
Multi-access Edge Computing as a Service
Pedro Escaleira, Miguel Mota, Diogo Gomes, João P. Barraca, Rui L. Aguiar

Instituto de Telecomunicações
Universidade de Aveiro

Aveiro, Portugal
{escaleira,miguel.mota,dgomes,jpbarraca,ruilaa}@av.it.pt

Abstract—Standardization organizations, such as the European
Telecommunications Standards Institute (ETSI), have been gath-
ering efforts to specify the Edge Computing paradigm. However,
there is still a lack of complete, interface-wise, actual implemen-
tations and evaluations of a fully functional Edge Computing
architecture. On these grounds, the work presented in this paper
proposes a new Multi-access Edge Computing (MEC)-Network
Functions Virtualization (NFV) architecture for a challenging
Business to Business to Consumer (B2B2C) model, based on
the references provided by ETSI, and provides a prototype
implementation to demonstrate its viability. The tests conducted
show that the proposed framework can be efficiently deployed,
allowing Telecommunications Operators to rapidly instantiate
and provide an elastic Edge Infrastructure to their customers.

Index Terms—Multi-access Edge Computing (MEC), Network
Functions Virtualization (NFV), Edge as a Service (EaaS), Open
Source MANO (OSM), Virtual Network Function (VNF), Busi-
ness to Business to Consumer (B2B2C)

I. INTRODUCTION

Over the last few years, the world has witnessed the pro-
liferation of Cloud Computing (CC). It allowed the transition
from costly, on-premises servers, not able to dynamically scale
computing resources and requiring constant management, to a
highly scalable, available, adaptable, and self-awareness com-
putation model. The strategy was to allow customers to deploy
their solutions to a cluster of distributed data centers [1].

However, as latency-sensitive services started to be de-
ployed, a considerable amount of research activities started
to focus on new technologies that “extend the Cloud” to the
network’s Edge, closer to where the User Equiments (UEs),
which produce the data to be computed, are located. One of
these technologies is Multi-access Edge Computing (MEC),
which has been conceptualized by the European Telecommu-
nications Standards Institute (ETSI) since 2014 [2].

The concept of MEC has evolved over the last few years,
and recently ETSI proposed the integration between MEC
and Network Functions Virtualization (NFV) architectures,
due to overlapping components and use cases [3]. NFV is a
paradigm aiming to decouple Network Functions (NFs) from
their physical equipment, and leverage existing virtualization
technologies to virtualize them [4]. This integration between
both concepts followed the first suggestion made by Sciancale-
pore et al. [5], which argued that this combination could be
performed thanks to a superposition between the management
and orchestration systems of both technologies. That has the
benefit of reducing the Capital Expenditures (CAPEX) and

Operating Expenses (OPEX), by allowing the reuse of the
NFV framework that Telco Operators might already possess.

To this end, and taking into consideration ETSI’s references
for MEC and NFV [3], we propose an enhanced MEC-NFV ar-
chitecture for a challenging Business to Business to Consumer
(B2B2C) use case, and demonstrate its feasibility in a Proof
of Concept (PoC) development based on Open Source MANO
(OSM), as the NFV-Management and Orchestration (MANO),
and Kubernetes, as the Edge Host container orchestrator.
Furthermore, the presented work introduces the possibility of
a MEC environment being provided on demand by a Network
Service Provider (NSP) as a service to their costumers, the
Communication Service Providers (CSPs), hence enabling a
MEC as a Service (MECaaS) model.

The rest of this document is structured as follows. First, we
review the underlying concepts of the proposed architecture
in Section II, as well as some relevant works related to the
conceptualization of a MEC-NFV architecture. In Section III,
we present our MEC-NFV architecture, having as a basis the
ETSI reference architecture. Then in Section IV, we describe
our PoC, and later in Section V, we evaluate its performance in
terms of deployment and scaling time. Finally, we conclude
our research in Section VI, with a summary and the main
future directions related to the proposed solution.

II. MOTIVATION AND USE CASE

In this work, we propose a MECaaS architecture, where
the main focus is to give a response to a Business to Business
to Consumer (B2B2C) model. The considered scenario has a
Telco Operator, the NSP, providing other Telco Operators, the
CSPs with a MEC platform for their customers’ applications.
This is different from the typical use case that most Telco
Operators have, where their immediate customers are the ones
that want to deploy the Edge Applications and not other Telco
Operators i.e., usually Telco Operators have a Business to
Consumer (B2C) model, being both a NSP and a CSP. This
most common model is also the one considered by ETSI while
developing the MEC reference framework architecture. With
this information in mind, there was the need for enhancing the
original architecture provided by ETSI.

A. Virtualization in the Edge

When it comes to virtualization approaches, two main types
are relevant to consider: hardware-level virtualization and the
OS-level virtualization [6].

978-3-903176-51-5 © 2022 IFIP

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

177

The hardware-level virtualization is characterized by the
virtualization of the hardware of a machine. In practice, this
means that applications can be packed with an OS, and then
distributed and deployed in several machines with different
underlying hardware or OSs, using Virtual Machines (VMs).
By contrast, containerization, or OS-level virtualization, is a
different means of distributing applications in a lightweight
way where there is no need to copy an entire OS as with the
VMs, since when a container is launched, the host OS will
run the analogous application in a controlled environment.

These differences also manifest in how the corresponding
applications can be migrated. Since a container is not packed
together with an entire OS, its migration will have a smaller
footprint, both in memory and in launching time, than in a
VM. Nonetheless, because of the difference on how both are
packaged, containerization has the disadvantage that the state
is lost. There are, however, already some projects and tools,
such as CRIU, which are making efforts to save and restore
the state of a container, although they are still limited.

One of the requirements in MEC is that the corresponding
applications are deployed as close as possible to the UEs, to
decrease latency. However, if the migration time between Edge
servers takes too long, UEs will notice an increase in latency
and the downtime of the MEC application they are communi-
cating with. Specific dynamics may result in not favoring VM
migration if movement is limited [7]. Another issue we need to
consider is that Edge servers are not meant to be as powerful
as the ones on Cloud, due to real-estate and energy limitations,
so the deployment of VM-based applications would consume
too many valuable resources.

With these factors in mind, we have considered the deploy-
ment of containerized-based applications in the Edge, so this
will be reflected in the proposed architecture.

B. ETSI NFV Containerization Considerations

In the previous subsection, we highlighted the need for
containerization on the Edge. However, NFV was originally
conceptualized with hardware-level virtualization in mind.

ETSI is showing interest on aligning the NFV conceptual-
ization with Containerized VNFs (CNFs) since 2016, with the
release of the document ETSI GS NFV-EVE 004 V1.1.1 [8].
Since then, it released some Interfaces and Architectures
(IFAs) regarding how the integration should be made. The
most important for this work was the ETSI GR NFV-IFA 029
V3.3.1 [9], where ETSI proposed the addition of two new func-
tional blocks to the NFV-MANO: the Container Infrastructure
Service (CIS), which is where containers are executed; and the
Container Infrastructure Service Management (CISM), which
is needed to manage the CIS and the containers running on it.

Although these specifications have already been released,
the NFV-MANO reference architecture [10] still does not
consider them and, by extension, the MEC reference does also
not integrate them. Since our solution was idealized as al-
lowing the deployment of container-based MEC Applications,
and since MEC Applications are viewed as Virtual Network
Functions (VNFs) in the MEC-NFV reference architecture, we

considered this set of ETSI discussions while conceptualizing
our MEC-NFV architecture.

C. Other MEC-NFV Proposed Solutions

Besides the first conceptualization of the integration be-
tween MEC and NFV [5], there are some other noteworthy
works, which also presented a combined architecture for MEC-
NFV [11]–[14], based on the one standardized by ETSI.

The authors Baldoni et al. [11] presented a conjunction
orchestration solution between NFV and MEC, based on the
5GCity project’s orchestration system. To achieve that, the
authors developed the MEC Application Orchestrator (MEAO)
and the MEC Platform Manager (MEPM) as new extensions
on top of Eclipse fog05, a Virtualised Infrastructure Manager
(VIM) specifically designed for Edge Computing use cases.
Then, the MEAO is described as being integrated with the
NFV Orchestrator (NFVO) in a singular top-level multi-
orchestrator, which orchestrates all the VNFs, including the
MEC Applications and the MEC Platform (MEP), deployed
as VNFs. Although this article tries to give answers to some
open issues related to the integration of MEC and NFV, it
lacks the practical demonstration of the proposed solution.

In [12], Cattaneo et al. also proposed an architectural
solution. Some relevant issues targeted in this paper were
related to how the interactions between the MANO entities
and the MEC ones can be conducted, taking into account the
existing NFV connection points. More specifically, the authors
argue that the interfaces Mv1, Mv2 and Mv3, are almost
interchangeable with the NFV’s Os-Ma-nfvo, Ve-Vnfm-em and
Ve-Vnfm-vnf connection points, since their functionalities are
similar. Then, as with the previous work, they defined the
MEP and the MEC Applications as being VNFs, controlled
by a NFV-MANO, which in this work, was the Open Baton.
In the end, the proposed architecture was tested in an Edge
environment, using a CPU-intensive MEC Application.

Open Baton MANO was also used in the research presented
by Carella et al. [13], but in a different scenario: instead of
using VM-based VNFs, the authors used CNFs. To do so,
they did several modifications to Open Baton, creating a new
VIM driver, to manage the Docker Engine container runtime,
and modifying the VNF Manager (VNFM) accordingly. In our
view, this approach poses some issues, with the main one being
that an existing and largely tested container orchestrator, such
as Kubernetes, could have been used. Kubernetes inclusively
can manage and orchestrate container runtimes other than
Docker, as a CISM, and the provided management Application
Programming Interface (API) can be used as a connection
point between the CISM and the MANO. Adopting this limited
solution results in the need to create a CISM for containers
from scratch, which can be challenging and is out of the scope
of a NFV-MANO framework. That also means that adding
support for other container runtimes can be a challenge.

At last, Fondo-Ferreiro et al. [14] proposed a similar ap-
proach to the previous one but based on OSM. In it, the authors
implemented a new VIM’s adapter to integrate OpenNESS as
the MEC framework, instead of Docker, on top of fog05. The

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

178

OpenNESS framework is a project hosted by Intel that, in
practice, can be viewed as a Kubernetes flavor with specific
enhancements to make it Edge-ready. An open issue described
by the authors was that their solution still lacks interoperability
between the MANO and MEC frameworks. By this fact, the
scope of this work is valid but limited.

The main highlights of our work, in distinction with previ-
ous ones in the literature, are mainly:

• The MEAO, MEPM and MEP can be deployed as VNFs;
• The container orchestrator/manager and infrastructure

i.e., the CISM and CIS, respectively, can also be simply
deployed as VNF, being managed by a top-level MANO;

• The NFV-MANO used in MEC can be divided into two
different MANOs, where one of them orchestrates and
manages the other one, which in turn is used to enable the
management and orchestration of the MEC Applications;

• The integration of the ETSI’s proposed, but not yet
integrated and tested on its references, CISM and CIS
components into the NFV’s and MEC’s architecture.

III. ARCHITECTURE PROPOSAL

The central focus of this research document is to describe
our MEC solution for a B2B2C scenario. That means that we
needed not only to come up with an architecture that would
respond to some of the other requirements we had, such as
the usage of CNFs, but also to adopt the ETSI’s MEC-NFV
proposed architecture framework [3] for this specific use case.
The proposed architecture can be analyzed in Figure 1.

Since in the B2B2C MEC scenario there are two business
levels, one belonging to the NSP, and the other to the CSP, we
needed to find a way of translating this fact to the architecture
itself. In reality, what this means, is that the platform which
the NSP provides to the CSP needed to be separated from the
platform that the CSP will provide to its clients. This required
the management and orchestration of the platform that controls
the MEC Applications to be different from the platform that
controls that one. Therefore, we have divided the MANO from
the original ETSI’s architectural framework into two distinct
ones, as depicted in Figure 1.

The Main MANO is the central entity, being controlled by
the NSP, and allows the multiple existing CSPs to request
the set up of a new platform, which will be used by their
clients to access the Edge resources. To achieve that, the said
CSP can first access the Operations Support System (OSS)
directly connected to the Main NFVO through an already
existing NFV connection point. When this request is made
i.e., when the CSP demands a new Edge platform, which
then will provide to its customers, the Network Service (NS)
presented in the architecture is automatically instantiated. If
the MANO in question is deployed using containers, instead
of VMs, the Main MANO will also deploy a separated VNF,
containing the CISM and the CIS, as referenced in the ETSI
NFV specifications presented in Section II-B. In this specific
case, the new CIS is dynamically linked to the existing NFV
Infrastructure (NFVI), and the CISM will be automatically
connected to the MANO’s NFVO and to the MEC Life Cycle

Management (LCM) VNFM, to enable them to command the
CISM to launch the necessary CNFs to deploy the new MANO
and the MEC functional blocks.

The NS, instantiated from the referred demand made by
the CSP, will contain four different VNFs: one for the new
MANO, another for the MEC functional blocks, and other two
for the Edge’s CISM and CIS. We named this new MANO
as Edge MANO, due to it being responsible for orchestrating
and managing the MEC Applications deployed in the MEC
Host (MEH). Then, the Edge MANO functional blocks are
connected to the MEH entities through the standardized MEC-
NFV connection points. This set of functional blocks is also
instantiated using a separated VNF, being that the necessary
connections between them and the MANO’s components can
be done through one or multiple internal Virtual Links (VLs)
inside the referred NS. Finally, the CIS in the MEH and the
CISM in the Edge MANO are also deployed as two separated
VNFs, being the latter connected to the Edge’s NFVO and
VNFM and to the CIS in the MEH, to command it to deploy
the necessary MEC Applications, as CNFs. The reason for that
CISM and CIS being viewed as two different VNFs, instead of
being grouped in the same one, is because they needed to be
deployed in two distinct environments i.e., the CIS needs to be
deployed in an Edge Host, while the CISM is deployed in the
NSP’s Cloud infrastructure, together with the other presented
entities. This is also the reason why there is the need for at
least two distinct VIMs: one to control the NFVI in the Cloud
Infrastructure and the other the analogous Edge Host’s NFVI.

In Figure 1, it is also indicated that the VNFs for the
Edge MANO and MEC functional blocks can be CNFs i.e.,
depending on the targeted virtualization technique used to
create this set of entities, they can be deployed as VMs or
as containers. This information is important mostly because
the infrastructure and corresponding manager used to deploy
them will be different: for VNFs, the NFVI and VIM will be
targeted, while for CNFs, the CIS and CISM will be used. And
that is the main reason why there is the need to first launch the
VNF with the CIS and CISM in the NSP’s Cloud, in order to
then launch the MEC functional blocks and the Edge MANO
as CNFs, if that is the case.

Another important aspect of the proposed architecture is
that every VIM used by the Edge MANO must be first added
to the Main MANO, since this one needs to first deploy the
VNF with the CIS in the corresponding MEH, and only then
can the Edge MANO use the analogous CISM to deploy the
necessary MEC Applications on top of that CIS. With regards
to the MEC-NFV reference points, which are the Mv1, Mv2
and Mv3, we agree with the argument made by Cattaneo et
al. [12]. As stated by these authors, most of these connection
points requirements are already met by the NFV Os-Ma-
nfvo, Ve-Vnfm-em and Ve-Vnfm-vnf interfaces, respectively.
So, we think that there is only the need to the ETSI’s MEC
and NFV Industry Specification Group (ISG) groups to agree
upon the necessary additions to these existing interfaces,
to enable them to meet the MEC specifications. Regarding
the figure’s presented connection points, there are also some

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

179

Edge NFVI Main NFVI

User
app
LCM
Proxy

Device
Application

CFS
Portal

Edge Operation Suport System
(OSS)

MEC Application
Orchestrator (MEAO)

Other MEC
platform

Data Plane
(VNF/PNF)

VNFM
(MEC App LCM)

MEP

Mx2

Mx1

Main Operation Suport System
(OSS)

Main NFVO

Os-Ma-nfvo

VNFM
(MEC LCM)

Or-Vnfm

Main CISM

Main CIS

Edge VIM VNF

Vi-Vnfm
Vi-Vnfm

Nf-Vi

Main VIM

Edge CISM
Edge
CIS

Main
MANO

Edge MANO

MEC Platform manager -
NFV (MEPM-V)

MEC
Platform
element

mgmt

MEC app
rules &

reqs
mgmt

VNF/CNF

VNF/CNF

VNF

NS

MEH

Edge NFVO
MEC
APP

(CNF)

Service

Mp3

Mp1 Mp2

Mm5

Mm8 Mm2Mm1

Mm3*

Nf-Vn

Mm9

Mv1

Mv2

Or-Vnfm

Ve-Vnfm-em

Ve-Nf

Ve-Nf

Ve-Vnfm-vnf

Nf-Vi

Mv3

Vi-Vnfm

VNF

Ve-Nf

VNFM
(Cloud Cont Env)

VNFM
(Edge Cont Env)

Ve-Vnfm-vnf

Ve-Vnfm-vnf

Or-Vi

Or-Vi

Main NFV components
Main MEC Components

Main NFV Reference Points

Unspeci�ed Reference Points

Mv1 ~ Os-Ma-nfvo
Mv2 ~ Ve-Vnfm-em
Mv3 ~ Ve-Vnfm-vnf

Main Mec Reference Points
MEC-NFV Reference Points

Fig. 1. B2B2C MEC-NFV proposed architecture.

labeled as Unspecified Reference Points. These interfaces are
corresponding to the CISM and CIS connections, to which the
ETSI NFV specification did just described where they would
be placed, but there is still lack of their actual specification,
including their nomenclature.

Finally, each CSP’s customer will be able to deploy their
MEC Applications through the OSS connected to the newly
instantiated MANO environment. This OSS, the Customer
Facing Service (CFS) Portal, and the User Application LCM
Proxy could also be instantiated using a purposely designed
VNF, which would then allow to connect them to the necessary
entities, as depicted in Figure 1. However, the decisions behind
how they could be set up are out of the scope of this document.

A. Generalized Use Case

Although the architecture proposed in the previous section
was meant specifically for our B2B2C use case, we believe
that the needed changes to fit it in a generic use case, i.e., for
a Business to Consumer (B2C) model, would not be complex.

We argue that the only needed modification is the removal of
the Edge MANO, being that the Main MANO, in that scenario,
would conduct all the tasks previously assigned to the other
one, besides all the tasks that it was already in charge of.
Therefore, the NS that previously held a VNF for the MEC
functional blocks and a VNF for the Edge MANO would now
only consist of the first mentioned VNF.

All of the other components introduced for the B2B2C
use case are still valid in this scenario, including the usage
of two distinct VIMs and VIMs. With this in mind, all the
discussions related to the connection points provided in the
previous subsection also apply in this case.

IV. PROOF OF CONCEPT IMPLEMENTATION

In order to validate our proposed architecture, we have
implemented a PoC with the multiple discussed components.
One important note to consider is that we tested this prototype
in a private, on-premises, Cloud, instead of in a real Edge
environment. For this reason, we have used only one VIM, to

simplify our test scenario. Therefore, the used VIM served as
both the VIM for the Main and Edge environments.

As for the software tools employed, we used version 12 of
OSM, both for the Main and the Edge MANOs, OpenStack as
the VIM, and Kubernetes as the CISM, since it is supported
by OSM as the environment where we can deploy CNFs.

A. Main MANO Setup

We used OSM as the NFV-MANO to validate our proposed
architecture. The OSM corresponding to the Main MANO was
instantiated in a Kubernetes single-node cluster, which in turn
was deployed in a VM.

Then, a new VIM with the credentials for our on-premises
OpenStack was added to this OSM, in order to instantiate the
VNFs containing the containerized environment, which will
be presented further.

B. VNF for the Containerized Environment

We have previously referred that we used Kubernetes as our
containerized environment. This decision originated from the
fact that OSM already possesses a connector that communi-
cates with the Kubernetes API, allowing it to deploy a given
CNF’s containers in this kind of cluster orchestrator. Also,
using Kubernetes is more aligned with what was specified by
ETSI in regards to the integration of this type of virtualization.
We can think of the Kubernetes Control Plane as being the
CISM, exposing the Kubernetes API in order for our MANO
to manage the necessary resources to deploy the CNFs, and
the Kubernetes Nodes as the CIS, which is where the con-
tainers are executed, being orchestrated and managed by the
Kubernetes Control Plane. We also observed that Kubernetes
is becoming the de-facto orchestrating solution for containers,
and will have an important role in future deployments.

With this in mind, and following the proposed architecture,
we created the necessary descriptors to launch a Kubernetes
cluster, with any number of Nodes, as a VNF, as depicted
in Figure 2. Accordingly, there are two Virtualisation Deploy-
ment Units (VDUs), each one corresponding to the two needed

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

180

External CP: vnf-controller-ext

VL: internal-vl

VDU: worker

controller-int-out

Internal CP:
controller-int-in

Internal CP:
worker-int-in

controller-in

VNF: k8s-osm-cluster-vnf

VNF

VLK8s Master

controller-out

VDU
VDU: controller

External CP: vnf-worker-ext

worker-int-in

worker-out
worker-int-out

K8s Worker 1

K8s Worker n

...

VDU

Fig. 2. VNF for the Kubernetes cluster.

CNF: mec-knf
External CP: knf-mec-ext

VDU: mep

CNF
VL

VDU: mepm

MEP

VDU

MEPM

VDU

VDU: meao

MEAO

VDU

Fig. 3. CNF for the MEC functional blocks.

entities specified by ETSI for the usage of a containerized
environment: the controller, which VDU corresponds to the
CISM, and the worker VDU, which corresponds to the CIS.
All the necessary software was installed in each VDU instance
using purposely created Juju Day 1 and Day 2 scripts, which
were connected to each analogous VM through Secure Shell
(SSH), to execute the necessary commands.

In our PoC, this VNF has an internal VL, which allows the
Workers and the Controller (corresponding to the Kubernetes
Control Plane) communicate within a private sub-network.
Then, both VDUs for the Controller and Worker Nodes have
a network interface to “the outside”, which allows exposing
the Kubernetes API, in the Controller’s case, and to expose
the necessary CNF Services’, in the Worker Nodes’ case.

Apart from the option of deciding a priori the number of
Worker Nodes, we also implemented the possibility of scaling
them up and down after instantiation, allowing the customer
to adapt the cluster to the computing load at each moment.

Although according to our architecture, two distinct VNFs
are needed within the Edge environment, one for the CISM
and the other for the CIS, we decided to only use one for this
PoC since, as referred to in the beginning of the section, we
have done our tests in a Cloud environment, with only one
VIM, meaning that it is unnecessary, in this particular case,
to have one VNF in each separated VIM.

C. CNF for the MEC Functional Blocks

The main MEC functional blocks are also instantiated and
grouped in a singular VNF/CNF. In our PoC, we decided
to adopt containerization to develop and deploy these enti-
ties, hence being instantiated through a CNF, as depicted in
Figure 3. However, and for testing purposes, we only have
implemented some of the MEP features, leaving the rest and
the other two entities to be implemented in the future.

The MEP was developed to be compliant with the ETSI
specification ETSI GS MEC 011 V2.2.1 [15]. It was built with
our underlying MEC system in mind and, as such, we refrained
from using software that was not already used by the OSM
project. Thus, the MEP was built using the CherryPy web
framework and reuses the OSM’s MongoDB for data storage.

NS: k8s-osm-cluster-ns

VL: mgmt-net

External CP:
vnf-controller-ext

External CP:
vnf-worker-ext

VNF: k8s-osm-cluster-vnf

K8s Cluster

VNF

NS

VLmgmt-net

Fig. 4. NS for the Kubernetes cluster.

Due to the nature of our Kubernetes-based containerization
approach and the available methods for deploying CNFs in
OSM, we opted for a Helm Chart-based deployment for our
MEP implementation. Therefore, our Helm Chart contains
a Deployment template, to create the actual MEP pod, and
a Service template, to expose the service to other MEC
applications and/or UEs outside the cluster.

D. CNF for the Edge MANO

Considering that OSM is, by default, instantiated in a con-
tainerized environment, usually within a Kubernetes cluster,
we had to create a CNF to deploy it. Furthermore, we found
out that the OSM installation can be achieved through a Juju
Bundle, called Charmed OSM, and since OSM does also
support CNFs based on Juju Bundles, we decided to use the
one provided, and just create the necessary CNF descriptor.

E. NS for the Containerized Environment

As defined in Section III, the proposed architecture specifies
the usage of a containerized environment within the MANO
i.e., a CISM and a CIS, launched by, and then connected
to, the Main MANO, when we need to instantiate the Edge
MANO and/or the MEC functional blocks as CNFs, instead
of VNFs. Since this is the case with our PoC, as presented in
the above subsections, both the OSM, as well as the MEP we
have developed, are deployed using a set of containers, inside
the analogous CNFs, we need to first generate the required
containerized environment and link it to our Main MANO. This
was done by including the VNF for the Kubernetes cluster we
have developed, discussed in Section IV-B, in a NS purposely
set up for this case, as demonstrated in Figure 4.

The K8s Cluster block and the two External Connection
Points (CPs) correspond to the Kubernetes cluster VNF and
its External CPs, previously presented in Figure 2. Then,
they are connected to the NS’s VL, in order to expose the
corresponding network interfaces to the “external world”.

F. NS for the Edge Environment

In Section III, we also defined that when the CSP Operator
requests a new Edge environment, the Main MANO will
instantiate a NS with the Edge MANO, the MEC environment,
and the containerized environment for the MEH. Therefore, we
have built the NS represented in Figure 5, which includes the
VNFs presented in Section IV-B and the CNFs presented in
the Sections IV-C and IV-D.

This NS also possesses a VL, to which each VNF/CNF
attaches to, that allows all of these blocks both to connect
between themselves and externally expose their services.

Both CNFs are deployed in a Kubernetes cluster, which
first needs to be instantiated using the NS presented in

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

181

Charmed
OSM

NS: mec-env-ns

VL: mgmt-net
External CP:
knf-mec-ext

External CP:
vnf-controller-ext

External CP:
vnf-worker-ext

mgmt-net

mgmt-net

mgmt-net

CNF: osm-knf

CNF: mec-knf

VL

CNF

VNF MEC

CNF

External CP:
knf-osm-ext

K8s Cluster

VNF: k8s-osm-
cluster-vnf

NS

Fig. 5. NS for the Edge environment.

Section IV-E. As for the K8s Cluster VNF, it is installed using
the Main MANO’s only VIM. When its deployment finishes
with success, it is automatically added to the Charmed OSM,
allowing it to use this cluster as the environment to launch the
necessary MEC Applications as CNFs.

Another design presupposition we considered was the pos-
sibility for a CSP to request access to the resources of a new
specific MEH when it needs to. To do so, there is only the need
to scale the K8s Cluster’s VNF, and specify the Main MANO
to instantiate the new one on a specific Edge Host. When the
scaling operation finishes, the new cluster is also dynamically
added to the Charmed OSM CNF as a new CISM.

G. MEC Application Prototype

In order to test our environment and consequently our MEP,
we reused the University of Bologna (UNIBO)’s MEC Appli-
cation 1, with some slight changes 2. This MEC Application
is a simple web application that communicates with the MEP
via the Mp1 reference point, specified by ETSI [15], to carry
out actions related to its normal execution.

V. EVALUATION

Intending to evaluate the discussed PoC, we performed
some benchmark tests regarding the time needed to deploy
all the discussed components in the previous section. This is
relevant, as our focus is to enable the rapid deployment of
customized MEC infrastructures, tailored for specific verticals,
that can be deployed on-demand.

In order to conduct our experiments, we built a component
that iteratively commanded the OSM corresponding to the
Main MANO to instantiate both the k8s-osm-cluster-ns and
mec-env-ns NSs, one after the other was successfully deployed.
Then, to obtain the deployment times we will present, we
obtained the analogous data OSM inserted in its Kafka storage
platform. In the OSM relative to the Main MANO, we obtained
the timestamps for the k8s-osm-cluster-ns and mec-env-ns NSs,
while in the OSM related to the Edge MANO, we were
able to gather the deployment times for our sample MEC
Application, corresponding to the mec-app-ns NS. At the end
of each iteration, the environment was cleaned up, and the
next iteration is started.

In addition to the deployment time tests, we also performed
tests related to the scaling time of a Worker Node of the k8s-
osm-cluster-vnf VNF, which is the VNFs which installs the
Kubernetes cluster in both k8s-osm-cluster-ns and mec-env-ns
NSs. The procedure taken to conduct them was similar to the

1https://github.com/berdav/unibo-test-mec
2https://github.com/ATNoG/mp1-test-app-mec

TABLE I
DEPLOYMENT TIME OF k8s-osm-cluster-ns, mec-env-ns AND mec-app-ns

NSS IN SECONDS.
Iteration k8s-osm-cluster-ns mec-env-ns mec-app-ns
1 645.379 694.092 23.748
2 609.118 624.022 23.408
3 590.846 625.757 26.735
4 604.013 621.548 14.284
5 610.317 647.877 13.546
6 620.876 640.988 25.567
7 603.956 632.424 10.118
8 649.633 722.172 27.506
9 595.262 649.685 11.319
10 598.537 824.577 24.530
11 589.482 622.892 20.656
12 591.904 646.561 17.874
13 550.755 676.135 16.018
14 518.451 627.311 15.961
15 554.039 499.759 16.014
16 556.444 637.285 16.071
17 553.474 613.791 15.894
18 559.409 647.689 16.039
19 552.639 670.708 15.990
20 551.210 607.105 16.009

Average 585.287 ± 7.72 646.619 ± 13.39 18.364 ± 1.15

aforementioned for the deployment time tests, where we used
a component to iteratively request the scaling out and in of
the said VNF in each iteration.

To have a basis to compare the obtained results against, we
did also gather the necessary times needed to deploy a dummy
VNF and CNF. The considered VNF was composed by a VM
with similar characteristics to the ones our VNFs instantiated,
and possessed a simple Day 1 script, which when executed,
simply connected to the analogous VM through SSH. As for
the CNF, it was based on a Helm Chart, with a Kubernetes
Service and Deployment, which when instantiated, deployed
an empty Alpine Linux container. The averages obtained for
these baseline tests, for 23 iterations, were approximately 4.88
minutes for the VNF, and 16.4 seconds for the CNF. All of
these results and the ones presented throughout this section
can be analyzed in the project’s associated repository 3.

A. VMs Specifications

The OSM corresponding to the Main MANO was de-
ployed in a Kubernetes single-node cluster, as referred in
Section IV-A. In its turn, the cluster was installed on a VM
with 8 VCPUs, 12 GiBs of RAM and 40 GiBs of disk space.

As also referred to in the previous section, we added an
OpenStack-based VIM to this OSM, where both NSs were
deployed in each iteration of our tests. In our experimentations,
we only deployed one instance of each NS, and in each one
of them, one instance of the K8s Cluster VNF. Each one of
these clusters was composed of 2 nodes, each one related to
a VM with 4 VCPUs and 8 GBs of RAM.

B. Results

1) Instantiation: With the discussed methodology and VMs
specifications, we executed the referred tests script for 20
iterations. The obtained results for the deployment times of the
k8s-osm-cluster-ns, the mec-env-ns and the mec-app-ns NSs,
as well as their average value, can be consulted in Table I.

From the values presented in Table I, we can conclude that
the deployment of the k8s-osm-cluster-ns NS takes, most of
the time, roughly 10 minutes, while the mec-env-ns NS usually
takes longer, about 11 minutes. The explanation for this small,

3https://github.com/ATNoG/netedge-mec

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

182

TABLE II
SCALING TIME OF k8s-osm-cluster-vnf VNF IN SECONDS.

Iteration Scale-out Scale-in
1 541.441 42.821
2 533.693 42.709
3 493.195 37.481
4 482.115 32.479
5 479.422 37.552
6 377.000 37.574
7 492.717 37.574

Average 485.655 ± 20.34 38.31 ± 1.3

but existing, difference, can be because the second NS has
to deploy more VNFs/CNFs than the first one i.e., while the
first only has to instantiate a Kubernetes Cluster, the second
also needs to deploy the other two CNFs depicted in Figure 5.
Nevertheless, these results demonstrate that a NSP can provide
to a CSP Operator a complete MEC environment, from scratch,
within not much more than 20 minutes.

As for our sample MEC Application, it takes, on average,
about 18 seconds to be deployed. The results also show that,
although our environment is inherently complex, that complex-
ity does not negatively impact the deployment time of MEC
Applications. These values are, however, representative of a
simple MEC App and are expected to increase, similarly to any
containerized environment, with more complex applications.

When comparing the obtained results with the baseline
values for the deployment of a VNF and a CNF, we can
conclude that the deployment time of both the k8s-osm-cluster-
ns and mec-env-ns NSs took just over double the average
sample VNF, while our MEC Application took approximately
2 more seconds when compared with the base CNF.

2) Scaling: For the scaling time tests, we run the script for
7 iterations, meaning that there were 7 scale-out and 7 scale-in
operations. The obtained results can be observed in Table II.

The scale-out operation of deploying a new Kubernetes
Worker took about 8 minutes on average, which in comparison
with the time needed to deploy the complete cluster, done by
the instantiation of the k8s-osm-cluster-ns NS, is 2 minutes
less. In practice, this means that most probably, the deployment
time of the Controller Node and its connection to each Worker
is the operation with a bigger footprint in the deployment of
the k8s-osm-cluster-ns NS. As for the scale-in operation, our
results show an average of approximately 38 seconds. This big
difference between both scaling operations can be explained
by the fact that the scale-out comes with the execution of a Day
1 script to install all the Kubernetes components, beyond the
creation of the Worker VM, while the scale-in only requires
the destruction of that VM, without the installation of any tool.

VI. CONCLUSION

We proposed a MEC-NFV architecture for a B2B2C model,
which allows a NSP to provide a full operational MEC infras-
tructure, with an independent management and orchestration
platform, to each of its customers, the CSPs, in a MECaaS
manner. Alongside this proposal, we also presented the needed
modifications for a generic framework of a B2C model.

The tests we have conducted using this implementation
allowed us to conclude that a NSP can deploy and provide
to a CSP a fully functional MEC infrastructure in about 20

minutes. After the initial infrastructure is deployed, the tests
show that MEC Applications can be launched with little to no
extra infrastructure overhead. Furthermore, if a CSP requires
more resources on its Edge environment, it only takes an
average of 8 minutes to scale the number of Kubernetes
Worker Nodes within the MEC host.

There are still some issues to be further studied in future
works, such as the feasibility of having all the MEC functional
blocks deployed under the same VNF, the placement and mi-
gration of MEC Applications, to better serve the corresponding
UEs, or test this MEC architecture in a real Edge environment.
However, with this work, we demonstrated the feasibility of
a MECaaS system, as well as the usage of CNFs in MEC-
NFV architecture and the deployment of the original MEC
functional blocks as VNFs using the NFV infrastructure which
an Operator might already possess.

ACKNOWLEDGMENT

This work is supported by the European Regional Develop-
ment Fund (FEDER), through the Regional Operational Pro-
gramme of Lisbon (POR LISBOA 2020) and the Competitive-
ness and Internationalization Operational Programme (COM-
PETE 2020) of the Portugal 2020 framework [Project NET-
EDGE with Nr. 069977 (POCI-01-0247-FEDER-069977)].

REFERENCES

[1] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-
the-art and research challenges,” Journal of Internet Services and
Applications, vol. 1, no. 1, pp. 7–18, 2010.

[2] ETSI, “Mobile-Edge Computing - Introductory Technical White Pa-
per,” Tech. Rep., 2014.

[3] ETSI, “ETSI GS MEC 003 V2.2.1,” Tech. Rep., 2022.
[4] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and

R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Communications Surveys and Tutorials,
vol. 18, no. 1, pp. 236–262, 2016.

[5] V. Sciancalepore, F. Giust, K. Samdanis, and Z. Yousaf, “A double-tier
MEC-NFV architecture: Design and optimisation,” in 2016 IEEE Con-
ference on Standards for Communications and Networking (CSCN),
2016, pp. 1–6.

[6] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers and
Virtual Machines at Scale: A Comparative Study,” in Proceedings of
the 17th International Middleware Conference, ser. Middleware ’16,
Trento, Italy: Association for Computing Machinery, 2016.

[7] H. Abdah, J. P. Barraca, and R. L. Aguiar, “Qos-aware service conti-
nuity in the virtualized edge,” IEEE Access, vol. 7, pp. 51 570–51 588,
2019.

[8] ETSI, “ETSI GS NFV-EVE 004 V1.1.1,” Tech. Rep., 2016.
[9] ETSI, “ETSI GR NFV-IFA 029 V3.3.1,” Tech. Rep., 2019.

[10] ETSI, “ETSI GR NFV-MAN 001 V1.2.1,” Tech. Rep., 2021.
[11] G. Baldoni, P. Cruschelli, M. Paolino, et al., “Edge Computing

Enhancements in an NFV-based Ecosystem for 5G Neutral Hosts,”
in 2018 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), 2018, pp. 1–5.

[12] G. Cattaneo, F. Giust, C. Meani, D. Munaretto, and P. Paglierani,
“Deploying CPU-intensive applications on MEC in NFV systems: The
immersive video use case,” Computers, vol. 7, no. 4, 2018.

[13] G. A. Carella, M. Pauls, T. Magedanz, M. Cilloni, P. Bellavista, and
L. Foschini, “Prototyping NFV-based Multi-access Edge Computing in
5G ready Networks with Open Baton,” in 2017 IEEE Conference on
Network Softwarization (NetSoft), 2017, pp. 1–4.

[14] P. Fondo-Ferreiro, A. Estévez-Caldas, R. Pérez-Vaz, et al., “Seamless
Multi-Access Edge Computing Application Handover Experiments,”
in 2021 IEEE 22nd International Conference on High Performance
Switching and Routing (HPSR), 2021, pp. 1–6.

[15] ETSI, “ETSI GS MEC 011 V2.2.1,” Tech. Rep., 2020.

2022 18th International Conference on Network and Service Management (CNSM) - Mini Conference

183

	21

