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Abstract—The cloud native paradigm is emerging as a pathway
to developing applications for intrinsic operation on the cloud.
This prompted application modularity, leveraging the adoption
of the microservices architecture. Meanwhile, fog computing is
emerging as a geo-dispersed cloud, bringing services closer to
the end-user for localization and improved responsiveness. Tran-
sitioning to fog-native applications, i.e. managing microservice
workflows over the fog, is a non-trivial challenge. On one hand,
engineering workflows require awareness of the dependencies
across microservices, as they impact the perceived quality of
service. On the other hand, the heterogeneity of capacities,
energy prices and supply, introduce challenges that can negate
the sought advantages of the fog. This work proposes a novel
algorithm based on Alternating Direction Method of Multipliers
for intent-based workflow mapping and admission, iADMM.
The performance of the algorithm is evaluated analytically and
experimentally and compared to a baseline compute-network cost
minimization alternative. Evaluation results show that iADMM
achieves near optimal decisions in minimizing operational costs
without violating workflow intents.

Index Terms—cloud-native applications, fog networks, mi-
croservices, resource optimization, intent-based allocation, green
fog ecosystem

I. INTRODUCTION

The proliferation of cloud networks and services has
prompted the cloud-native paradigm, referring to the devel-
opment of applications for intrinsic operation on distributed
and elastic resources. This has demanded greater modularity
of applications, which incentivised larger adoption of the mi-
croservices architecture. So far, cloud-native applications run
within central clouds, having largely homogeneous infrastruc-
ture of virtually unlimited capacity. However, the tight control
and homogeneity have resulted in incorporating oversimplified
assumptions about applications and resources. This ultimately
restricted operations over multiple, heterogeneous, clouds [1].

Meanwhile, fog computing networks are rapidly growing
as a geo-distributed and heterogeneous infrastructure [2], [3].
Their adoption is widening to meet stringent latency and
privacy requirements, among others. The variant constraints
on fog resources increases the likelihood of application geo-
dispersion. That is to distribute application’s components over
different fog clusters and interconnect them to compose the ap-
plication. Facilitating dispersed, yet intent-compliant, deploy-
ment of applications under current orchestration mechanisms

is not straightforward. This is due to overlooking the hetero-
geneity and network impact outside cluster boundaries [4].

Specifically, the variation of compute-network capacities,
energy prices and quality of energy supply across clusters
introduce non-trivial trade-offs. On one hand, capacity con-
straints at the edge of the fog increase the likelihood of con-
gestion, which ultimately impact processing and/or network
latencies. On the other hand, variant energy prices and types
of energy supply at different clusters vary the operational costs.
Existing evidence shows that smaller data centers have higher
energy prices [5], [6]. This translates into higher operational
costs per application. Meanwhile, there is a globally growing
need to transition cloud operations to using clean energy [7].
However, the inconsistent supply and high price of such energy
are causing challenges for workload management that slowed
the speed of transitioning [8]. Emerging indicators such as [9]
show that purchase of green energy correlates strongly with
the size of cloud providers. This suggest that large clouds are
having the larger share of green energy.

The above creates multiple workload attraction forces,
which impact compliance with application intents and pro-
vision costs. These forces correlate with each other across
the hosting clusters, and create a ripple effect that impact
overall application performance. Furthermore, there is need
for efficient utilization of the sparse edge. This includes con-
serving small, “near-user”, clusters for time-critical processes
while pushing counterparts to cheaper clusters, within latency
intents. To facilitate such intent-based orchestration, there is
need for solutions that: 1) have knowledge of application
intents; and 2) can act on the fog underlying heterogeneity.

This work proposes a novel optimization algorithm for
solving the problem of intent-based mapping and admission
of fog-native microservice applications (workflows). The algo-
rithm incorporates awareness of latency and resource intents
while optimizing operational costs, given: compute-network
capacity, energy price and ratio of green energy supply. The
solving approach is fully decentralized; allowing for significant
flexibility and scalability. Hence, the contributions of this work
are three-fold: 1) model the fog ecosystem and formulate the
problem of intent-based workflow mapping and admission;
2) develop a decentralized algorithm for solving the prob-
lem, based on Alternating Direction Method of Multipliers
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(ADMM); and, 3) evaluate the performance of the algorithm
both analytically and experimentally, compared to a baseline
for joint minimization of compute-network cost (MinCB).

The remainder of this paper is structured as follows: Sec-
tion II reviews state of the art related work, Section III models
the fog ecosystem, including interactions among clusters’
orchestrators, and formulates the problem of intent-based fog-
native workflow mapping and admission. Section IV describes
the proposed intent-based ADMM (iADMM) algorithm, while
Section V evaluates the performance of the algorithm; and
finally, Section VI draws the conclusions.

II. RELATED WORK

Fog ecosystems are proliferating and have been investigated
extensively [1], [3]. Increasing research effort in this realm are
tackling problems of workflow and resource management. For
example, the work of [10] tackles the problem of workflow
offloading in mobile edge computing, given energy and cost
awareness. They developed a multi-objective optimization that
follow a computationally-expensive global solving method.
Stavrinides et al. [11] consider the orchestration of real-
time QoS-limited workflows. Instead of optimizing service
selection, they allow trading accuracy for QoS.

Distributed algorithms are showing higher potential to sup-
port intent-based workflow orchestration. For example, the
work of [12] proposes an ADMM algorithm that solves
the service mapping and routing problems at the node-level.
Although the solution is focused on unitary services, it pro-
vides an attractive baseline to a newer solution for fog-native
microservice workflows. The work of [13] in Service Function
Chaining (SFC) proposes a solution for SFC graph embedding
based on a combination of Bender decomposition and ADMM.
Their solution lacks consideration of latency and requires a
centrally-calculated global solution, from local ones.

Orthogonally, several efforts started investigating the role
of green energy in facilitating cloud services. For instance, a
review by Malik et al. [14] includes recent studies of optimal
use of green energy in fog computing for 6G-enabled IoT. The
work of [15] proposes a Mixed Integer Linear Programming
(MILP) approach to reduce CO2 emissions in fog-cloud archi-
tectures, showing a 71% CO2 reduction compared to resource
placement in distributed clouds. The work of [16] focuses on
request dispatching based on real-time availability of green
energy, showing a significant improvement in service time,
QoS violations, and green energy utilization simultaneously.
Similar to earlier reviewed efforts, these solutions address the
problem from different perspectives and while their solutions
provide a strong baseline for the work proposed here, they fall
short in incorporating critical parts of workflow intents.

III. THE FOG ECOSYSTEM MODEL

Recently, the fog-native architecture has been proposed
in [4] to enable intrinsic development and operations of
workflows within a fog ecosystem. A workflow is defined as a
set of microservices, selected and organized such that to satisfy
the intents of application developers and users. This requires
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Fig. 1. Network view of the fog ecosystem showing fog and access
orchestrators and the underlying programmable network

the two actors to define the desired behavior, i.e. intents, rather
than deployment plans. The architecture includes a flexible
management plane for intent-based composition of workflows.
This work propose to extend the architecture of [4] with intent-
based workflow orchestration. This section models the fog
ecosystem and formulate the problem of intent-based workflow
mapping and admission.

a) The network: A fog network (shown in Figure 1)
is a modeled as a set of access nodes U and a set of fog
nodes N . Each u P U , n P N are connected by a set of paths
Pu, i.e. u is multi-homed by N . Each n P N is typically
characterized by a wide set of metrics, this work focuses on
four: the computing capacity, cn in number of CPU cores;
the average computation speed of a node, µn in GHz (i.e.
equivalent to clock cycles/s); the energy price at the node site,
en in Penny per milliCPU (mCPU); and the ratio of green
energy supply, ηn, relative to the total energy consumption of
the node. Hence, the tuple xcn, µn, en, ηny characterize each
n P N . Similarly, each path p P Pu can be described by a
variety of metrics. Here, the focus is on: bandwidth capacity,
bp in Gb/s and the metric distance, lp in km. Hence, the tuple
xbp, lpy describes each p P Pu. Notably, energy cost in data
transmission is neglected in this work due to space limitation
and since existing evidence [17], [18] reveals that network
energy consumption is a marginal 3 ´ 8% of total energy
consumption in cloud and Internet systems.

b) Microservices & workflows: Application developers
advertise a set of microservices, S in the fog ecosystem. Each
s P S can be characterized by functional and non-functional
intents. Functional intents are outside the scope of this work.
They are primarily considered by the workflow manager of [4]
when constructing an intent matching workflow, wpSw,Rwq.
The latter is a subset of microservices, Sw Ď S, |Sw| “ m,
connected by Rw logical relationships in a dependency graph.
A user sends their request to the first s0 P Sw while expecting
a response back from the last microservice sm P Sw, after exe-
cution of the other microservices of Sw. Rw can be organized
as a set of chains Iw that connect s0 to sm. Once constructed,
the non-functional intents of w become the primary focus and
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they can be specified on a microservice and workflow level.
A non-functional intent describes a requirement rather than
function of a microservice.

c) Intents: Here, the focus is on non-functional intents.
Application developers specify the resource and QoS require-
ments, along with the input/output model of each microservice.
Resource requirements include: the average task size of a
microservice, cs in mCPU; and the average input and output
data size, qs and rs respectively. The input/out model assumes
the completion of Sw

k´1 microservices to trigger the start of
sk and independent retrieval of input data from a data store.
The latter can be embedded as microservices in the workflow
such that at least one s1

k P Sw
k´1 is the data store for sk,

providing qsk “ rs
1
k . QoS requirements can be wide. Here

they are narrowed down to the total latency of a workflow,
τw in milliseconds (msec), being the elapsed time between a
user sending their request to s0 and receiving a response back
from sm. Thus, workflow intents can be formulated as a set
of tuples txcs, qs, rsy | @s P Swu and xτwy.

d) Demand and decision variables: Each access node
u P U generate requests for workflow w at a rate of αw

u .
Notably, αw

u ” αs
u, @s P Sw. accordingly the workload and

traffic demands offered to the fog network can be defined as:

δsu “ αs
uc

s, ωs
u “ αs

ur
s, @u P U (1)

Where δsu and ωs
u are the workload and traffic demand per-

microservice in a workflow, respectively. Notice that the traffic
equation in (1) can be modified on a per-workflow basis to
account for the largest of pqs, rsq, @s P Sw. Here, rs is
assumed the largest. An access node u decides βs

un P r0, 1s

fraction of requests for s P Sw to be mapped to fog node n.
Equivalently, n fog node decides γs

un P r0, 1s the fraction of
requests received by u to be admitted for processing.

e) Operational cost: Two forms of costs are incurred
in such a fog ecosystem: first, the cost of processing admitted
requests for s at fog node n, θsn. This is driven by the structure
of energy supply in terms of price and greenness, along with
the task size cs. Incorporating cs in the admission cost allows
a fog node to tune the attraction of microservices based the
effect of their size on the node’s welfare. The second cost is
that of data transmission from either n to u, θsun; or from n to
another fog node m P N , θsnm. The transmission cost is driven
by the input/output data size of s, bandwidth capacity on the
path and the length of the path. Given that inter-fog node paths
generally have higher capacity than access-fog paths Pu, we
assume θsnm ă θsun. For simplicity, we optimize for θsun given
Pu then utilize pnm direct paths instead.

f) Workflow latency: The observable latency of a work-
flow w can be defined as:

τ�pwq “
ÿ

sP�pwq

τs (2)

where �pwq is the diameter of w, specifying the longest chain
in Iw. Length is defined by the combination of: the number
of microservices in the chain, |�pwq|; the task size cs of each
s P �pwq; and, the output data size rs. τs is the latency

incurred by a single microservice s P �pwq, including the
processing latency along with the output data transmission and
propagation latency. The processing latency τsn is dependent
on the service rate of s at n, defined as µn{cs requests/s. Now,
n can be modeled as an M/M/1 queue, given Little’s law [19]
and assuming balanced distribution of load across all CPUs:

τsn “
cscn

cnµn ´ cs
ř

uPU βs
unδ

s
u

(3)

The transmission latency τsun is derived by the forwarding
rate of the underlying network on path pun P Pu. Notably,
pun is expected to traverse a series of forwarders, each can
be modeled as a M/M/1 queue and collectively they form a
tandem queue. Assuming the number of forwarders on pun is
known, hp, and all forwarders on pun has the same average
service rate equal to bp{rs the transmission delay can be
formulated as:

τsun “
hpr

s

bp ´ γs
unω

s
u

(4)

The propagation latency is dependent on the link medium and
metric length, here we assume an underlying network is optical
and hence the proposition latency is τp “ lp{p2 ˆ 108q.

A. Problem formulation

Given the above, the problem of intent-based workflow
mapping and admission can be formulated as a constrained
minimization of two costs: provision of compute resources
of microservices running on fog nodes, and provision of
bandwidth resources between access and fog nodes. Recall
that for simplicity, we pose the problem and solve it for
access-fog paths. Once an optimal solution is found, we
substitute access-fog paths with the direct and cheaper inter-
fog node alternatives, by applying principles of trigonometry.
Mathematically the problem can be defined as:

min
β,γ

ÿ

sPSw

ÿ

uPU

ÿ

nPN
δsuθ

s
nβ

s
un ` ωs

uθ
s
unγ

s
un (5)

Subject to:

Cτ :
ÿ

sPi

τsn ` τsun ď τ�pwq, τ�pwq ď τw @i P Iw (6)

Cc :
ÿ

sPSw

ÿ

uPU
δsuβ

s
un ď cn, @n P N (7)

Cb :
ÿ

sPSw

ωs
uγ

s
un ď bp, @u P U , n P N , p P Pu (8)

Ca :
ÿ

nPN
γs
un “ 1, @s P Sw, u P U (9)

Ce : βs
un “ γs

un, @s P Sw, u P U , n P N (10)
Cv : βs

un, γ
s
un ě 0 (11)

Cτ constraint of (6) ensures the latency observed on any chain
i P Iw does not exceed the latency on �pwq. The latter,
in turn, does not exceed the response time intent τw. Cc

constraint of (7) ensures that the CPU resources reserved at
any fog node for the workflow demand from all users do not
exceed the CPU capacity of the node. Cb constraint of (8)
ensures that the traffic incurred by mapping u’s demand to n
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does not exceed the bandwidth capacity of pun P Pu path. Ca

constraint of (9) ensures that all demand of an access node is
allocated, Ce and Cv constraints ensure that: 1) consensus is
reached on the fraction of demand mapped from u to n, and
admitted by n; and 2) all decision variables are positive.

The problem space for multiple workflows W is the size
of: |W| ˆ |Sw| ˆ |U | ˆ |N | with a number of variables easily
in excess of 106 for a small size network of no more than 10
nodes. This renders global solving methods highly expensive,
if at all feasible. Hence, in the next section we propose a
scalable approach to solving the problem by decomposing it
into per-node sub-problems; each of which is solved locally.

IV. DECENTRALIZED SOLUTION

This section describes the proposed intent-based ADMM
algorithm, iADMM, for solving the problem of (5) in a
scalable manner. To achieve the latter, we decompose the
problem into two-parts, solve them individually and then
combine the solutions iteratively until convergence is reached.

A. Decomposing the latency constraint

Cτ of (6) couples all variables of the problem, which would
have otherwise been easily decomposed. To address this, we
propose to decompose Cτ into the elementary components: τsn
and τsun, and associate them with the respective problem part.
Each element is then calculated by the respective orchestrator
at u or n, and shared with others to calculate the workflow
latency. Notice that the left hand side (LHS) of Cτ has two-
levels coupling: a) on microservice-level, between processing
and transmission latency of a microservice, τsn and τsun respec-
tively; and b) on a chain-level across, multiple microservices
of a chain i P Iw. To decouple the chain-level latency, we
calculate a weight factor, χs, of each microservice relative to
the workflow diameter �pwq:

χs “
cs ` rs

�pwq
, @s P Sw (12)

This allows for setting up an upper bound on the latency exhib-
ited by any microservice, irrespective of others. Specifically,
if τ�pwq ď τw holds then τsn ` τsun ď χsτw,@s P Sw holds
too. This allows for substituting Cτ with the simpler Cs

τ : a
microservice-level constraint that can be formulated as:

Cs
τ : τsn ` τsun ď χsτw (13)

Now, Cs
τ still couples the problems at microservice level,

which poses dependency on sharing state information across
fog and access orchestrators. To address this, we propose to
decompose the LHS of Cs

τ into the two terms and let each
orchestrator calculate its’ respective term for the variable of
its problem. Then each share the result with the other so that
both calculate τs. This allows for transforming Cs

τ to Cs,β
τ

and Cs,γ
τ , which can be defined as:

Cs,β
τ :

cscn
cnµn ´ cs

ř

uPU βs
unδ

s
u

` τsun ď χsτw (14)

Cs,γ
τ : τsn `

hpr
s

bp ´ γs
unω

s
u

ď χsτw (15)

Now, the problem can be decomposed into two parts as
described next.

B. Problem decomposition and solution

First, the augmented Lagrangian of the problem is formu-
lated as:

Lpβ, γ, λq “
ÿ

sPSw

ÿ

nPN

ÿ

uPU
δsuθ

s
nβ

s
un ` ωs

uθ
s
unγ

s
un`

λs
unpβs

un ´ γs
unq `

ρ

2
pβs

un ´ γs
unq2

(16)

Where ρ ą 0 is the penalty parameter of L. Notably, the
augmented Lagrangian is strictly convex, irrespective of the
original form of the problem. The mapping part of (16) is
posed as a per-access-node set of sub-problems in the form:

min
γw
u

ÿ

sPSw

ÿ

nPN
γs
un

´

ωs
uθ

s
un ´ λs

un `
ρ

2
pγs

un ´ 2βs
unq

¯

(17)

Subject to: Cs,γ
τ of (15), Cb of (8), Ce of (10) and Cv of (11).

Equivalently, the admission problem term of (16) can be posed
as a per-fog-node set of sub-problems in the form:

min
βw
n

ÿ

sPSw

ÿ

uPU
βs
un

´

δsuθ
s
n ` λs

un `
ρ

2
pβs

un ´ 2γs
unq

¯

(18)

Subject to: Cs,β
τ of (14), Cc of (7), Ce of (10) and Cv of (11).

Recall that Ce links the two problems so that consensus
is reached on the volume of served demand; consequently
giving one solution of the problem. Now, we apply an ADMM
method [20] to solve the problems of (18) and (17) iteratively.

At any iteration t, each cluster orchestrator uses the previous
solution of the mapping problem (γs,t´1

un ) together with λs,t´1
un

to solve its instance of (18) and share the solution, βs,t
un, with

access orchestrators. Each of the latter uses βs,t
un to solve its

instance of (17) and obtain γs,t
un. The two solutions are then

used to calculate the dual variable λs,t
un. The iterations continue

until the residual parameters of the problem are below the
primary and dual error gaps, i.e. spri ď ϵpri, sdual ď ϵdual.

Notice that τsun is calculated using βs,t
un rather than γs,t

un to
avoid churning the latency values by the error gap between the
two solutions, which would hinder the convergence of the al-
gorithm. The iADMM algorithm is described in Algorithm (1).
To expedite convergence without compromising performance,
we apply the penalty variation technique proposed by [20]
using: ζ ą 1, κinc ą 1 and κdec ą 1 as the multiplicative
parameters.

C. Complexity Analysis

The computation complexity is comprised of the calcula-
tions of: 1) the latency terms for each microservice of the
workflow, Opτwq “ |Sw|Opτsq; 2) the mapping decision,
Opγs

unq; and 3) the admission decision, Opβs
unq. The complex-

ity in calculating the latency terms is: Opτwq “ |Sw|OpN`1q.
The mapping decision complexity, without considerations of
parallel computations, is Opγw

u q “ |Sw|t
`

OpN3q`3OpN2q
˘

.
The first term is the complexity of decomposing the matrix,
while the second term corresponds to solving operations of the
system of equations. The admission decision complexity has
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Algorithm 1 iADMM
1: Given: ϵpri, ϵdual, ρ
2: Initialize: t Ð 0, βs,t

un, γ
s,t
un, λ

s,t
un Ð t0|@s P Sw, n P

N , u P Uu

3: Each n P N calculates τsn and advertise θsn, τ
s
n to the

access orchestrators.
4: Each u P U calculates τsun and advertise θsun, τ

s
un to the

fog orchestrators.
5: while spri ą ϵpri OR sdual ą ϵdual do
6: Each n P N : 1) solves the admission problem of (18)

to obtain βs,t`1
un ; 2) calculates new τsn based on βs,t`1

un ;
and 3) advertise βs,t`1

un and τsn to access orchestrators
7: Each u P U : 1) calculates τsun using βs,t`1

un ; 2) solves
the mapping problem of (17) using βs,t`1

un ; 3) calcu-
lates the new value of the dual variable, λs,t`1

un ; and
4) publish τsun, γ

s,t`1
un and λs,t`1

un to fog orchestrators.
8: Both access and fog orchestrators use τsn and τsun to

calculate new τs value.
9: Fog orchestrators calculate spri and sdual

10: Update ρt`1

11: t Ð t ` 1
12: end while
13: Each n P N publishes the converged solution ˆβw

un to each
access orchestrator u P U .

a similar complexity of Opβw
n q “ |Sw|t

`

OpU3q ` 3OpU2q
˘

.
On a 64-bit server with CPU of 1.70GHz and L2 cache of
1024K; the algorithm’s run takes « 10´ 20msec. This is for:
a number of iterations t “ 20; |N |, |U | “ 11 and |Sw| “ 5.

V. EVALUATION

This section evaluates the proposed iADMM algorithm, and
compares it to a baseline greedy algorithm for joint CPU
and bandwidth cost minimization (MinCB). The baseline does
not consider the latency intent and allocates microservices
independently from each other in a workflow. The evaluation is
conducted both analytically and experimentally. The former is
realized using simmer Discrete Event Simulator1 for the Abi-
lene topologyp11 nodes, 28 linksq [21], as an example network
of the ecosystem. The experimental evaluation is realized using
the IDlab Virtual Wall2 for a tiered-mesh topology of p9 nodes,
11 linksq. A summary of the analytical and experiment settings
along with the source code for the experimental setup are made
available on GitHub3. Four key performance indicators are
analyzed: the Latency Residual Budget (LRB), an indicator
of compliance with the latency intent; the CPU Utilization
per fog node [workload/capacity], an indicator of workload
distribution when meeting resource intents; Bandwidth Uti-
lization per network path [traffic/capacity], an indicator of
traffic distribution; and Workload Greenness an indicator of
the fraction of workload executed using green energy.

1https://r-simmer.org/
2https://www.ugent.be/ea/idlab/en/research/research-infrastructure/virtual-

wall.htm
3https://github.com/togoetha/IntentFogWorkflows

A. Analytical Evaluation

Here, performance is evaluated for 25 workflows with
frequency of requests that follows a Zipf distribution, with
an exponent factor of 0.8. This is inline with existing models
of applications’ workload in realistic cloud networks [22].
Within the network, each access node presents requests from
a group of users between 500 and 2000. A set of fog nodes
of different tiers are colocated with a subset of forwards. The
tier is indicative of the node structure and attributes: 1) Tier-1
nodes are large cloud data-centers; 2) Tier-2 nodes are cloudlet
mini/micro-data-centers of larger number; and, 3) Tier-3 nodes
are nano-data-centers of the largest number. Detailed settings
are provided in the GitHub repository.

Two scenarios have been investigated: first, the fraction of
green energy supply is assumed higher in tier-1 data centers
compared to tier-3 edge. In the second scenario, the trade-off
between green energy supply and energy prices is analyzed
when: 1) supply of green energy is uniformly random and
energy prices are the same across fog nodes; 2) supply of green
energy and energy price are highest at tier-3 and lowest at
tier-1; and, 3) supply of green energy is highest at tier-1 while
energy prices are at their lowest. The first setting is a baseline
of the influence of energy supply in the overall placement cost,
while the second setting corresponds to use-cases where edge
data-centers benefit from greater access to green energy yet
energy prices remains higher. The third setting corresponds to
existing ecosystems where energy prices are lower for tier-1
clouds and they have higher supply of green energy.

B. Experimental Evaluation

Experimental evaluations are run on fog nodes of specifica-
tions provided in GitHub. A unit of processing work (mCPU)
is defined as the CPU time required to bubble sort 1000
integers, equal to 6{5 physical mCPU on a fog node. A tiered
architecture is simulated by limiting the total CPU budget of
all microservices on each node. Each node runs Ubuntu 20.04,
and microservices are deployed and managed by a customized
version of FLEDGE [23]. The latter provides containerd-based
container deployment and networking.

Three REST microservices are used in each topology:
1) A generator (i.e. user) creates requests for a workflow
at a configurable rate and with variable payload size. The
frequency of requests follows a normal distribution, with the
mean and standard deviation determined by configuration;
2) five processors (microservices), each execute 1 mCPU per
request and forward the result to the next microservice(s) in the
workflow; 3) A sink is the terminator for a workflow, receiving
requests and logging them with latency metadata.

To ensure statistically valid results, each workflow topology
is run with a variable amount of total requests, so that all users
are simultaneously generating load for at least 20 seconds. For
practical reasons, the experimental evaluation is performed
with only 3 users, each starting an average of 40 requests
per second. Notably, the choice of Golang REST services
imposes a significant communication overhead due to JSON
(de)serialization, and in some cases tier-3 nodes require up to
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(a) Infrastructure distribution - analytical (b) Infrastructure distribution - experimental (c) Supply of green energy - analytical

Fig. 2. The latency residual budget, shown for both analytical and experimental evaluations when varying the infrastructure distribution and the supply of
green energy per node.

10% extra CPU (i.e. 0.13 physical CPU core) to avoid crashing
overloaded services; both effects are considered in the results.

C. Satisfying latency intents

This section evaluates the LRB per workflow, both analyt-
ically and experimentally. The results are shown in Figure 2,
where a dashed line is plotted to illustrate the violation
threshold. That is: a negative LRB implies the response time is
higher than the latnecy intent τw. Figures 2a and 2b show the
LRB in analytical and experimental setups, when extending
the distribution of fog infrastructure from a 1-Tier cloud to
a 3-Tier cloud-to-edge. Both results show the LRB increases
(i.e. response time decreases) in a 2-Tier setting compared to
1-Tier and 3-Tier fog. In the latter, LRB drops significantly
with MinCB violating the threshold for a large number of
requests. iADMM, while generally having a lower LRB than
MinCB, it does not violate the threshold at any of the settings.
The awareness of response time intents and microservice
dependency allows iADMM not only to deploy workflows
on less constrained nodes, but also to balance the workload
over multiple Points of Presence (PoPs) of a microservice.
Furthermore, when τw permits, iADMM allocates demand
further away from the edge. This introduces network latency
that contributes to the lower LRB, but it spares CPU capacity
on constrained fog nodes. This reduces the likelihood of
creating black holes in the ecosystem where processing latency
violates the threshold, as observed for MinCB.

Figure 2c illustrate the analytical evaluation of LRB when
varying the supply of green energy per fog node. The results
confirm those shown in the first two figures. The LRB is
lowest for iADMM when the fraction of green energy supply
is uniformly random and the energy price is fixed across tiers.
This results in a dominating effect of the capacity weight
in the mapping and admission costs. Under these conditions,
iADMM spreads the workflow wider in the network, which
results in lower LRB instigated by network latency.

D. Fog CPU and Bandwidth Capacities

Figures 3a and 3b show the CPU and bandwidth utilization,
respectively as a fraction of capacity. Due to space limits, the
former is shown in experimental settings while the latter is
shown in the analytical alternative. Figure 3a show the results

when moving from a homogeneous cloud to a heterogeneous
fog. iADMM maintains low CPU utilization per node even
in a 3-Tier setting, while utilization under MinCB increases
exponentially. This is caused by the tendency of iADMM to
distribute the workload among all available PoPs, resulting in
a lower overall CPU use when additional tiers are available.
MinCB on the other hand, tends to cluster all services of
a workflow on as few nodes as possible. Practically, the
violations of MinCB are caused by a marginal increase in
cgroup limits to avoid crashing microservices on tier-3 nodes.

Figure 3b show the results when varying the supply of green
energy. When energy prices are fixed and supply of green
energy is random, bandwidth utilization is the highest overall.
This is because the quality of energy supply is dominant in the
cost of admission, causing the allocation to spread randomly
that leads to higher bandwidth usage. When the supply of
green energy is lower or higher at tier-3, iADMM bandwidth
utilization does not change much. This is because of the
added effect of energy prices in the cost of admission, being
the lowest at tier-1. This raises the trade-off between energy
supply, price and latency, ultimately resulting in no change to
bandwidth utilization when only the energy supply is varied.

E. Workload Greenness

This section analytically evaluates the fraction of workload
served using green energy, with the results shown in Figure 3c.
When the supply of green energy is random across nodes,
H&S workflows have a wider variation in workload greenness
than their Chain counterparts. This shows a larger number
of H&S workflows deployed over tier-2 and tier-3 nodes.
However, when the green supply is better at tier-3, workload
greenness under iADMM drops to « 0.66´0.7. This indicates
a continued high execution at tier-1, with a marginal increase
in using tier-2 nodes. This is because of the lower energy
prices at tier-1, outweighing the attractiveness of green energy
supply.

VI. CONCLUSIONS

This work proposed a novel intent-based Alternating Di-
rection Method of Multipliers algorithm (iADMM), for solv-
ing the problem of workflow mapping and admission. The
algorithm presents a decentralized approach, which allows for
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(a) CPU: Infrastructure Distribution-Experimental (b) Bandwidth: green energy - analytical (c) Greenness: Supply of green energy - analytical

Fig. 3. CPU and bandwidth capacity utilization, and workload greenness. CPU utilization is shown for the experimental evaluation. The bandwidth utilization
and workload greenness are shown for the analytical evaluation when varying the supply of green energy per fog node.

significant flexibility and scalability in workload management.
The performance of the algorithm has been evaluated analyt-
ically and experimentally, and compared to a joint CPU and
bandwidth cost minimization alternative. Evaluation results
illustrated the superiority of iADMM in deploying workflows
with minimum joint cost and without violating their intents.
Furthermore, evaluation results revealed non-trivial trade-offs
between workflow intents, the heterogeneity of energy price
and supply of green energy. This illustrated the need to
accompany greater supply of green energy with a drop in
energy price, to increase workload greenness. Additionally,
higher attention is needed to support the edge with cheaper
green energy, to reduce the cost of time-critical workflows.
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