment download,
the representation rate (which maps to the video resolution),
and the delivery rate of each segment. Both slices can provide
the desired service in this use case, so there is no need to
switch back to Slice A once it restarts after a failure. Therefore,
we use the following APEX policy:

(i) If the slice experiences a failure, the slice manager will
restart the misbehaving NS and instruct the NEAT policy
system on the UE to switch to the other slice. In this
case, the slice failure triggers a new TCP connection that
is opened over the new slice.

2) Results: Figure 9 shows the buffer level over time
in two example runs, with PLANS disabled and enabled,
respectively. The buffer level is limited to 60 s. For the baseline
without PLANS, the video stalls indefinitely after the failure
on Slice A, whereas the video playback is unaffected when
PLANS is enabled: The buffer is only drained during the 10 s
until the switch to Slice B is made.

Both slices are capable of delivering the video at maxi-
mum quality. Nevertheless, the delivery rate of each segment,
presented in Figure 10 is much more dynamic when PLANS
is enabled, clearly showing the difference in the available
capacity of the two slices. Still, the representation rate is not
affected by whether or not the PLANS framework is enabled
or disabled. As shown in Figure 11, the representation rate is
consistently at the maximum, i.e., a bit above 4 Mbps, until
it stalls in the baseline run. Due to the stall in the baseline
experiments, which is not observed with PLANS, we conclude
that the end-user experience is not affected by the slice failure
when the PLANS framework is enabled. In other words, the
transition between the slices when using PLANS is seamless,
provided the buffer is large enough to cover the drainage
during the switch to Slice B.

Since the video playback permanently stalls for the baseline

runs when the TCP connection over slice A breaks, it is impos-
sible to plot the aggregate results accurately. The appearance
of such a plot would depend on factors such as the total length
of the video and the choice of when the network slice failure
on Slice A is initiated. Nevertheless, we consider the example
results in Figures 9-11 representative of the collected dataset.

VI. CONSIDERATIONS FOR 3GPP NETWORKS

For a commercial 5G network, a direct communication
channel between the slice manager and the UE would seem
unorthodox. 3GPP specifies no such interface between the
UE and the slice manager. While there may be multiple
possible solutions to allow the UE and the slice manager
to communicate, one such solution is to use the Network
Exposure Function (NEF) [9]. The NEF is a network function
responsible for securely exposing network capabilities, events,
and monitoring/analytics information, e.g., slice monitoring
data, to one or more so-called Application Functions (AFs).
An AF is an internal, trusted, or external, third-party network
function that interacts with the 3GPP Core Network. Trusted
AFs may interact with other NF directly, whereas third-party
AFs must interact with other NFs indirectly via the NEF. The
NEF acts as an intermediary between the network and the AFs,
granting the AFs access to the capabilities provided by other
3GPP NFs. Typically, an AF is co-located with an Application
Server, which may be reachable from the UE. Thus, a logical
communication channel between the UE and the slice manager
can be established by using the NEF. The UE would subscribe
to events concerning the slices it connects to at the AS/AF
and fetch up-to-date information on the slice from the slice
manager via the NEF.

VII. RELATED WORK

To our knowledge, few works consider end node- or user
equipment-assisted network slice selection in 5G networks.
The work in [10] [11] is perhaps most closely related to our

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

231



work. This work proposes a concept called trailer slicing,
where packets generated by an application on a UE carry
trailer bits containing metadata about their contents. These bits
may be used by switches in the network to allocate appropriate
network resources. Since this work precedes 5G, it primarily
targets SDN/NFV networks in general and virtual network
operators in 4G/LTE networks in particular. An example of a
more recent work that explicitly targets slicing in 5G networks
is the machine learning-based classification mechanism in
[12] that the authors name progressive slicing. In [13], the
authors propose a neural network-based, equipment-assisted
network slice selection mechanism called SMASH. Also worth
noting are the works on intent-based network-slice selection
that have been proposed in recent years [14]–[17], which
emanate from the large body of work conducted on policy- and
intent-based networks [18]. These works suggest translating
high-level service requirements into low-level network-slice
configurations using an intent policy engine. The PLANS ar-
chitecture distinguishes itself from the works described above
by being the only solution that relegates the network slice
selection at the end node to a local transport service or TAPS
component. Early work on end-to-end network slicing and
slice selection was conducted in [19]. This work was among
the first to showcase the feasibility of using SDN, NFV, and
software-defined radio to realize isolated end-to-end network
slices over a cellular network. A more recent solution was
proposed in [20], which employs deep reinforcement learning
to efficiently control the selection of network slices in both
the RAN and the core networks. The PLANS framework is
distinguished from these solutions by the direct involvement
of the UE in the network slice selection process. Notably, it
selects network slices through the cooperation between the
UE and the slice manager entity itself, thus leveraging the
unique knowledge and capabilities of both the end-host and
the network to select the most suitable slice for an application.
In combination with the capabilities displayed in our previous
work [1], this allows for better flexibility and utilization of the
network’s resources. Several works pertain to network slicing,
although not directly considering the selection of network
slices, e.g. [21], [22].

VIII. CONCLUSION

In this paper, we have presented PLANS, a framework
in which policy systems in the 5G core and on a UE may
cooperate to optimize the selection and steering of single
application flows over network slices to meet their service
demands. PLANS offers additional flexibility and robustness
compared to existing 5G network slice management in that a
UE and a slice manager can cooperatively ensure connectivity
during the failure of a network slice. We have implemented
PLANS in a 5G testbed and show in two case studies how
PLANS makes it possible to keep a service running (albeit
possibly with a lower QoS) during a network-slice failure,
and thus show that PLANS or a similar integrated UE-5G
core solution could be a solution to the problem of upholding

application-specific service demands in current and future 5G
networks.

REFERENCES

[1] A. Rabitsch et al., “Extending network slice management to the end-
host,” in Proceedings of the 1st Workshop on 5G Measurements, Mod-
eling, and Use Cases, ser. 5G-MeMU ’21. ACM, 2021, p. 20–26.

[2] 3GPP, “Technical Specification Group Services and System Aspects;
System architecture for the 5G System (5GS) (Release 17),” 3GPP,
Technical Specification (TS) 23.501, 09 2021, version 17.2.0.

[3] ——, “Technical Specification Group Services and System Aspects;
Telecommunication management; Study on management and orchestra-
tion of network slicing for next generation network (Release 15),” 3GPP,
Technical Report (TR) 28.801, 1 2018, version 15.1.0.

[4] T. Pauly et al., “An Architecture for Transport Services,” IETF, Internet-
Draft draft-ietf-taps-arch-13, Jun. 2022, work in Progress.

[5] A. Brunstrom et al., “Implementing Interfaces to Transport Ser-
vices,” IETF, Internet-Draft draft-ietf-taps-impl-13, Aug. 2022, work in
Progress.

[6] D. Schinazi and T. Pauly, “Happy Eyeballs Version 2: Better Connec-
tivity Using Concurrency,” RFC 8305, Dec. 2017.

[7] T. Anagnostopoulos et al., “Deliverable 3.4:
Slice Management (Release B),” 5GENESIS, Tech.
Rep., 2021. [Online]. Available: https://5genesis.eu/wp-
content/uploads/2021/05/5GENESIS D3.4 v1.0.pdf

[8] G. Xilouris et al., “Deliverable 4.3: The Athens Platform
(Release C),” 5GENESIS, Tech. Rep., 2021. [Online].
Available: https://5genesis.eu/wp-content/uploads/2021/09/5GENESIS-
D4.3 v1.0.pdf

[9] 3GPP, “Network Exposure Function Northbound APIs; Stage 3, (Release
17),” 3GPP, Technical Specification (TS) 29.522, 06 2021, version
17.2.0.

[10] A. Nakao, “Application specific slicing for MVNO through software-
defined data plane enhancing SDN,” in 2016 Optical Fiber Communi-
cations Conference and Exhibition (OFC), 2016, pp. 1–2.

[11] A. Nakao and P. Du, “Application-specific slicing for MVNO and
traffic characterization [Invited],” Journal of Optical Communications
and Networking, vol. 9, no. 2, pp. A256–A262, 2017.

[12] T. Iwai and A. Nakao, “Progressive Slicing for Application Identification
in Application-Specific Network Slicing,” in GLOBECOM 2020, 2020,
pp. 1–6.

[13] A. Fontana et al., “SMASH: a SMArt Slicing Heterogeneous 5G
network selection algorithm,” in 2020 IEEE International Symposium
on Broadband Multimedia Systems and Broadcasting (BMSB), 2020,
pp. 1–6.

[14] K. Abbas et al., “Network Slice Lifecycle Management for 5G Mobile
Networks: An Intent-Based Networking Approach,” IEEE Access, vol. 9,
pp. 80 128–80 146, 2021.

[15] N. Gritli et al., “Decomposition and Propagation of Intents for Network
Slice Design,” in 2021 IEEE 4th 5G World Forum (5GWF), 2021, pp.
165–170.

[16] T. A. Khan et al., “Intent-Based Orchestration of Network Slices and
Resource Assurance using Machine Learning,” in NOMS 2020 - 2020
IEEE/IFIP Network Operations and Management Symposium, 2020, pp.
1–2.

[17] D. Wang et al., “An Intent-based Smart Slicing Framework for Vertical
Industry in B5G Networks,” in 2021 IEEE/CIC International Conference
on Communications in China (ICCC Workshops), 2021, pp. 389–394.

[18] E. Zeydan and Y. Turk, “Recent Advances in Intent-Based Network-
ing: A Survey,” in 2020 IEEE 91st Vehicular Technology Conference
(VTC2020-Spring), 2020, pp. 1–5.

[19] C. Bektas et al., “Towards 5G: An Empirical Evaluation of Software-
Defined End-to-End Network Slicing,” in 2018 IEEE Globecom Work-
shops (GC Wkshps), 2018, pp. 1–6.

[20] Q. Liu and T. Han, “When Network Slicing Meets Deep Reinforcement
Learning,” ser. CoNEXT ’19 Companion. ACM, 2019, p. 29–30.

[21] C. Marquez et al., “How Should I Slice My Network? A Multi-Service
Empirical Evaluation of Resource Sharing Efficiency,” ser. MobiCom
’18. ACM, 2018, p. 191–206.

[22] D. Harutyunyan et al., “Orchestrating End-to-end Slices in 5G Net-
works,” in 2019 15th International Conference on Network and Service
Management (CNSM), 2019, pp. 1–9.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

232


	28



