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Abstract—Network delay is a crucial indicator for realizing
delay-sensitive task offloading, network management, and op-
timization in B5G/6G edge computing networks. However, the
delay prediction for edge networks becomes complicated due
to diverse access strategies and heterogeneous services’ storage,
computing, and communication resource requirements. Current
GNN-based delay prediction models such as RouteNet and PLNet
lack the ability to express the complex associations between links
and paths, so the predicted delay is not accurate. In this paper,
we propose a novel end-to-end delay prediction model named
MixerNet for edge computing, which is based on the mixed
multi-layer perceptron (MLP). In this model, a mixed MLP
architecture is applied to represent the association between links
in the network topology and various paths. Observing that each
link may have different effects on various paths, a weight matrix
is then defined and multiplied by the path matrix to express it.
Thus, a complete mapping frame from network characteristics
(e.g., traffic intensity and routing schemes) to delay indicator
is constructed. Finally, we perform extensive experiments on
NSFNET and GEANT2 datasets and regard RouteNet as the
baseline model. Experimental results show that MixerNet can
accurately predict end-to-end delay results on various network
topologies and the mean absolute error is merely about 0.36%.
MixerNet also outperforms the baseline model in most evaluation
indicators, especially the mean square error has a 3-fold decrease
in NSFNET.

Index Terms—Edge Computing, Delay Prediction, Multi-layer
Perceptron

I. INTRODUCTION

With the rapid development of communication technologies,
beyond 5G (B5G) and 6G edge computing networks are
expected to provide effective task offloading functions at
the network edge to meet the rigorous delay requirements
of heterogeneous services [1]. In edge networks, the delay
indicator is regarded as a critical optimization indicator of
service quality and network status [2], which is also used to
evaluate the performance of edge computing task offloading
[3] and routing schemes [4].

Therefore, the delay prediction model becomes an essential
component in achieving dynamic network management, and
optimization [5]. The role of the delay prediction model is to
construct the exact mapping relationships between the network
characteristics (e.g., traffic matrix, routing schemes, network
topologies) and the per-path delay indicators. In addition, it

can not only provide a real-time and zero-risk evaluation
environment of network performance for various optimiza-
tion strategies but also reduce the cost of the edge network
performance monitoring [6]. Due to diverse access strategies
and heterogeneous storage, computing, and communication
resource requirements, the network topologies, and traffic
features become more complex, increasing the difficulty of
delay prediction.

In this context, several efforts have been devoted to con-
structing delay prediction models. Traditional models are
mainly based on queuing theory [7] and make simple as-
sumptions about network traffic distribution and probabilistic
routing. These assumptions may be different from the actual
network properties. They may lead the model to fail to
fine-grained express the mapping relationship from network
characteristics to delay indicators [6].

Recently, deep learning (DL) models demonstrate superior
representation ability and efficient computational speed, which
is a well-suited method for building highly accurate delay
prediction models. Deep-Q [8] is proposed to express the
QoS metrics from traffic, RouteNet [6] leverages graph neural
network (GNN) to make accurate per-path delay estimations,
PLNet [9] predicts network performance distribution with
path-link GNN, xNet [10] additionally introduces queues and
flow features to obtain the delay predictions.

However, these DL-based models with diverse types of
GNN may lack the ability to express the inner correlations that
may exist between any two links. PLNet [9] takes the sum of
the corresponding link features as updated path features, so it
does not take into account the effect between links. RouteNet
[6] and xNet [10] apply gated recurrent unit (GRU) [11] to
orderly aggregate link features, so it can only simply express
the correlation between pre-order links and post-order links.

In this paper, we propose MixerNet, a novel delay prediction
model with mixed multi-layer perceptron (MLP) architecture
[12] to fine-grained express complex correlations between
network status and the delay indicator. Firstly, observing that
each link may have different impacts on various paths, a
weight layer is designed to sum the corresponding link features
from all path features containing it. Then the link update
block and path update block are defined by the mixed MLP
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structure, which contains one relation-mixing MLP and one
feature-mixing MLP to extend the receptive field, and widely
express potential relationships within paths and links. Finally,
we construct a complete mapping frame from network char-
acteristics (e.g., traffic intensity and routing schemes) to the
delay indicator and perform extensive experiments to evaluate
MixerNet on NSFNET and GEANT2 network delay prediction
datasets. Experiment results demonstrate that the structure of
MixerNet can be better and fully utilized in various network
topologies and traffic intensities. MixerNet achieves 3.43 times
higher prediction accuracy than RouteNet in NSFNET and
enables it to better adapt to the congested traffic environment.

II. RELATED WORK

Delay prediction models aim to construct the internal cor-
relations of several network characteristics to represent the
per-path network delay. Previous research efforts are being
devoted to predicting the network delay.

Traditional models attempt to predict delay results by queu-
ing theory [7] or network calculus [13] methods. However,
these models often make simple assumptions like the traffic
satisfies poisson distribution, and packets received by different
nodes are independent, which may be non-realistic network
characteristics and will make the traditional models fail to
fulfill their accurate prediction expectations.

As mentioned in section I, the network delay may be
impacted by not only traffic distributions but also many net-
work states such as network topologies, routing schemes, and
link bandwidth. To accurately predict delay, the model needs
to adequately represent the complex relationships inherent
in these network state metrics [10]. However, the numerous
network state indicators and the intrinsic correlations between
these indicators are too complex to model directly. Overall,
the prediction results of the traditional model are limited by
the accuracy and lack the ability to generalize the routing
configurations, and the network topologies [6].

Following the powerful expression of deep learning, re-
searchers recently attempt to predict delay by applying various
neural network architectures like recurrent neural networks,
graph neural networks, and fully-connected neural networks.
Deep-Q [8] designs a deep generative network with LSTM to
infer QoS metrics with real-time traffic conditions as input.
RouteNet [6] models path traffic and link bandwidth respec-
tively and utilizes message passing neural network (MPNN)
to express the inherent relationships between links and paths.
RouteNet predicts network performance metrics with traffic
distribution, routing schemes, and network topologies.

Then, PLNet [9], a variant of RouteNet, updates the link
and path features by bipartite path-link graph and message
networks to improve the delay inference speed. xNet [10]
represents various network characteristics and extends MPNN
architectures to infer data center network performance metrics.

However, these DL-based models lack the ability to express
the complex correlations between paths and links. Deep-Q
only considers the per-path traffic effects and is unable to
represent link bandwidth features that may affect the prediction

results. RouteNet and its variants do not take into account
the feature passing process between links when updating link
features. Moreover, they assume all paths have the same
impact on links, meaning that they are hard to express the
different interaction between links and paths.

III. EDGE COMPUTING SCENARIO

A simple application scenario of delay prediction model in
edge computing networks is illustrated in Fig. 1, which con-
tains one decision-making service, six base stations with edge
computing servers, seven user equipments with various delay-
sensitive computing tasks like video decoding, AI inference,
and VR rendering. The decision-making service, including the
optimizer module and the delay prediction model, ensures
the stable operation of heterogeneous network services [14].
The end-to-end delay results provided by the delay prediction
model can assist the optimizer to offload and manage comput-
ing tasks.

Fig. 1. Illustration of delay prediction model in edge computing scenario

For example, the VR rendering task on C2 is deployed on
B3 edge computing servers after being transmitted through
B5 node. When the delay indictor between B3 and B5 is
abnormal, the decision-making service can timely update the
deployment strategies and offload the tasks of C2 to B5 or B6

node to ensure the delay requirements of VR rendering tasks.
In summary, the delay prediction model can be applied to

three optimization problems to improve the edge computing
network performance.

(1) low-cost network performance monitoring and sim-
ulation. Traditional edge networks need physical monitoring
probes and real-time interfaces to obtain network performance
information. The delay prediction model can accurately infer
the end-to-end delay from network status in real-time without
the help of the high-cost delay perception [10]. Besides, the
model can also simulate and test the network performance in
various non-realistic environments to assist in optimizing the
network structure.

(2) delay-sensitive tasks offloading. When user equipments
initiate edge computing tasks like camera T1 needs to upload
photos or videos for face recognition, the SDN controller
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Fig. 2. The MixerNet model architecture. P is the path feature matrix, and L is the link feature matrix. B is the bandwidth matrix of all links, T is the
traffic matrix of all paths, and D is the per-path delay. The MixerNet is composed of a stack of N mixer blocks. Each link or path update block contains one
relation-mixing MLP and one feature-mixing MLP. Each MLP includes a GELU activation function and two linear layers, which is also named fully-connected
layer. Other components consist: skip connections, and layer norms.

needs to select an edge computing node from E1 and E2 to
offload the computing task. The task offloading algorithm will
comprehensively consider the end-to-end delay from T1 to E1

and E2 with the delay prediction model and other network
features to select a specific unloading node.

(3) zero-risk digital twin network environment. Recently,
numerous network optimization models start to leverage deep
reinforcement learning (DRL). However, the network con-
figuration generated by DRL may be unstable and perform
unreliably. To avoid unpredictable network risks and service
failures, the delay prediction model can aid in creating a zero-
risk digital twin network environment for DRL training and
evaluation, then improve the reliability of network optimizers.

IV. MIXERNET: MIXED MLP-BASED DELAY PREDICTION
MODEL

In this section, we first express the representation notations
of network characteristics and delay. Then, a novel delay
prediction model architecture is demonstrated and identified.
Finally, we illustrate in detail the mixed MLP structures that
are applied to update links and paths features.

A. Notation

An edge computing network N can be represented as
N = {L,P,R}. L = {l1, l2, . . . , li} is the set of links and i is
the number of links. P = {p1, p2, . . . , pk} is the set of end-to-
end paths and k is the number of paths. R = {r1, r2, . . . , rk}
is the set of path-specific link matrices according to routing
schemes. Each link matrix contains an end-to-end sequence
of link features for the corresponding path. In this paper,
the network characteristics and delay can be represented as
S = {B, T ,D}, where B = {b1, b2, . . . , bi} is the set of
link bandwidth, T = {t1, t2, . . . , tk} is the set of path traffic,
D = {d1, d2, . . . , dk} is the set of path delay.

B. Model Architecture

As mentioned above, all these network characteristics and
performance can be expressed by links or paths. For instance,
the bandwidth features are represented by link attributes, delay,

and traffic features are regarded as path attributes. Intuitively,
the complex internal correlations between various network
characteristics can be modeled by the relationships between
network links and paths, which is also applied in RouteNet
[6] and its variants [9], [10].

To fully express inner correlations between links and paths,
we extend the modeling framework of RouteNet and design a
novel delay prediction model named MixerNet. As shown in
Fig 2, MixerNet is composed of a stack of N identical mixer
blocks and takes the routing schemes, links, and paths features
as the input.

MixerNet first applies the linear layer (fully-connected
layer) to embed the per-path traffic and per-link bandwidth
in different vector spaces. Each bandwidth or traffic value is
projected to a desired hidden dimension c. The number of
links in the network is defined as i, and the path number is
represented by k.

In the initialization process, we select the traffic value as
the initial path feature and regard the bandwidth value as the
initial link feature. To express the relationship between path
and corresponding links, a gather layer is designed and orderly
splices the links contained in each path into path-specific link
matrices R according to routing schemes. In Fig. 2, r1 is
the corresponding link matrix of path p1 : C1 → B4, which
can be represented as r1 = [b2, b3] when the routing path is
C1 → U3 → B4.

Then a well-designed path update block (§IV-C) is applied
to learn the relationships between path features P and corre-
sponding link matrices R. After that, we weight all updated
path-specific link matrices to express the differential effect of
links under different paths. Then all weighted link matrices R∗

are added according to the link index to form new link features.
We also define a novel link update block (§IV-C) which is
similar to our path update block to represent correlations
between any two links. The entire process of updating paths
and links is named as a mixer block. The performance of the
delay prediction model can be improved by stacking mixer
block multiple times. Finally, the readout layer, consisting

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

193



of the MLP architecture, takes the last-update path features
to produce the per-path delay results. Algorithm 1 further
describes the internal framework and feature update process
of MixerNet.

Algorithm 1 Mixed MLP-based delay prediction model, Mix-
erNet.
Input: network characteristics Ns = {B, T }
Output: per-path delay D

// Initialize link and path states.
1: L0 = f1(B), P0 = f2(T )
2: for each n in range(N) do
3: for each path k in P do
4: Gather route features rn−1

k = γ(Ln−1)
5: Update pnk , r

n
k = Path-MLP(pn−1

k , rn−1
k )

6: end for
7: wn−1 = f3(Pn)
8: Ln∗ = ϕ(wn−1 · Rn

p )
9: Ln = Link-MLP(Ln−1,Ln∗)

10: end for
11: D = Readout(T N )

As shown in Algorithm 1, f1 and f2 are fully-connected
layers to initialize the link and path features, respectively. f3
is a fully-connected layer to represent per-path weight from
path features. γ is the gather function to build link features
into path-specific link matrices according to special routing
schemes. ϕ is the aggregate function for each link to sum the
corresponding link features from all the routing matrices.

C. Mixed MLP for Path and Links

RouteNet and its variants simply employ GRU to update
path and link features, which makes them only consider
correlations between adjacent context links and lack of global
receptive field. Moreover, it makes these models require strict
input format and hard to execute in parallel.

To break these restrictions, we refer to the MLP-Mixer
architecture [12] and design novel link and path update blocks
with mixed MLPs, respectively. The mixed MLP structure
mainly contains two types of layers: one MLP applied to re-
lation channels to ”mixing” the across features, and one MLP
applied to feature channels to ”mixing” the inner features. The
motivation behind this structure is to expand the information
exchange capability between various network characteristics.
Fig. 2 summarizes these mixed MLP structures.

To conveniently describe the dimensions of various variables
in the following, the maximum link number in link matrices
R is defined as j. In the path update block, for path k,
the path features pk ∈ Rc×1 and path-specific link matrix
rk ∈ Rc×j are concatenated into a tensor matrix named path
matrix xk ∈ Rc×(j+1). As shown in Fig. 2, the path update
block include two types of MLPs. The first one is relation-
mixing MLP: it performs on the relation channels and is shared
across all features. The second one is feature-mixing MLP: it
performs on feature channels and is shared across all relations.
Each MLP consists of two fully-connected layers and GELU

activation layers. The specific calculation process of n-th path
update block can be defined as follows:

xn−1
k = concat(pn−1

k , rn−1
k ),

x∗
k = xn−1

k + (W p
2 · θ(W p

1 · σ(xn−1
k )⊤))⊤,

xn
k = x∗

k +W p
4 · θ(W p

3 · σ(x∗
k)), (1)

pnk , r
n
k = κ(xn

k ),

where concat(·) is the concatenation function, κ splits xn
k from

the first row into new path features pnk and new link matrix
rnk . σ is the LayerNorm function [15], and θ is the element-
wise GELU activation [16]. W p

1 ,W
p
2 ,W

p
3 ,W

p
4 are the tensor

matrices to make linear transformations to the path matrix. The
W p

1 ∈ Rµ(j+1)×(j+1) and W p
2 ∈ R(j+1)×µ(j+1) are combined

into relation-mixing MLP, W p
3 ∈ Rµc×c and W p

4 ∈ Rc×µc are
included in the feature-mixing MLP, where µ is the rate of
hidden dimension. In MixerNet, the hidden rate µ is set to 0.5
to reduce the overfitting risk and model parameters.

In n-th link update block, the link features from the previous
link update block Ln−1 ∈ Rc×i and the link features from
the weight layer Ln∗ ∈ Rc×i are concatenated into the input
matrix un−1 ∈ R2c×i. The n-th link update block can be
defined as follows:

un−1 = concat(Ln−1,Ln∗),

u∗ = un−1 + (W l
2 · θ(W l

1 · σ(un−1)⊤))⊤,

un = u∗ +W l
4 · θ(W l

3 · σ(u∗)), (2)
Ln = ϱ(un),

where concat(·) is the concatenation function, ϱ is maxpooling
function with a scale of two, and W l

1,W
l
2,W

l
3,W

l
4 are the

tensor matrix to make linear transformations to the link matrix.
The W l

1 ∈ Rηi×i and W p
2 ∈ Ri×ηi are defined as relation-

mixing MLP, W p
3 ∈ Rηc×c and W p

4 ∈ Rc×ηc belong to
feature-mixing MLP, where η is the rate of hidden dimension.
In MixerNet, the hidden rate η is set to 0.5 to reduce
parameters and avoid the phenomenon of sparse distribution
of features.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we apply two mainstream delay prediction
datasets to evaluate the prediction accuracy and generality
of MixerNet. First, We reproduced RouteNet and regard it
as the baseline model. Then extensive experiments are used
to compare the delay prediction results and the distribution
of prediction errors of RouteNet and MixerNet with various
traffic intensities, network topologies, and routing schemes.
Finally, all simulation results show that MixerNet can produce
more accurate and stable delay prediction results. All simula-
tions are implemented with the Pytorch framework [17] and
run on Tesla V100 GPUs.

A. Simulation setup

We perform experiments on 14-node NSFNET [18] and
24-node GEANT2 [19] datasets from the popular available
Knowledge-Defined Networking (KDN) project, which are
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both generated by packet-level simulator OMNeT++ [20].
Details of these datasets are shown in Table I.

TABLE I
STATISTICS OF NETWORK DATASETS USED IN SIMULATIONS

Network Nodes Links Max path length Avg. path length
NSFNET 14 42 4 2.14
GEANT2 24 74 7 2.92

These KDN datasets assume that the network traffic can
be randomly generated by every end-to-end node pair [6].
Although in the entire mobile communication network, most
traffic data is concentrated between the radio access network
and the core network, the edge computing scenario will
make the traffic distribution more dispersed [9]. Therefore,
we believe that the network characteristics distributions of
NSFNET and GEANT2 datasets are similar to actual edge
computing scenarios. The simulation results are also reliable
and convincing in the edge computing scenario.

B. Evaluation indicators and loss function

To describe the calculation process of the evaluation indi-
cators, we define the real per-path delay of the network in
a certain time slice as D = [d1, d2, . . . , dk], and define the
model prediction delay as D′ = [d′1, d

′
2, . . . , d

′
k]. To measure

the prediction error and accuracy, we adopt the following four
evaluation indicators as well as recent works:

• Mean squared error (MSE):

MSE =
1

k

k∑
i=1

(di − d′i)
2, (3)

where k is the path number of the network.
• Mean absolute error (MAE):

MAE =
1

k

k∑
i=1

|di − d′i|, (4)

where | · | means the absolute value.
• Pearson correlation coefficient (PCC):

PCC =
E[(D − E[D])(D′ − E[D′])]

σDσD′
, (5)

where E is the expectation, σD and σD′ are the standard
deviation of D and D′, which is defined as follows:

σD =
√

E[(D − E[D])2] =
√
E[D2]− (E[D])2. (6)

• Mean absolute percentage error (MAPE):

MAPE =
1

k

k∑
i=1

|di − d′i
di

|. (7)

MSE is the most popular evaluation indictors to measure the
mean error between real delay and prediction result. However,
when the error is much less than 1, the square operation of
MSE will make the errortoo small to be measurable, so we
also apply MAE indictor to reduce this effect. In addition,
we employ PCC to measure the linear correlation between

predictions and ground truth. We also use MAPE to normalize
the prediction error of different delay scales.

A highly accurate delay prediction model will show high
PCC and low MSE, MAE, and MAPE. In MixerNet, we use
the MSE as the loss function like RouteNet and its variants
because it is more robust and can achieve better performance
than other evaluation indicators [9].

C. Implementation

Since PLNet [9] and RouteNet [6] achieve a similar accu-
racy level and xNet [10] is not suitable for the edge computing
scenario, we select the RouteNet as the baseline model.

We use the Adam optimizer to minimize the MSE with
the learning rate of 0.001. In addition, we further improve
the prediction performance by reducing the learning rate by
half when the validation MSE indicator stops decreasing.
Validation is performed every 5000 training steps. To suffi-
ciently train MixerNet, the early stopping mechanism is used
to monitor the MAPE metric and stop the training when no
improvement is observed for 10 validation steps.

To balance the performance and inference speed, and ensure
the fairness in comparision with RouteNet, we set the stacking
times of the mixer block to 8. We also apply a grid search
algorithm in the NSFNET dataset with the MAPE metric as
the optimization objective to tune hyper-parameters. The well-
tuned hyper-parameters are summarized as follows: batch size
b = 32, dimension of path and link features d = 128, dimen-
sion of readout MLP δ = 256. Finally, we conduct extensive
experiments on both NSFNET and GEANT2 datasets using
these well-tuned hyper-parameters.

D. Comparison of evaluation indicators

Before the training process, these datasets are split into the
train and validation sets in 8:2, respectively. Each set contains
numerous network simulation results with 9, 12, and 15 traffic
intensities. We report the delay prediction performance of
RouteNet and MixerNet on two popular network datasets
under various traffic intensities. The experiment results of
MixerNet and RouteNet are shown in Table II.

TABLE II
DELAY PREDICTION RESULTS ON TWO NETWORKS. THE BEST RESULTS

ARE IN BOLD

RouteNet/MixerNet MSE MAE PCC MAPE
Dataset Traffic 10−4 10−3 % 10−2

NSFNET 9 0.20/0.12 3.24/2.56 99.93/99.96 1.31/1.05
12 0.54/0.19 4.55/3.10 99.94/99.98 1.31/0.97
15 3.06/0.56 9.87/4.93 99.96/99.99 1.54/0.97
all 1.33/0.30 6.04/3.59 99.96/99.99 1.39/0.99

GEANT2 9 0.26/0.17 3.30/2.76 99.93/99.95 1.73/1.48
12 1.03/0.38 5.04/3.42 99.95/99.98 1.69/1.31
15 3.06/0.84 8.74/4.87 99.97/99.99 1.83/1.22
all 1.48/0.47 5.74/3.70 99.97/99.99 1.75/1.34

As shown in Table II, MixerNet outperforms the baseline
model in all evaluation indicators under all traffic intensities of
the two delay prediction datasets. Compared with RouteNet,
the MSE metric is 3.43 times lower in NSFNET and 2.15
times lower in GEANT2, the MAE metric is reduced by 62%,

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

195



and the MAPE is reduced by 36%. In addition, the PCC
indicator of MixerNet reached 99.99% on both datasets. The
experiment results show that MixerNet has a more accurate
delay prediction ability than RouteNet.

We also notice that the prediction error becomes pro-
gressively more prominent as the traffic intensity increases
from 9 to 15, and the error of RouteNet rises much more
than MixerNet. On NSFNET, the MSE metric of RouteNet
increases by 14.3 times, and it only increases by 3.7 times
in MixerNet; on GEANT2, RouteNet increases by 10.8 times,
and MixerNet increases by only 3.9 times. It is intuitive that
MixerNet is more stable and reliable than RouteNet and still
has higher prediction accuracy in the high traffic load scenario.

E. Comparison of prediction error distributions

In the network scenario, the delay prediction model with
a more concentrated distribution of prediction error represents
better stability. A small number of results with large prediction
errors may bring significant security risks to the network
management and services operation [6]. However, these wrong
results can not be reflected in the evaluation indicators when
numerous well predictions exist.

Hence, we report the cumulative distribution function (CDF)
of the relative error on two datasets over all the evaluation
samples to compare the model performance comprehensively.
The relative error is defined as follows:

ε =
d− d′

d
, (8)

where d is the real delay result and d′ represent the prediction
result.

The CDF result is illustrated in Fig. 3. The horizontal
axis represents the relative error value, and the vertical axis
represents the proportion of relative error results that are less
than specified ε. The cumulative distribution function of a
relative error variable E is defined as:

FE(ε) = P (E < ε). (9)

(a) CDF of NSFNET (b) CDF of GEANT2

Fig. 3. The CDF result of the relative error ε.

The CDF value of an accurate model will approach 0 when
ε < 0, and approach 1 when ε > 0. Fig. 3 shows that
MixerNet can provide more accurate and centralized delay
prediction results, which is closer to the ground truth than
the predictions of RouteNet. Moreover, we also notice that
the relative error distributions of RouteNet are unbalanced,

especially on the GEANT2 dataset. It demonstrates that more
than 60% of the prediction results produced by RouteNet are
higher than the real delay value on GEANT2. However, this
abnormal phenomenon is not evident in MixerNet, meaning
that the fine-grained modeling of network characteristics by
mixed MLP architecture in MixerNet can effectively alleviate
the imbalance in relative errors.

F. Comparison on various traffic intensities

From the above discussion, we notice that the prediction
accuracy of both MixerNet and RouteNet go down when
per-path traffic intensity rises. To further compare the delay
prediction performance of these models, we extensively report
the prediction error distributions of several traffic intensities.

The percentage error ν is regarded as the indictor when the
traffic intensity is set to 9, 12, 15. The percentage error is the
absolute value of the relative error and is defined as:

ν = |ε| = |d− d′

d
|, (10)

The raincloud plot [21] is applied to visualize and compare
the distribution of prediction errors for different traffic intensi-
ties, which attempts to provide an intuitive, statistically robust
picture of the data distribution.

In essence, the raincloud plot contains four kinds of sub-
graphs. The first one is a cloud plot: it is expressed by the
half of a violin plot to estimate the kernel density for each
prediction error value. The second one is a umbrella plot: it is
generated by a box plot without outliers to express the overall
distribution of prediction errors. The third is a rain plot: it is
produced by a raw scatter plot to visualize the location of the
furthest outliers in massive data. The last is a thunder plot:
it is a traditional line plot connecting the mean values across
each category. Using the raincloud plot, we present the density
estimates of the percentage errors for various traffic intensities
in NSFNET and GEANT2.

As shown in Fig. 4, the distributions of percentage errors
for MixerNet at all three traffic intensities are closer to 0
than RouteNet, thus illustrating that MixerNet enables to infer
more accurate and stable prediction results. In Fig. 4(a), we
notice that MixerNet maintains a lower and more concentrated
percentage error distribution in all traffic intensities, while it
is dispersed with the traffic density increases in RouteNet.
On the rain plot in Fig. 4(b), the maximum value of out-
lier points in MixerNet is less than 20%. In constrast, the
maximum percentage error of RouteNet is larger than 70%,
thus indicating that the model structure of MixerNet enables
it to provide accurate and stable delay prediction results under
different traffic intensities environments.

VI. CONCLUSION

In this paper, we first provide various application scenarios
of the delay prediction model in edge computing networks.
Then, we propose a novel end-to-end delay prediction model
named MixerNet, which is based on the mixed MLP ar-
chitecture. In the well-designed link update block and path
update block, a novel mixed MLP architecture is applied
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(a) The raincloud plot of NSFNET

(b) The raincloud plot of GEANT2

Fig. 4. The raincloud plot of MAPE under different traffic intensities.

to extend the receptive field of path and link during the
feature update process and enhance the representation ability
of MixerNet by modeling the potential correlations between
links and paths. In addition, the weight layer is designed
to express the diverse roles of each link in various paths.
Finally, we conduct comparative experiments for MixerNet
and RouteNet on two mainstream network delay prediction
datasets. Experiment results illustrate that the MSE metric of
MixerNet is 3.43 times lower in NSFNET dataset and 2.15
times lower in GEANT2 dataset.

In future work, we plan to test the prediction performance of
MixerNet for other network performance indicators (e.g., per-
path jitter and packet loss). Furthermore, we will explore the
general ability of the mixed MLP architecture in the network
delay prediction task.
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