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Abstract—We consider the caching problem in an online learn-
ing perspective, i.e., no model assumptions and prior knowledge
for the file request sequence. Our goal is to design an efficient on-
line caching policy with minimal regret, i.e, minimizing the total
number of cache-miss with respect to the best static configuration
in hindsight. Previous studies such as Follow-The-Perturbed-
Leader (FTPL) caching policy, have provided some near-optimal
results, but their theoretical performance guarantees only valid
for the regime wherein all arrival requests could be seen by
the cache, which is not the case in some practical scenarios like
caching at cellular base station, content dissemination via DNS,
etc. Hence our work study the partial-feedback regime wherein
only requests for currently cached files are seen by the cache,
which is more challenging and has not been studied before in
the online learning perspective. We propose an online caching
policy combining the FTPL with a novel popularity estimation
procedure called Geometric Resampling (GR), and show that it
yields the first sublinear regret guarantee in this regime. We
also conduct numerical experiments to validate the theoretical
guarantees of our caching policy.

Index Terms—Online learning, Online caching policies, Quality
of service (QoS)

I. INTRODUCTION

With the perpetual growth of Internet traffic fueled by new
services such as AR/VR [8], caching policies that learn fast
to maximize cache hits can mitigate the increasing costs of
information transportation and improve the quality of service
(QoS) [7]. The core idea of caching has been widely-adopted
in many diverse scenarios such as improving CPU paging
performance through L1/L2 caches [12], implementing Web-
caching through Content Distribution Networks [2], [27], [28],
and realizing low-latency wireless video transmission through
Femtocaching [31].

There is a variety of caching policies in the literature. When
the entire file request sequence is known in advance, the MIN
policy [34] is an optimal offline caching policy. Among the
online policies, the Least Frequently Used policy (LFU) [17],
the Least Recently Used policy (LRU) [14], [17], the FIFO
policy [9], and the Least Recently Sent (LRS) policy [25] have
been studied extensively. [14] analyze the performance of the
LRU policy for stationary/stochastic file request sequence (i.e.,
the file requests are i.i.d. or the file popularity is stationary).
[25] showed that their LRS policy could outperform the LRU
policy under a Markovian assumption of the request sequence.
[11] introduced a unified framework to analyze these popular
caching policies again under the stationary request sequence.
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And [19] shows that some of them augmented with a machine-
learned oracle could guarantee low competitive ratios. On a
different line of work, the studies [15], [16], [20], [21] de-
rived information-theoretic lower bounds and efficient caching
policies to facilitate the delivery of cached files to users in
a bandwidth-efficient manner. Depending on the applicable
scenarios, these caching policies could be divided into two
categories: coded-caching policies (e.g, LRS) and uncoded-
caching policies (LRU, LFU, FIFO, etc). In uncoded-caching,
complete files are cached. In coded-caching, the original files
are first encoded via a class of rateless erasure codes, e.g.,
Raptor code [18], [33], and then some of the resulting coded
symbols are cached. Our work focus on the uncoded-caching
problem since it is more common in actual scenarios, while
code-caching is mostly used in video applications [35].

Despite there are many caching policies developed in the lit-
erature. The performance guarantee of almost them, however,
depends largely on some prior assumptions (or knowledge)
about the generative model of the file request sequence [30].
While in practice, the statistical characteristics of the file
popularity are usually unknown in advance [24] and even time-
varying /non-stationary due to the frequent addition of new
content to the library, mobility of the users, etc. Thus, even
though many different caching policies are well-adopted today,
the performance of caching strategies in an online learning
perspective has not been fully studied to date. This prompts
us to study the caching problem from an online learning
perspective, i.e., with no assumptions and prior statistical
knowledge on the file request sequence.

There are several works on caching problem along the line
of online learning. For uncoded-caching in an online learning
point-of-view, [24] invested several classical caching policies
including LRU, LFU, and FIFO and proven that they perform
poorly (suffer from linear (O(T )) regrets) when there is no
obvious statistical characteristics on file request sequence or
the file request popularity is non-stationary/time-varying, i.e.,
non-stationary request model. The authors in [4] proposed
an online caching policy called Follow-The-Perturbed-Leader
(FTPL), and showed that it can guarantee an O(

√
T ) regret

for non-stationary request model. [22] extends FTPL and the
corresponding analysis into the setting that taking into account
the switching costs and also obtained the regret bound of
O(
√
T ). Of cause, their results also provide the worst-case

regret guarantee for stochastic/stationary request model, since
it is a special case of non-stationary request model. There is
also another line of research [10], [23], [24], [29] that studies
the coded-caching in the online learning perspective.
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It is worth noting that all the studies have been listed
including well-known classic caching policies only valid for
the regime wherein all requests would send to the cache
whether or not the requested file is in the cache, i.e., full-
feedback regime. However, this is not the case in some
practical scenarios wherein the cache can only see the requests
for files currently cached. For example, when routing requests
via DNS redirect, the cache only see the requests which are
directed towards it. We refer to this case as the partial-feedback
regime. Besides, in some typical cache networks consisting of
multiple caches, since the request information is either not
aggregated or only partially, each cache does not see the hits
and misses of the other caches in real time, corresponding
to the partial-feedback regime. Applications of the partial-
feedback regime include caching at cellular base stations [5],
content dissemination using a Global Name Service [32] (e.g.,
DNS), etc. To the best of our knowledge, there is no work
on the caching problem from an online-learning point-of-
view under the partial-feedback regime. The above discussions
inspire us to put forward the following question: can we design
an efficient online caching policy that works provably (near-
)optimal for the partial-feedback regime?

A. Contributions

In the process of answering the above question, our contri-
butions are summarized as follows:

• Under the partial-feedback regime, we propose an online
caching policy called FTPL+GR, as it combines the FTPL
policy with a novel popularity estimation procedure:
Geometric Resampling (GR), and show that it guarantees
a sublinear regret for any request model. To the best of
our knowledge, we are the first to study the online caching
problem under the partial-feedback regime from an online
learning point-of-view. We also show that FTPL+GR does
not sacrifice much in running time compared to FTPL.

• We provide a thorough theoretical analysis for FTPL+GR.
We presents various important properties of our estima-
tion procedure that is independent of caching policies,
which may be independently interesting.

• We also conduct numerical experiments to validate the
theoretical guarantees of FTPL+GR.

Fig. 1. The setup of online caching

II. SYSTEM MODEL

Here we describe a simplified abstraction of a caching
system. Assume that a set of N unique files (with equal size) is
available in a remote server. A local cache of limited storage

capacity can hold up to C files at a time where C < N .
In many real-world scenarios, the capacity of cache is much
smaller than the total library size (i.e., C ≪ N). Time is slotted
such that at most one file is requested from the group of users
at a time 1. We use the vector x(t) ∈ {0, 1}N to represent the
file request at time t, where xf (t) = 1 if and only if the f-th
file is requested by users at time t, i.e., one-hot encoding.

In our paper, we do not make any statistical assumptions or
have any prior knowledge on the file request sequence {x(t)}.
Thus, the file request sequence may be generated from the
stationary model or non-stationary model which is typical for
internet traffic with transient content popularity.

An online caching policy caches C files before the request
for that slot arrives. We use the vector y(t) ∈ {0, 1}N to repre-
sent the cache configuration at time t, whose i-th component
yi(t) denotes whether the i-th file is cached at time t or not.
y(t) may be randomized selected and may depend on the
caching configurations and file requests up to time t− 1. The
set of all admissible caching configurations Y, which respects
the capacity constraint, is given below:

Y = {y ∈ {0, 1}N , ||y||1 ≤ C}. (1)

At any time t, if the requested file is present in the cache
(cache-hit), i.e., ⟨x(t),y(t)⟩ = 1, the request is promptly served
by the cache. Otherwise, the request is forwarded to the remote
server and accrues cache-miss. We aim to design a online
caching policy that maximizes the expected accumulative
cache-hits over the time-horizon T , i.e.,

E[
T∑

t=1

⟨y(t),x(t)], (2)

where the expectation is taken w.r.t. the randomness of the
requests and policy’s internal randomness. See Figure 1 for a
scheme. As stated before, in most real scenarios the popularity
distribution of requests is unknown to the caching policy a
priori and even time-varying. So the caching policy is aiming
to learn and track the popularity distribution (or part of it) from
the sequential observations, and cache files by wisely using the
available information at each time in order to maximize the
expected cumulative hits.

In the online learning literature, it is standard to measure
the performance of an online policy in terms of regret,
which is defined as the difference between the total cache-
hits experienced by the online policy over a time horizon T
and that of the best fixed policy with complete information.
Mathematically,

Regret(T ) = max
y∈Y

T∑
t=1

⟨y,x(t)⟩ − E[
T∑

t=1

⟨y(t),x(t)]. (3)

Note that minimizing the regret (3) is equivalent to maximiz-
ing (2), i.e., accumulated cache-hits. And our goal is to find a
caching policy that ensures the average performance gap with
respect to the best fixed configuration with hindsight diminish
as T grows, i.e., Regret(T )/T → 0. This implies that the online
caching policy achieves a sublinear regret o(T ) and learns to
adapt the cache configuration without any prior knowledge
about the request model.

1Our algorithms design and the corresponding analysis can be easily
adapted to the case with at most K requests.
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Our paper considers the partial-feedback regime that has
many scenarios in computer systems and communication
networks. We mathematically show the difference between it
and full-feedback regime in the following, and illustrate them
conceptually in the Figure 2.

• Full-feedback regime: At each time t, the cache is able
to observe the file request x(t), regardless of the choice of
y(t). This regime corresponds to all requests being sent
to the cache.

• Partial-feedback regime: In this case, the caching policy
could observe the request only in the case that cache-
hit happens, i.e., only if the requested item is cached
already. Mathematically, the cache can only observe the
vector (x1(t)y1(t), ..., xN (t)yN (t)) at time t. This regime
corresponds to the context of information centric caching,
wherein requests are forwarded to the cache only if the
corresponding content is cached.

In this sequel, we develop an online caching policy based
on the FTPL framework for the partial-feedback regime. To
address the challenge of unobservable file request when cache-
miss happens, we combine the FTPL policy with a novel
popularity estimation procedure called Geometric Resampling
(GR), and confirm its sublinear regret guarantee for any
request models.

Fig. 2. (a) Request forwarding in the full-feedback regime; (b)
Request forwarding in the partial-feedback regime.

III. OVERVIEW OF OUR CACHING POLICY

Our online caching policy builds on the framework of FTPL,
which is the state-of-the-art online universal caching policy for
full-feedback regime. To facilitate our caching policy design,
we first introduce the FTPL caching policy in details.

A. Preliminary: FTPL caching policy
At each time t, the Follow the Perturbed Leader (FTPL)

caching policy, first introduced in [4], caches C files according
to the following principle:

y(t) = argmax
y∈Y
⟨y,X(t) + ηtγ(t)⟩, (4)

where X(t) =
∑t−1

τ=0 x(τ) is the cumulative count vector
until time t, γ(t) is a sampled vector of standard Gaussian
random variables at time t, and ηt = k

√
t is the learning rate.

Specifically, at every time t, FTPL policy adds a scaled version
of the sampled random variables to the current cumulative
count vector X(t) to obtain a perturbed cumulative count
vector, then caches t files having the highest perturbed positive

cumulative count at time t. Note that the update rule of FTPL
caching policy could be rewritten as

y(t) = argmax
y∈Y
⟨y,X(t) + ηtγ(t)⟩ = argmax

y∈Y
⟨y, X(t) + ηtγ(t)

t
⟩

= argmax
y∈Y
⟨y, 1

t

t−1∑
τ=0

x(τ) +
k
√
t

t
γ(t)⟩

= argmax
≤C

(µ̂1(t), ..., µ̂N (t)),

where µ̂i(t) = 1
t

∑t−1
τ=0 I{xi(τ) = 1} + k 1√

t
γi(t). Thus, FTPL

policy could also be viewed as selecting files with the Top-C
highest perturbed empirical estimate of popularity (frequency)
at each time, while LFU loads the C most frequent files
without adding perturbation. Intuitively, LFU cannot adapt to
the non-stationary request sequence as it does not add any
perturbation to the frequency estimate, i.e., just do exploitation
without exploration. The perturbation term makes FTPL do
exploration to adapt into the non-stationary request sequence,
and gradually decreases over time to make FTPL behave as
closely to LFU in the long run, i.e., be optimistic in the case
of stationary request sequence.

We remark that the computational-complexity of FTPL is
essentially the same as choosing the top-C elements with
maximum compound value. Therefore, the worst-case running
time of FTPL is O(N logN) = Õ(N).

B. FTPL with Geometric Resampling (GR)

In this subsection, we present our caching policy un-
der the partial-feedback regime. As described before, in
this regime the caching policy can only access the vector
(x1(t)y1(t), ..., xN (t)yN (t)) at time t. To address this chal-
lenge, our main idea is to perform an estimation of file
request in the event of cache-miss to learn and track the
file popularity better in order to improve the frequency of
cache-hits. Specifically, we use some estimators to estimate
x(t) when it is not available to the cache. This process is in
sharp contrast to the full-feedback regime in which the caching
policy could improve the popularity estimate of each file after
each time due to full visibility of all the requests. Intuitively,
the inaccurate estimation is costly as the caching policy would
place sub-optimal files in the cache and incur more regret.

Before introducing our estimator, we remark that FTPL
is essentially a randomized algorithm mapping histories to
probability distributions over all cache configurations, whose
randomness is brought by the random perturbation terms.
Hence, at each time t, the FTPL policy could be viewed as
the procedure of specifying a distribution pt over all cache
configurations in Y and selecting one cache configuration S
according to pt, i.e., pt(S) = Pr{y(t) = S|Ft−1}, where
Ft−1 is the history of the caches’s observations and used
perturbation vectors up to time t − 1. And we have that
pt,i = Pr{yi(t) = 1|Ft−1}. When the request incurs a cache-
miss, i.e., x(t) is not observable, it is commonplace to consider
importance-weighted estimator to estimate it of the form:

x̂i(t) =
xi(t)

pt,i
I{yi(t) = 1}, ∀i ∈ [N ]. (5)

It is very easy to show that x̂i(t) is an unbiased estimate
of xi(t), i.e., E[x̂i(t)|Ft−1] = xi(t) when pt,i > 0, otherwise
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Algorithm 1 Geometric Resampling (GR) procedure
1: The policy draws y(t) ∼ pt

2: for k = 1...M do
3: draw yk(t) ∼ pt

4: for i = 1...N do
5: Kt,i = min({k : yk

i (t) = 1})
6: //Kt,i = min({k : yk

i (t) = 1} ∪ {M}) (capping)
7: end for
8: end for

E[x̂i(t)|Ft−1] = 0 ≤ xi(t). If the probabilities pt,i are read-
ily available, the estimates (5) can be computed efficiently.
However, this is not the case for FTPL. In particular, the
probabilities pt,i cannot be specified implicitly (i.e., cannot be
expressed in closed form), and thus the importance weights
are not readily available for FTPL.

To overcome this difficulty, we propose a novel estimation
procedure called Geometric Resampling, which is the most
critical element in our technique. Using this procedure, we
can compute x̂i(t) efficiently even when pt,i is not available
to the cache. Our estimation procedure dubbed GR is based
on the simple observation that, even though pt,i might not
be computable in closed form, one can simply generate a
geometric random variable with expectation 1/pt,i by repeated
sampling from pt. Specifically, we propose the procedure in
Algorithm 1 to be executed in time t.

Observe that Kt,i generated in this way is a geometrically
distributed random variable given y(t) and Ft−1. Conse-
quently, we have that E[Kt,i|Ft−1,y(t)] = 1/pt,i. We use this
property to construct the estimates as follows,

x̂i(t) = xi(t)I{yi(t) = 1}Kt,i, ∀i ∈ [N ]. (6)

We can easily show that (6) is still an unbiased estimate of
xi(t) whenever pt,i > 0 since

E[x̂i(t)|Ft−1] =
∑
n

pt,nE[x̂i(t)|Ft−1, yn(t) = 1]

= pt,iE[xi(t)Kt,i|Ft−1, yi(t) = 1]

= pt,ixi(t)E[Kt,i|Ft−1, yi(t) = 1] = xi(t),

and (6) produces x̂i(t) = 0 whenever pt,i = 0, giving
E[x̂i(t)|Ft−1] for such i and t. Besides, the above estimation
procedure indeed applies to the partial-feedback regime for the
reason that the estimates (6) could be rewritten as

x̂i(t) = [xi(t)yi(t)]Kt,i, ∀i ∈ [N ], (7)

which matches the case that the cache can only observes the
vector (x1(t)y1(t), ..., xN (t)yN (t)) in this regime. One practical
concern with the above sampling procedure is that its worst-
case running time is unbounded. Specifically, the actual num-
ber of samples might be much larger. To address this concern,
we cap off the number of samples at some finite M > 0

(See line 6 in Algorithm 1). While this capping obviously
introduces some bias, we will show later that for appropriate
values of M , this bias does not hurt the performance too much,
i.e., does not change the order of regret guarantee.

Now we illustrate the FTPL+GR, Follow-the-Perturbed-
Leader with Geometric Resampling, in Algorithm 2. As we

Algorithm 2 FTPL with GR. Denote a ◦ b as the element-wise
product of vectors a and b : (a ◦ b)i =aibi.

1: Cache capacity C, Geometric Resampling’s capping M

2: Initialize: X(1)← 0

3: for round t = 1...T do
4: Sample: γ(t) ∼ Exp(1)
5: ηt ←

√
t

6: y(t)← argmaxy∈Y⟨y,X(t) + ηtγ(t)⟩
7: Cache files according to y(t)
8: K = 0, r = y(t)

9: for n = 1, · · · ,M do
10: K = K + r

11: Sample: γ
′
∼ Exp(1)

12: y
′
← argmaxy∈Y⟨y,X(t) + ηtγ

′
⟩

13: r = r ◦ y
′

14: if r = 0 then
15: break
16: end if
17: end for
18: end for
19: User requests a file corresponding to request vector x(t)
20: X(t+ 1)←X(t) + K ◦ x(t) ◦ y(t)

mentioned before, the distribution pt, while implicitly speci-
fied by γ(t) and X(t), cannot normally be expressed in closed
form for FTPL. However, sampling the cache configurations
can be carried out by drawing additional perturbation vec-
tors independently from the same distribution as γ(t) and
then solving a Top-C selecting problem. We emphasize that
the above additional cache configurations are never actually
adopted by the policy, but are only necessary for constructing
the estimates.

Perturbation term modification. It is worthing note that
in standard FTPL policy (4), the cache usually loads less
than C files, as the perturbed cumulative counts may be
negative caused by the Gaussian distributed perturbation.
This inadequate caching would lead to potential performance
degradation. To overcome this issue, in our FTPL+GR policy,
we adopt the standard Exponentially distributed instead of
Gaussian distributed sample vector as the perturbation term
in FTPL-component, which is an another novelty of our
policy. The motivation behind this is mainly technical and
is simply meant to ensure the positivity of the perturbed
cumulative counts and the full of cache, while maintaining
the same property of exponential decline as the Gaussian
distribution. We refer the FTPL policy that uses the Gaussian
distributed perturbation and Exponentially distributed pertur-
bation as FTPL(G) and FTPL(E), respectively. In the later,
we empirically show that FTPL(E) indeed has a better cache-
performance than FTPL(G).

IV. PERFORMANCE GUARANTEES OF FTPL(E)+GR

Now we are ready to state the theoretical performances of
FTPL(E)+GR. First, we give the regret guarantee of it for any
request model (the-worst-case).
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Theorem 1 Our caching policy FTPL(E) with GR ensures
that:

Regret(T ) ≤
√
T (C + 4CN + C logN/C) +

NT

eM
. (8)

In particular, with M = O(
√
T ) we have

Regret(T ) ≤
√
T (C + 4CN + C logN/C +N/e). (9)

Based on the above result, we can see that our FTPL(E)+GR
caching policy achieves a sublinear regret guarantee of the
order O(

√
T ) in the worst-case. We note that the bigger M

is, the smaller regret is, which is intuitive as the estimate bias
decreases when M increases.

Running Time of FTPL(E)+GR. Let us now turn our
attention to computational issues. As mentioned before, the
running time of FTPL, i.e., solving the combinatorial optimiza-
tion problem of finding (exactly the Top-C selecting problem)
is at most O(N logN). Naturally, our estimation procedure
multiplies these calculations by the number of samples taken
in each round. While terminating the estimation procedure
after M samples helps in controlling the running time with
high-probability, observe that the naive bound of MT on the
number of samples becomes way too large when setting M

as suggested by Theorem 1. The next theorem shows that the
expected amortized samples taken by our estimation procedure
remains as low as O(N) even for large values of M .

Theorem 2 Let Nt denote the number of samples taken by
our estimation procedure at time t, then we have

E[Nt] ≤ N, (10)

and for any δ > 0,
T∑

t=1

Nt ≤ (e− 1)NT +M log
1

δ
(11)

holds with probability at least 1− δ.

Proof Note that for any t, we have

Nt = max
i:yi(t)=1

Kt,i = max
i∈[N ]

yi(t)Kt,i ≤
N∑
i=1

yi(t)Kt,i. (12)

Combine the above result with the fact that
E[Kt,i|Ft−1, yi(t)] ≤ 1/E[yi(t)|Ft−1], we obtain E[Nt] ≤ N .
For the second statement, define St = Nt − E[Nt|Ft−1], then
we have

Var[St|Ft−1] = E[(Nt − E[Nt|Ft−1])
2|Ft−1] = E[N2

t |Ft−1]

(a)

≤ E[(
N∑
i=1

yi(t)Kt,i)
2|Ft−1]

(b)

≤
N∑
i=1

min{ 1

pt,i
,M} ≤ NM,

where (a) holds due to (12); (b) comes from the fact that
E[K2

t,i|Ft−1] =
2−pt,i
p2t,i

. Since St is a martingale-difference
sequence with respect to Ft and St ≤ M , we complete
the proof of the second statement by applying Freedman’s
inequality [3] (Lemma 7 in our online technical report [1])
with B = M and

∑
T ≤ NMT .

Therefore, when setting M = O(
√
T ) as suggested by Theorem

1, it holds with high probability that the amortized running
time of FTPL(E)+GR is at most O((N +

√
N/T )N logN) ≈

Õ(N2) when T is large. We emphasize that Õ(N2) is the
upper bound of amortized running time of FTPL(E)+GR. In
fact, we empirically find that even if T is very large and even
goes to infinity, setting M to a constant (e.g., O(

√
N)) which

is independent of T does not result in much increase in regret
(decrease in hit-ratio).

V. ANALYSIS

Now we give the proof of Theorem 1. To facilitate the
understanding, we will present statements with respect to
the estimation procedure and the learning part (FTPL(E)-
component) separately.

As we set M to a finite value to bound the computational-
complexity of the sampling procedure, we start analyzing the
bias of GR estimates introduced by the early termination of
GR. As noted earlier, p(t) is the probability distribution over
all cache configurations introduced by our algorithm at time
t, and pt,i = Pr{yi(t) = 1|Ft−1}. We first give an explicit
expression on the expectation of the GR estimates generated
by our sampling procedure.

Lemma 1 For all t, the request estimates (6) satisfy

E[x̂i(t)|Ft−1] =
(
1− (1− pt,i)

M
)
xi(t), ∀i ∈ [N ]. (13)

Proof To begin, we observe that

E[Kt,i|Ft−1]

=

∞∑
k=1

k(1− pt,i)
k−1pt,i −

∞∑
k=M

(k −M)(1− pt,i)
k−1pt,i

=

∞∑
k=1

k(1− pt,i)
k−1pt,i

− (1− pt,i)
M

∞∑
k=M

(k −M)(1− pt,i)
k−M−1pt,i

= (1− (1− pt,i)
M )

∞∑
k=1

k(1− pt,i)
k−1pt,i =

(1− (1− pt,i)
M )

pt,i
.

Combine the above inequality with the fact that
E[x̂i(t)|Ft−1] = pt,ixi(t)E[Kt,i|Ft−1] then we complete the
proof.

We also have the following lemma which gives the impor-
tant properties of our GR estimates (6).

Lemma 2 For all S ∈ Y, we have the following properties
for GR estimates (6),

E[⟨S, x̂(t)⟩|Ft−1] ≤ ⟨S,x(t)⟩, (14)

E[
∑
V ∈Y

pt(V )⟨V , x̂(t)⟩|Ft−1] ≥
∑
V ∈Y

pt(V )⟨V ,x(t)⟩ − N

eM
,

(15)

E[(⟨y(t), x̂(t)⟩)2|Ft−1] =
∑
V ∈Y

pt(V )(⟨V , x̂(t)⟩)2 ≤ 2CN. (16)

The proof of Lemma 2 is given in the Appendix. In Lemma
2, (14) implies that any learning policy that relies on our GR
estimates is optimistic in the perspective that the number of
cache-hits of any fixed configuration will be underestimated in
expectation. (15) ensures that the cache is not overly optimistic
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about its own performance. For the third property (16), we
remark that the upper bound of conditional variance is CN

for the standard (although usually not feasible) estimates (5),
while it shows, somewhat surprisingly, that the variance of our
estimates is no more than twice the variance of the standard
estimates.

Remark 1 We emphasize that Lemmas 1 and 2 remain valid
no matter which randomization policy generates y(t).

Next we give the key lemmas for analyzing the FTPL(E)-
component of our policy. We remark that the lemmas we will
present are not specific to the GR estimates we used. Our
analysis is new to some respect in order to integrate our GR
estimates. To achieve this, we borrow several ideas from [26]
on FTL-style (Follow-the-Leader) methods and the proof of
Corollary 4.5 in [6], and study the FTPL(E)-component of
our policy via a virtual policy which uses a time-invariant
perturbation vector and could peek one step into the future.
Specifically, at time t, the virtual policy picks its cache
configuration as

ŷ(t) = argmax
y∈Y
⟨y, X̂(t+ 1) + ηt+1γ̂⟩, (17)

where γ̂ is a time-invariant perturbation vector with the
same distribution but independent as γ(1), and X̂(t + 1) =∑t

τ=1 x̂(τ). It can be verify that, given Ft, ŷ(t) and y(t + 1)
are conditionally independent and identically distributed. For
convenience, we introduce the following notations:

pt,i = E[yi(t)|Ft−1] p̂t,i = E[ŷi(t)|Ft]

pt(S) = Pr{y(t) = S|Ft−1} p̂t(S) = Pr{ŷ(t)) = S|Ft}.

The following lemma bound the regret of virtual policy that
picks the configuration sequence {ŷ(t)}Tt=1.

Lemma 3 For any S ∈ Y, we have

E[
T∑

t=1

⟨ŷ(t), x̂(t)⟩]−
T∑

t=1

⟨S, x̂(t)⟩

=

T∑
t=1

∑
V ∈Y

p̂t(V )⟨V , x̂(t)⟩ −
T∑

t=1

⟨S, x̂(t)⟩ ≤ ηTC(logN/C + 1).

Then we are going to relate the performance of the virtual
policy to the actual performance of FTPL(E)-component,
which is shown in the next lemma.

Lemma 4 For any t, we have∑
V ∈Y

(pt(V )− p̂t(V ))⟨V , x̂(t)⟩ ≤ 1

ηt

∑
V ∈Y

pt(V )(⟨V , x̂(t)⟩)2.

We give the full-proof of lemmas 3-4 in our online technical
report [1] due to the space limit.

Now, everything is ready to prove Theorem 1, i.e., regret
guarantee of FTPL(E) with GR for any request sequence. Put
together Lemmas 2 (16), 3 and 4 gives

E[
T∑

t=1

(
∑
V ∈Y

pt(V )⟨V , x̂(t)⟩ − ⟨S, x̂(t)⟩)]

≤ ηTC (log(N/C) + 1) + 2CN

T∑
t=1

1

ηt
, ∀S ∈ Y.

(18)

Then according the fact that

E[
T∑

t=1

⟨y(t),x(t)⟩|Ft−1] =

T∑
t=1

∑
V ∈Y

pt(V )⟨V ,x(t)⟩,

and Lemma 2 ((14), (15)), we have ∀S ∈ Y:

E[
T∑

t=1

⟨y(t)− S,x(t)⟩]

≤ E[
T∑

t=1

(
∑
V ∈Y

pt(V )⟨V , x̂(t)⟩ − ⟨S, x̂(t)⟩)] + NT

eM
.

Put the above two inequalities together and use the inequal-
ity that

∑
t=1 1/

√
t ≤ 2

√
T then we complete the proof of

Theorem 1.
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Fig. 3. The sum of the frequencies of Top-C files that occur most frequently
in t rounds.

VI. NUMERICAL RESULTS

In this section, we conduct numerical experiments to vali-
date the theoretical performance of our caching policy. We first
show that using Exponentially distributed instead of Gaussian
distributed sample vector as the perturbation term in FTPL
indeed improve the cache performance.

A. The bonus of the exponentially distributed perturbation

To experimentally demonstrate the bonus of the exponen-
tially distributed perturbation, our simulation is conducted on
the non-stationary request sequence under the full-feedback
regime. Specifically, our generated request sequence, or our
used dataset is ’rating.csv’ file of the MovieLens 20M dataset
[13] whose popularities are gradually changing. It contains
four columns: ’userID’, ’movieID’, ’rating’, and ’timestamp’.
To fit this dataset into our sequential request model, we
extract data from the ’timestamp’ and ’movieID’ columns.
The extracted ’timestamp’ was used as arrival time-slot of the
request, and ’movieID’ as request index to the model.

In our experimental setup, we selected part of the dataset
(about 10K requests) for our simulation. We set the cache
capacity (C) to be 1% of the library size (N). To better present
the non-stationary property of the dataset, we show in figure
3 how the sum of the frequencies of Top-C files with the
highest frequency changes over time. The burr and shake on
the curve could reflect the gradually changing popularities in
our request sequence. Note that the top C files that appear
most frequently are not fixed and the sum of frequency of the
Top-C files that occur most frequently fluctuates around 10%.
The baselines we used are LFU, LRU, FIFO, and FTPL(G).
We do not compare [10], [23], [24], [29] as their policies only
apply to the coded-caching. We plot the empirical results of
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Fig. 4. Results for non-stationary request model under the full-feedback regime: (a) regret(t); (b) regret rate; (c) hit rate
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Fig. 5. Results for non-stationary request model under the partial-feedback regime: (a) regret(t); (b) regret rate; (c) hit rate
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Fig. 6. Results for stationary request model under the partial-feedback regime: (a) regret(t); (b) regret rate; (c) hit rate

FTPL(E) and these baselines in Figure 4. From this figure we
observe that FTPL(E) and FTPL(G) outperform FIFO, LRU,
and LFU which incur linear regrets. It demonstrates that FTPL-
based caching policies are superior to classic caching policies
for non-stationary request sequence. And the performance of
FTPL(E) is indeed better than that of FTPL(G), even though
their trends are roughly the same. This confirms the advantages
of our used Exponentially distributed perturbations. Besides,
the hit-rate in a relatively large time-horizon (T ≥ 4 · 103) for
FTPL(E) is ∼ 7.5% which is only 25% worse than 10%.

B. Partial-feedback regime

We now present the empirical performance of FTPL(E)+GR
under the regime of partial-feedback. We conduct numerical
experiments for stationary request model and non-stationary
request model, respectively, to validate the theoretical guaran-
tees of FTPL(E)+GR.

Non-stationary request model. In order to model the non-
stationary request sequence, we still used the MovieLens 20M
dataset. To make the curve trends are more obvious under the
partial-feedback regime, we choose larger time-horizon and
larger ratio of C/N . Hence, we selected 60K requests of the
dataset and set the cache capacity (C) to be 5% of the library
size (N) in our experimental setting. From figure 3, we can see
that the sum of frequency of the Top-C files that occur most
frequently in the whole selected requests fluctuates around
31%. As we are the first work to study the online caching
problem under the partial-feedback regime, we construct the
following baselines for comparison: (a) FTPL that uses the
Gaussian distributed perturbation and could observe all file
requests, referred as ”FTPL(G), full-feedback”; (b) FTPL that
uses the Exponentially distributed perturbation could observe
all file requests, referred as ”FTPL(E), full-feedback”; (c)
FTPL(G) that set x(t) = 0 if request x(t) incurs hit-miss,
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referred as ”FTPL(G), partial-feedback”; (d) FTPL(E) that set
x(t) = 0 if request x(t) incurs hit-miss, referred as ”FTPL(E),
partial-feedback”. We do not compare classic caching policies
(e.g., LFU, LRU, FIFO, etc) as they are designed for full-
feedback regime and poor-performance achieving under non-
stationary request sequence.

Figure 5 shows the performance of FTPL(E)+GR and all
baselines. We can observe that FTPL(E)+GR indeed achieves
a sublinear (about O(

√
T )) regret guarantee and only in-

curs slight performance degradation compared with baseline
”FTPL(E), partial-feedback”, which is the best-case scenario
under our experimental setup. Besides, we see that the hit-
ratio guaranteed by the FTPL(E)+GR exceeds 20% when T is
larger than 40K, which is about 65% of the value 31%. Such
performance is completely acceptable for the non-stationary
request sequence and partial-feedback regime. Moreover, it is
worth noting that FTPL(G) and FTPL(E) would incur linear
regrets without any popularity estimation procedures. Thus,
designing and combining appropriate estimation procedures is
necessary for partial-feedback regime especially when request
model is non-stationary.

Stationary request model. We also evaluate our
FTPL(E)+GR under the Zipf distributed requests containing
N = 1244 unique file indices. We set the cache capacity (C) to
be 5% of the library size (N), and the sum of popularity of the
most popular C files is approximately 52%. We use the same
baselines in our experimental setup for non-stationary request
model. We compare the performance of these baselines and
FTPL(E)+GR in Figure 6. From this figure, we could conclude
that our Geometric Resampling (GR) estimation procedure
estimates the popularities correctly as FTPL(E)+GR achieves
almost the same performance as FTPL(E) that could observe
every request, and achieves a hit-rate of ∼ 50% that is almost
optimal. Surprisingly, we observe that FTPL(E)+GR has a
better performance than FTPL(E) that could observe every
request under the partial-feedback regime, which is a little
counter-intuitive. The reason why this phenomenon happens is
not only because our estimates are almost accurate under the
stationary request popularity, but also because the perturbation
terms that follow the exponential distribution are superior to
those that follow the Gaussian distribution.

Running time of FTPL(E)+GR. We also measure the
empirical runtime of FTPL(E)+GR in our simulations. We
show the per-request processing time ratio of FTPL(E)+GR
to FTPL(E) in Table I, i.e., the runtime ratio. As mentioned
before, the worst-case amortized running time of FTPL(E)+GR
is Õ(N2) when M = O(

√
T ), which is at most O(N) times

that of FTPL(E). From Table I, we can observe that even
setting M = O(

√
T ), the runtime ratio of FTPL(E)+GR to

FTPL(E) is far less than N which is somewhat surprisingly.
This confirms the correctness and effectiveness of our Geo-
metric Resampling (GR) estimation procedure. Interestingly,
we also empirically find that when setting M = O(

√
N) or

greater which is independent of T , the resulting performance
degradation (increase of regret) is at most 18% both for our
stationary and non-stationary dataset. Therefore, the regret

TABLE I
THE RUNTIME RATIO OF FTPL(E)+GR AND FTPL(E)

Dataset Request types (N) Runtime ratio
ZIPF 1163 85.58

MovieLens 2160 100.92

upper bound in Theorem 1 might be further improved and
we leave it as a future work.

VII. CONCLUSION

In this paper, we develop and analyze a novel online caching
policy, FTPL+GR. To the best of our knowledge, FTPL+GR
is the first online caching policy to achieve sublinear regret
guarantee for any request model under the partial-feedback
regime. We then conduct numerical experiments to validate
the theoretical performance guarantee of our caching policy.
For future work, it is a good direction to investigate sharper
performance bounds for FTPL+GR or more advanced caching
policy for partial-feedback regime. Moreover, developing an
efficient and sublinear regret achieving online coded-caching
policy for partial-feedback regime is also an open question.

APPENDIX

A. Proof of Lemma 2

Firstly, note that (14) could be derived immediately accord-
ing to Lemma 1 as

E[x̂i(t)|Ft−1] ≤ xi(t), ∀i ∈ [N ]

⇒ E[⟨x̂(t),S⟩|Ft−1] ≤ ⟨x(t),S⟩, ∀S ∈ Y.

Also, by Lemma 1, we have

E[
∑
V ∈Y

pt(V )⟨V , x̂(t)⟩|Ft−1]

=

N∑
i=1

pt,iE[x̂i(t)|Ft−1]

=

N∑
i=1

pt,i(1− (1− pt,i)
M )xi(t)

=

N∑
i=1

pt,ixi(t)−
N∑
i=1

pt,i(1− pt,i)
Mxi(t)

(a)

≥
N∑
i=1

pt,ixi(t)−
N∑
i=1

pt,ie
−Mpt,ixi(t)

(b)

≥
N∑
i=1

pt,ixi(t)−
N∑
i=1

N

eM
xi(t)

(c)

≥
∑
V ∈Y

pt(V )⟨V ,x(t)⟩ − N

eM
,

where (a) holds due to a(1 − a)M ≤ ae−Ma, 0 ≤ a ≤ 1;
(b) comes from the fact f(a) = ae−aM takes its maxi-
mum at a = M−1; where (c) is due to

∑N
i=1 pt,ixi(t) =

E[
∑T

t=1 ⟨ŷ(t),x(t)⟩|Ft−1] =
∑T

t=1

∑
V ∈Y p̂t(V )⟨V ,x(t)⟩. Then

2022 18th International Conference on Network and Service Management (CNSM)

161



we complete the proof of (15). Lastly, the property (16) is
proven as∑

V ∈Y

pt(V )(⟨V , x̂(t)⟩)2

= E[

N∑
i=1

N∑
j=1

(yj(t)x̂j(t))(yi(t)x̂i(t))|Ft−1]

(a)

≤ E[

N∑
i=1

N∑
j=1

(yj(t)Kt,jyj(t)xj(t))(yi(t)Kt,iyi(t)xi(t))|Ft−1]

(b)

≤ E[

N∑
i=1

N∑
j=1

K2
t,j +K2

t,i

2
(y2

j (t)xj(t))(y
2
i (t)xi(t))|Ft−1]

(c)

≤ 2E[

N∑
i=1

1

p2t,i
(y2

i (t)xi(t))

N∑
j=1

(y2
j (t)xj(t))|Ft−1]

(d)

≤ 2E[

N∑
i=1

1

p2t,i
y2
i (t)C|Ft−1] ≤ 2CN,

where (a) holds by the definition of our estimates x̂(t); (b)
is due to ab ≤ a2+b2

2
; (c) holds by the symmetry and the fact

that E[K2
t,i|Ft−1] =

2−pt,i
p2t,i

≤ 1
p2t,i

; (d) follows from the fact
that ||y(t)||1 ≤ C and yi(t), xi(t) ≤ 1, ∀i; and (e) is because
E[y2

i (t)|Ft−1] ≤ E[yi(t)|Ft−1]E[yi(t)|Ft−1] = p2t,i.
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