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Abstract—IoT-technology is gaining a wide popularity over
a large range of applications including not only monitoring of
structures but also management and control of smart-systems. An
IoT-system, in general, is composed of a number of IoT-devices
which form a wireless decentralized setting as they get installed
over a specific area to serve a particular purpose. The structure
of the underlying wireless network depends on the structure of
the target where the system gets deployed and hence, widely
varies based on the exact application. Such structural variations
often have an impact on the performance of the underlying
IoT-protocols. Unfortunately most of the network protocols do
not take care of such issues explicitly. For instance, although
there have been quite significant development in the data-sharing
protocols, especially with the advent of Synchronous-Transmission
(ST), most of them are designed without considering the variation
in the structural formation of the base networks. These protocols
are tested over either in small scale simulated networks or in
testbed settings bearing fixed/homogeneous structures. In this
work, we demonstrate that the property of self-adaptability in
an IoT-system can enable it not only to run faster but also save
substantial energy which is an extremely important issue in the
context of low-power system, in general. In particular, we design
and implement a flexible and structure-adaptive many-to-many
data-sharing protocol FlexiCast. Through extensive experiments
under emulation-settings and IoT-testbeds we demonstrate that
FlexiCast performs upto 49% faster and consumes upto 53%
lesser energy compared to the case when it does not adapt to the
network structure.

Index Terms—Many-to-Many data sharing, WSN, IoT, Self-
adjusting protocol, Concurrent-Transmission, Capture effect,
TDMA, Time-varying schedule.

I. INTRODUCTION

An IoT-system is composed of a number of independent

low-power IoT-devices which form an ad hoc wireless network

as they get installed over a specific area for serving a particular

purpose, for example, volcanic earthquake prediction [1],

monitoring a bridge [2] etc. The topology of the constructed

wireless network is often induced by the shape of the place

where the IoT-devices get installed. Figure 1 shows a few

such scenarios. Network topology is an important issue from

the perspective of the performance of the distributed protocols

and algorithms which fundamentally drive an IoT-system. For

example when the diameter of the network is quite high with

respect to the communication range of the devices it would

take larger time for the data originating from one end of

the network to propagate to the other end. Thus, when an

IoT-system needs to run protocols where participation from

a significant fraction of the nodes is very essential (e.g.,

consensus, aggregation), as well as the nodes have limited

capability in terms of energy, communication range etc., the

influence of the topology of the underlying network happens

to be quite non-trivial.

However, since topology is induced by structure of the target

place, it is not well defined or not known a priori. Especially

when the nodes are installed in an ad hoc fashion, the design

and implementation of the distributed IoT-algorithms/protocols

are done in a very generic way without considering the

impact of such issues. In this work we emphasize that in

the context of low-power IoT-systems, the design of the

distributed protocols/algorithms should consider the issue of

the network topology. To make it feasible we propose the

concept of structure-adaptive IoT-protocols. Such protocols

are supposed to start operating in a normal mode where the

network topology is not considered. However, gradually, the

protocol infers the topology of the network depending on the

structure of the place where the network is deployed, and

adapts itself accordingly. Sharing of data among each other

is one of the fundamental tasks in any IoT-application [3]. In

this work to demonstrate the concept of structure-adaptability

we select the task of many-to-many data-sharing which is the

most complex form of data-sharing where many nodes in the

network need to actively participate and act as source of the

data.

(a) (b) (c) (d)

Fig. 1: Example of different types of shape/structure of the network formed in an IoT system.(a) A linear chain/string like structure of
the network installed to monitor a bridge. (b) A triangular structure to monitor a pyramid like object. (c) A dense cluster to monitor a
multi-storied building. (d) A chain connected with a cluster to monitor an important area and its surrounding roads.
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With the advent of the Synchronous-Transmission (ST) there

has been a huge development in the data-sharing strategies

in IoT [4]. ST based protocols have shown their superior-

ity in many recent works in comparison to the traditional

Asynchronous-Transmission (AT) based protocols. However,

unfortunately none of the ST based protocols take any step to

mould their design based on the structure of the underlying

network. In this work we show that structural information can

be appropriately exploited to make an ST based protocol run

even faster as well as conserve more energy.

There have been various approaches to achieve many-to-

many data sharing using ST. Many of them make use of

TDMA [5] as a base as it can be efficiently realized under

ST even in a decentralized setting by exploiting the global

time-synchronization. Many-to-many data-sharing protocols

use TDMA to provide explicit chance to different nodes to

disseminate their data in specific time-slots. For example the

state-of-the-art protocols LWB [6], Chaos [7], ByteCast [8],

and MiniCast [9], all make use of TDMA in some form.

LWB uses TDMA in network level, i.e., each node is given

independent chance to flood the whole network and therefore,

its quite free from any structural influence. However, while

LWB is a very stable and efficient protocol, it does not perform

as good as the other protocols since it is not very optimized.

In contrast, in the other protocols the contribution comes from

different nodes in an interspersed manner. Specifically, the

floods from the all the source nodes run almost in parallel

and hence overall they perform better than LWB. However,

since in all these protocols the process starts from a single

node designated as the initiator, the structure of the network

is supposed to substantially affect their performance.

There have been other approaches for many-to-many data-

sharing such as Mixer [10], CodeCast [11] etc. They use

sophisticated network coding to enhance the throughput in

the data-sharing process. However, to demonstrate the concept

of structure-adaptability in this work we design and develop

a protocol FlexiCast where the simplest possible TDMA

based protocol MiniCast is used as the base. In summary, the

contributions from the work are as follows.

• We introduce the class of network protocols that can self-

adjust and optimize its performance based on the specific

structure of the underlying network.

• A simple way has been introduced to induce flexibility in

ST based protocols through controlled run-time variation

of globally set physical layer parameters, e.g., packet-

size, length of packet-sequence, etc.

• We build a protocol FlexiCast to carry out many-to-many

data sharing in a very time and energy efficient way

through the use of time-varying TDMA schedule that are

optimized based on the underlying network-structure.

• The proposed system is implemented in Contiki OS for

TelosB devices and extensively compared with other ST

based state-of-the-art strategies for many-to-many data

sharing in both emulated and testbed platforms.

The paper is organized as follows. Section II and Section III

provide a brief study of the related works and the necessary

background, respectively. Section IV discusses the basic idea

and design of the proposed protocol. Section V describes

the performance metrics used in the work while Section VI

provides an in-depth evaluation study of the proposed protocol.

II. RELATED WORKS

Self-adaptability: Self-adaptability has been studied in

various contexts in WSN/IoT. For example, the works [12]–

[14] consider mobile networks (e.g., humans/vehicles/robots).

The proposed protocols in these works constantly keep on op-

timizing the routing strategy and the hierarchical organization

of the fog-layer with the changes in the network due to the

mobility of the nodes. The work [14] does the adaptation

explicitly considering the security related issues. Similarly,

to maintain QoS requirements the works [15]–[17] proposes

dynamic adjustments of the protocol parameters when there

are changes in the strengths of the links in the network.

Event based adaptation has been considered in the works [15],

[18], [19]. They dynamically decide various parameters of

the protocols explicitly when important events are detected

at one/few nodes. The work [20] proposes an adaptive TDMA

protocol for multi-robot systems where the time-slots are

decided dynamically when new robots enter the system or

existing robots leave. However, to the best of our knowledge

self-adaptability with respect to the network structure in a

pure low-power resource-constrained systems has not been

considered in any of the existing works so far.

ST-based data-sharing: Most of the data-sharing protocols

under ST, are built considering the protocol Glossy [5] as their

base. Glossy achieves a very fast one-to-many data sharing

and implicit time synchronisation across all the nodes in

large networks. In summary, unlike traditional CSMA based

strategies, Glossy avoids inter-packet collision with the help

of special physical layer phenomena known as Constructive-

Interference (CI)/Capture Effect (CE). BlueFlood [21], SCIF

[22], RedFixHop [23], LiM [24], Splash [25], Pando [26],

Ripple [27] etc., are all extensions over Glossy. Glossy has

been also used for dynamically updating other MAC layer

parameters on-the-fly [28]. One recent work [29] applies run-

time learning and updates of the parameters of Glossy itself so

that its performance can improve. However, these works do not

target any network structure-specific run-time optimization.

Many-to-many data-sharing: Many-to-many data sharing

[4] protocols serve a significant role in the smart-systems.

Under ST, due to an inherent grip over time, TDMA based

policy has been quite common in realizing many-to-many data-

sharing. The works LWB [6], WTSP [30], Blink [31], Crystal

[32] etc., apply TDMA schedule in global level for complete

and independent repetition of Glossy floods. In contrast,

protocols such as Chaos [7], A2 [33], Mixer [10], CodeCast

[11], ByteCast [8] etc., use the schedule in a very granular

way inside a packet. The work MiniCast [9], uses TDMA in a

novel way for arbitrating the order of the transmissions of the

packets by different nodes in system. Use of TDMA schedule

in every transmission slot intrinsically allows MiniCast to run
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multiple units of one-to-many data-sharing in parallel. Because

of its simple principle and efficient outcome, MiniCast has

been used in several recent works for solving problems using

IoT-edge in diverse fields, e.g., efficient charging of EVs [34],

Load Management in HAN (Smart Grids) [35], [36], Multi-

Party Computation for Privacy [37], Byzantine fault tolerant

protocols for IoT [38], intelligent-transportation [39] etc.,

However, granular use of TDMA also makes MiniCast more

sensitive to network structure which we explicitly study in this

work. The concept of run-time variation of TDMA schedules

for network-specific optimisation is introduced in our previous

work [40]. It uses custom-made TDMA schedules and simulate

the concept over standard multi-hop networks. In the current

work, we develop a full system that can automatically build

up the TDMA schedules based on the data collected through

the execution of the protocol in normal-mode which does not

consider structure-specific optimization. The proposed strategy

in this work can even dynamically update those schedules as

per the changes detected in the network-structure.

III. BACKGROUND

In the following, we provide a brief description of MiniCast.

MiniCast: MiniCast extends the protocol Glossy to carry

out many-to-many data-sharing where TDMA is used to

arbitrate the participation of the source nodes. The process

starts with the transmission of a probe message by the initiator

which triggers the transmission of the data packets from

the first-hop nodes. Reception of this packets triggers the

transmission from the second-hop nodes and so on until all the

nodes complete a predefined number (N-TX) of transmissions.

In order to provide equal and fair chances to every source

node, the protocol allows all the nodes to transmit at every

transmission slot. TDMA is used to define a unique position

for every node in every slot. The terms slot and sub-slot in

MiniCast refer to the transmission of the complete chain of

packets and the transmission of the packet from a specific

node in a chain, respectively. Note that MiniCast needs to

exploit transmission-time SFD interrupts to keep the nodes

synchronized during transmission of long chains. This is

referred to as self-synchronisation. However, to make this

possible, a node has to transmit in every sub-slot even if it

has not yet acquired the data. These dummy transmissions are

done with the lowest possible power so that they do not disturb

other transmissions.

ChainTx: Transmission of a chain of packets exploiting

self-synchronization is a very fundamental unit of MiniCast.

We extract out this basic unit from MiniCast and call it

ChainTx. In principle, ChainTx fundamentally extends Glossy

to enable it to disseminate a number of packets together in a

very compact form.

IV. DESIGN AND IMPLEMENTATION

The dissemination process in an ST based protocol starts

from the initiator. In an usual network setting, most of the

other nodes are discovered within few hops from the initiator.

However, as discussed in Section I, in a cost-optimized IoT-

edge deployment over a large area, the connectivity structure

of the underlying network may be quite non-uniform with

presence of dense components as well as long and narrow

string like structures. Use of TDMA in the traditional way

allows every node to contribute at every transmission-slot from

the beginning itself. As a result of that a significant fraction

of the transmission slots in the TDMA schedule remains

empty for a considerable amount of time. To optimize the

performance, instead of a globally fixed schedule what is

necessary is customized TDMA schedule prepared specifically

for each transmission-slot considering only those nodes that

can contribute upto that slot. However, such run-time variation

of schedule as per the network structure needs sufficient degree

of flexibility in the underlying base protocol. Unfortunately, in

order to accomplish and maintain tight time-synchronization

(µS level), the ST based protocols inherently exhibit strong

rigidity in important physical or data link layer parameters

such as packet-length, schedule-length etc. In the following

we first address this specific issue.

A. Run-Time Variation of Schedule-Size

In order to exploit the benefit from CI/CE, the ST based

protocols maintain rigidity in their design and implementation

explicitly to remove any possibility that can hamper the

maintenance of the tight time-synchronization. For example,

multiple nodes are allowed to transmit packets together but

exactly at the same time (with µS level precision) and the

packets should have exactly the same size and content. The

work Chaos [7], depends more on CE and hence it relaxes the

restriction on having the same content in the packets, but it still

follows the restriction on the packet size and timing. In order

to allow run-time variation amidst such restrictions, in this

work we exploit a special parameter called Relay-Count (aka

slot-number or RC). The protocol Glossy [5] introduces RC to

keep track of the number of slots passed during its execution.

RC is initially set to zero in every node. Before transmission,

the local value of RC is incremented and placed in the packet.

In MiniCast, the same strategy is followed. The value of RC

stays the same for an entire slot. Each sub-slot is identified

by another parameter packet-counter. One very important

property of RC is that at any point in time all the packets

being transmitted throughout the network bear the same value

of RC irrespective of the position of the transmitters. This

allows RC to be used as a global reference time. We exploit

this feature to realize the time-varying schedule in MiniCast

and ChainTx.

Figure 2 graphically shows the feasibility of the strategy

through execution of ChainTx with such variation in the chain-

length in a network consisting of three layers w.r.t the initiator.

We assume the nodes already have a common predefined map

that provides different chain-length for every different RC

value and they participates in the ChaiTx process accordingly.

It can be seen from the figure that despite this variation, at

different time point the length of the schedule remains constant

throughout the network which ensures successful execution

of ST. Following the same strategy, packet size can be also

varied over sub-slots. We modify Glossy and ChainTx to
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Fig. 2: Illustration of feasibility of ST despite dynamic variation in the chain-length over time (RC) through execution of ChainTx with (a)
fixed chain length and (b) variable chain length.

accommodate this flexibility in the chain length and packet

size. The modified versions are evaluated rigorously where

no change in their reliability is observed (detailed in Section

VI-A).

B. FlexiCast

We use the RC based mechanism to implement the run-time

system-wide variation of the schedules. We refer the modified

version of MiniCast that uses different schedule at different RC

in run-time as FlexiCast. In general, a system is supposed to

start its operation with MiniCast which gradually converge to

FlexiCast once the schedules to be used for each RC are sorted

out. In the following we first talk about the state-diagram of

FlexiCast and next describe in details how the time-varying

schedules are developed through an automated process.

State diagram: The state diagram of FlexiCast is given in

Figure 3. It bears a transmission loop and a reception loop to

carry out the series of transmission and reception of packets

(in a chain). Before the transmission loop, RC is incremented

and the schedule for the slot is picked from a predefined map.

Transmitters check the availability of the data from a local

data-store before every packet transmission and receivers save

the data after every reception in the same data-store.

C. Formation of the Time-Varying Schedule

Since the network in an IoT-system gets formed in an ad hoc

basic and there can be no prior idea about the exact structure

of the target as well as positions of the nodes, the manual

formation of the time-varying schedules is quite impossible.

Thus, the proposed structure-adaptability is achieved through

an automated run-time process that starts after the system

actually gets deployed.

Since the dissemination process in MiniCast starts from the

initiator, it is quite intuitive that in slot-number i there is no

need for the TDMA schedule to reserve the sub-slots for the

nodes that are located beyond hop-i or layer-i w.r.t the initiator.

For example, during the execution of MiniCast in the network

shown in Figure 2(a), in slot-number 2, the schedule does not

need to consider the nodes in layer 3 or higher since there is

no way in which those nodes can contribute anything at that
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Fig. 3: State diagram of the proposed protocol FlexiCast.

point. Thus, the target should be to form the TDMA schedules

precisely and carefully considering this issue.

We plan to use the initial runs of MiniCast itself to form

the time-varying schedules. To have a clear understanding,

we run MiniCast for 100 iterations in a small 15-node sub-

network of the IoT-testbed DCube [41] as shown in Figure

4(a). Figure 4(b) shows the average cumulative probabilities

of acquiring data by the initiator from each of the nodes at the

first six receptions-slots in MiniCast. These are referred to as

the Reception-Probabilities (RP). The values of the RPs show

a sharp transition from low to high at a certain reception-slot

in most of the nodes. The reception-slot number where this

transition happens can be perceived as the slot-number from

which the data from the node starts being available at the
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Node

id
Hop Rx-1 Rx-2 Rx-3 Rx-4 Rx-5 Rx-6

224 0 1.00 1.00 1.00 1.00 1.00 1.00

203 1 1.00 1.00 1.00 1.00 1.00 1.00

209 1 1.00 1.00 1.00 1.00 1.00 1.00

217 1 1.00 1.00 1.00 1.00 1.00 1.00

218 1 1.00 1.00 1.00 1.00 1.00 1.00

223 1 1.00 1.00 1.00 1.00 1.00 1.00

216 1 1.00 1.00 1.00 1.00 1.00 1.00

215 1 0.57 0.63 0.79 0.86 0.92 0.96

222 2 0.02 0.88 0.90 0.90 0.90 0.90

201 2 0.00 0.47 0.74 0.82 0.90 0.94

202 2 0.00 0.50 0.74 0.85 0.92 0.94

204 2 0.00 1.00 1.00 1.00 1.00 1.00

205 2 0.00 1.00 1.00 1.00 1.00 1.00

208 2 0.00 0.89 0.91 0.92 0.94 0.95

206 3 0.00 0.00 0.89 0.90 0.93 0.95

Time 

Step Schedule

1 [224]

2
[224, 203, 209, 217, 218, 

223, 216, 215]

3

[224, 203, 209, 217, 218, 

223, 216, 215, 222, 201, 202, 

204, 205, 208]

4

[224, 203, 209, 217, 218, 

223, 216, 215, 222, 201, 202, 

204, 205, 208, 206]

5

[224, 203, 209, 217, 218, 

223, 216, 215, 222, 201, 202, 

204, 205, 208, 206]

6

[224, 203, 209, 217, 218, 

223, 216, 215, 222, 201, 202, 

204, 205, 208, 206]

7

[224, 203, 209, 217, 218, 

223, 216, 215, 222, 201, 202, 

204, 205, 208, 206]

8

[224, 203, 209, 217, 218, 

223, 216, 215, 222, 201, 202, 

204, 205, 208, 206]

9

[224, 203, 209, 217, 218, 

223, 216, 215, 222, 201, 202, 

204, 205, 208, 206]

(b) Reception probabilities

Node 

Id
Hop Rx-1 Rx-2 Rx-3 Rx-4 Rx-5 Rx-6

1 0 1.00 1.00 1.00 1.00 1.00 1.00

2 1 0.93 1.00 1.00 1.00 1.00 1.00

3 1 0.83 0.98 1.00 1.00 1.00 1.00

4 2 0.00 0.93 1.00 1.00 1.00 1.00

5 2 0.02 0.98 1.00 1.00 1.00 1.00

6 3 0.00 0.09 0.92 1.00 1.00 1.00

7 3 0.00 0.11 0.97 1.00 1.00 1.00

8 4 0.00 0.00 0.12 0.93 1.00 1.00

9 4 0.00 0.00 0.11 0.96 1.00 1.00

10 5 0.00 0.00 0.00 0.11 0.98 1.00

11 5 0.00 0.00 0.00 0.02 0.86 1.00

12 5 0.00 0.00 0.00 0.08 0.92 1.00

13 5 0.00 0.00 0.00 0.08 0.95 1.00

14 5 0.00 0.00 0.00 0.05 0.98 1.00

15 5 0.00 0.00 0.00 0.12 0.98 1.00

16 5 0.00 0.00 0.00 0.00 0.92 1.00

17 5 0.00 0.00 0.00 0.06 0.95 1.00

18 5 0.00 0.00 0.00 0.11 0.98 1.00

19 5 0.00 0.00 0.00 0.00 0.86 1.00

Time 

Step Schedule

1 [1]

2 [1,2,3]

3 [1,2,3,4,5]

4 [1,2,3,4,5,6,7]

5 [1,2,3,4,5,6,7,8,9]

6

[1,2,3,4,5,6,7,8,9,10

,11,12,13,14,15,

16,17,18,19]

7

[1,2,3,4,5,6,7,8,9,

10,11,12,13,14,15,

16,17,18,19]

8

[1,2,3,4,5,6,7,8,9,

10,11,12,13,14,15,

16,17,18,19]

9

[1,2,3,4,5,6,7,8,9,

10,11,12,13,14,15,

16,17,18,19]

(a) (d) 4-hop string 1
0

-n
o

d
e

clu
ste

r15-node 

cluster
(e) Reception probabilities (f) Time-varying schedule

(c) Time-varying schedule

Fig. 4: (a) The 15-node sub-network of testbed DCube. (b) RPs for each node at each reception-slot in the initiator for the network shown
in (a). (c) Time-varying schedules composed from the RPs in (b) setting Thp = 0.4. (d) An emulated network (in Cooja) having 19 nodes.
(e) RPs while emulating MiniCast in the network shown in (d). (f) Time varying schedules composed from the RPs shown in (e) setting
Thp = 0.4.

initiator. In turn it also reflects the position of the node w.r.t.

the initiator in the network which we use as the main resource

in the formation of the time-varying schedule. In order to

automatically decide an appropriate time-varying schedule, we

set a global threshold (referred as Thp) on the RP. A node can

be considered to be ready for participating in the dissemination

process on and after a slot number at which the RP goes

higher than Thp. Consequently, the schedule for a slot number

i contains only those node ids which are available by that slot

number. Figure 4(c) shows the time-varying schedule for Thp

= 0.4 for a general 15-node cluster from DCube [41].

Once a node is assigned with a particular hop i based on a

specific Thp, the process will not allow the node to transmit

before that slot number i. On the one hand, a higher Thp

can produce a compact time-varying schedule. However, a too

high value may delay the convergence of the process. On the

other hand, if Thp is not high enough then the schedule size

for each slot may remain almost the same as the one used for

MiniCast resulting many empty sub-slots during execution.

Hence, a balance has to be established by deciding a correct

value of Thp.

D. Full System

Figure 5 provides a schematic of the flow of the execution

of the full system. The process begins with the initiator

executing a number of iterations of MiniCast with the full

TDMA schedule. The RPs are calculated and the time-varying

schedules are derived accordingly. The RPs are preserved for

future references. They are referred to as Reference Reception-

Probabilities (RRP). Subsequently, the initiator disseminates

the schedule to all the nodes in the network using ChainTx.

FlexiCast starts from the very next iteration after reception of

the time-varying schedule at all the nodes. However, in order to

track for possible changes in the network structure, FlexiCast

keeps on calculating the RPs and compare with RRPs in the

initiator node. A set of possible cases are listed below.

1) A node gets shifted to a new location in the same hop:

It cannot be detected. However, it will not affect the

process or the goal in any way.

2) A node gets pushed further away from the initiator: The

initiator can detect it with a fair idea about how many

hops it got shifted. Initiator recomputes the new schedule

and disseminates again.

3) A node comes closer to the initiator: Initiator will

observe increase in the RPs for this node. It would

recompute the schedule and disseminate.

4) Node failure: This can be well detected by the initiator.

This can happen if there is a certain change in the

network, e.g., reorientation etc.

5) Node addition: Its not detected automatically, but usually

in such cases the initiator is supplied with the id of the

new node(s).

Under cases 2 and 4, initiator recomputes the time-varying

schedule and disseminates the new schedule to the nodes.

Whereas, under cases 3 and 5, the schedule needs to re-formed

from scratch through explicit execution of MiniCast with full

schedule for certain number of iterations. These cases are

referred to in Figure 5 as small change (case 2 and 4) and

significant change (case 3 and 5).

Note that the overall system is supposed to execute in a

purely distributed fashion although the initiator has a special

role. In fact, any node in the system can act as an initiator and

if the current initiator fails there exist strategies to quickly elect

a new initiator [42].
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Fig. 5: The overall execution flow of the proposed system.

V. METRICS

FlexiCast is implemented in Contiki OS for TelosB devices.

The performance of FlexiCast is compared with state-of-

the-art many-to-many data sharing protocols Chaos (in its

default configuration) and LWB in addition to its base protocol

MiniCast in both Cooja emulator and testbeds. The following

metrics are used for comparison.

Information Coverage: We mostly consider all-to-all data

sharing where each node has some amount of data to share

with all other nodes in the network. The percentage of data

collected at every node after each reception-slot is measured

and is referred to as information coverage.

Latency: Latency is defined as the time taken for a certain

percentage of information coverage in each node.

Radio-on time: It is the total time the radio in a node is

required to remain ‘ON’ to complete a single iteration of the

process. It represents energy consumption.

All results are presented as average over at least 1000 runs

of the experiments and over all the nodes. Error bars reflect

the standard-deviation.
VI. EVALUATION

In this section, we first show the effectiveness of the RC

based solution for implanting flexibility in ST based protocols

as described in Section IV. Next, a detailed emulation based

study of FlexiCast is provided followed by an evaluation study

over publicly available testbeds DCube and Indriya. In all

our experiments the value of N-TX is set to 10, and Thp

to 0.4 (see Section IVC). The slot-time in LWB is set to

15 ms unless explicitly specified. To make the comparisons

among the protocols easy, we share 1-byte payload from each

node unless specified. Increase in data size brings about more

improvement in FlexiCast, which we show later in the same

section. The protocol can be easily scaled to accommodate

sharing of larger data by splitting data among multiple rounds

of the protocol, each round taking a few milliseconds. In all

our experiments we show the results for all-to-all data-sharing.

A. Implanting Flexibility in ST

Glossy and ChainTx originally use fixed packet size and

fixed chain length. In our experiments, we refer to them as

Glossy with Fixed Packet Size (GFPS) and ChainTx with

Fixed Chain Length (CFCL). To evaluate the proposed RC

based run-time variation we modify the base protocols and

introduce the following two versions: Glossy with Varying

Packet Size (GVPS), and ChainTx with Varying Chain Length

(CVCL). The metric Reliability-rx, described below, is used

as the primary metric for comparison here.

Reliability-rx: In Glossy [5], a node gets N-TX number

of chances to receive a packet throughout the execution of a

single round of dissemination process. However, an iteration

is considered to be successful (i.e., reliability 100%) if a node

receives at least once out of these N-TX chances. For the

current set of experiments, we consider each reception to be

important and observe how controlled variation in physical

layer parameters affects the same. Reliability-rx is calculated

as a ratio of the number of the packets a node successfully

receives to the total number of chances it gets to receive those

packets.

All the four strategies are tested in the testbeds Indriya [43]

and DCube [41]. Figure 6 presents the average reliability-

rx in DCube. The line graph in 6(a) shows the reliability-rx

in GFPS. It can be noticed that reliability-rx drops with the

increase in the packet size. It happens due to higher accu-

mulation of clock-drifts with higher packet size resulting in

inaccurate time synchronization. However, original reliability

still remains 100% regardless of the packet size. In case of

GVPS, we generate a random sequence of packet sizes within

a (min,max) range. Figure 6(a) shows the average reliability-

rx in this experiment w.r.t. the mean of this random sequence

as bars. Its visible from the figure that the bars match closely

with the line graph representing reliability in GFPS (i.e., no

considerable drop in GVPS). In CFCL, we fix the chain-length

at 20 and vary the packet size. Dashed line graph of Figure

6(a) shows that the reliability-rx do not degrade much with

back-to-back chain based transmissions of packets. In CVCL,

we vary the chain length in each slot while all packets bear a

fixed size. We generate five random sequences of chain lengths

in the same way as in GVPS experiments. Reliability-rx is

plotted w.r.t. the average chain size in Figure 6(b) for three

different packet sizes. Comparing Figure 6(a) and Figure 6(b)

it can be understood that the average reliability-rx for a certain

packet size in CVCL matches almost perfectly with the same

for the same packet size in CFCL. Reliability-rx in CVCL

also matches with the cases of similar average packet size in

GVPS and GFPS.

In a nutshell, all these results establish the fact that the pro-

posed strategy to incorporate flexibility in ST based methods is

quite feasible and effective and does not incur any degradation

in reliability.

B. Emulation Based Study of FlexiCast

For usual single-hop and multi-hop network structures,

FlexiCast performs at least as good as MiniCast with some

improvement in multi-hop networks depending on the dis-

tribution of nodes among hops [40]. For modelling skewed

networks, we use network structures as shown in Figure 7.

Networks composed of string and cluster, with varying

string length: We take a network having a single-hop 30-node
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Fig. 6: (a) Reliability-rx in GFPS, GVPS and CFCL (b) Reliability-rx
in CVCL as described in Section VI-A.

2 hop

2 hop

2 hop
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102 hop 302 hop 402 hop

s n

(a) (b)
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Fig. 7: Network structures modeled as three different combinations of
strings and clusters used for emulation. The dark node is the initiator.

(n=30) cluster attached with a linear string of nodes (s) of size

3, 6 and 9 hops. The results are shown in Figures 8(a,b), (c,d),

(e,f) for 3, 6, and 9 hop strings, respectively. For the network

with 9 hops, we set LWB slot time to 20 ms to accommodate

for larger diameter.

In these configurations, increase in the diameter causes the

most adverse effects. LWB’s performance highly depends on

slot-time which in turn depends on the network diameter

causing a sudden increase in latency and radio-on time for

the network having a 9-hop string. The network becomes

more sparse due to the increase in the string length, which

benefits Chaos. But increase in the number of nodes leads to

an increase in packet size also which degrades its reliability.

Overall, Chaos degrades slightly. MiniCast degrades with the

string length since the protocol takes more full-size chain

Fig. 8: Radio-on time and latency of FlexiCast, MiniCast, Chaos and
LWB in networks of type 7(a) with n=30 and s=3,6,9.

Fig. 9: Radio-on time and latency of FlexiCast, Minicast, Chaos and
LWB on networks of type 7(a) with a s=6 and n=10,30,50.

receptions to complete. FlexiCast, through the use of its opti-

mised schedules, saves a lot of time and energy. In particular, it

takes about 30%, 43% and 47% lesser latency as well as 26%,

49% and 58% lesser radio-on time compared to MiniCast to

achieve above 99% all-to-all dissemination with string lengths

3, 6, and 9 hops, respectively. FlexiCast also defeats Chaos by

completing all-to-all dissemination 82%, 74% and 64% faster

while consuming 70%, 60% and 50% lesser radio-on time,

respectively.

Networks composed of string and cluster, with varying

cluster size: Next we fix the string length at 6 hops, and vary

cluster sizes to 10, 30 and 50 nodes. Results are shown in

Figures 8(a,b), (c,d), and (e,f), for these three different cluster

sizes, respectively.1

As the size of the cluster grows, the number of nodes

increases while the diameter is kept constant. In LWB, slots

take the same time for all cluster sizes but more slots are

needed for more nodes. Hence, it increases linearly with

respect to the no of nodes. In Chaos, proliferation in dense

cluster weakens CE. Thus, with the growth in the cluster-

size, the performance of Chaos degrades heavily. In case of

MiniCast, a larger global schedule size to accommodate all

nodes is used for every transmission. In FlexiCast, schedule

size increases only after the cluster is discovered and the

initial transmissions are done with much smaller schedules.

Therefore, FlexiCast takes 34%, 43% and 49% lesser latency,

and 40%, 49% and 53% lesser radio-on time, compared to

MiniCast, in the configurations having cluster sizes as 10, 30,

and 50, respectively.

Varying data length: To demonstrate the effect of increas-

ing the length of data shared by each node, we use a similar

network structure with a string length of 3 and vary cluster size

between 10, 20, 40 and 80. We also vary data lengths from 1

byte to 16 bytes and calculate the Latency and Radio-on time

for information coverage above 99%. The results are shown

in Figure 10. It can be observed that to achieve information

coverage above 99% latency in MiniCast is upto 5 times higher

than FlexiCast. 2 Its already shown that higher packet-size (for

higher data-length) results in lower-reliability in general (see

1For the sake of continuity and clarity, Figures 8(c,d) are repeated in Figures
9(c,d)

2Results are shown for a selected number of data-sizes. Values in the x-axis
are not linear.
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Fig. 10: Latency and radio-on time in the execution of FlexiCast and
MiniCast for varying data-length (per node) in the networks of type
Figure 7(a) with s=4 and n=10, 20, 40, and 80. In legend, N denotes
total number of nodes (string and cluster together).
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Fig. 11: Latency with respect to information coverage. Inset shows
the radio-on time for achieving above 99% information coverage on
emulated networks shown in Figure 7(b) and Figure 7(c).

Section VI-A and Figure 6). Therefore, to achieve coverage

over 99% with larger packet size, Latency and Radio-on time

go little more than linear behavior which is quite visible in

the presented results. However, the said reliability issue with

larger packet-size affects FlexiCast lesser than MiniCast. For

instance, even in a large network of 87 nodes, FlexiCast takes

only 30% of Latency and 50% of Radio-on time that MiniCast

takes for many-to-many data sharing in the same setting. In

addition, note that in MiniCast when a node misses a certain

data item, it requires to wait for the next chance after the

completion of the reception of the current chain which follows

the full TDMA schedule. Whereas in FlexiCast this waiting

time is minimal due to the use of optimized TDMA schedules

at each time step.

Networks composed of more than one cluster and string:

Real life IoT/WSN deployments might have multiple clusters

with different sizes, multiple strings, junctions, etc (see Figure

1(d)). Due to space limitations, here we discuss only two

such special structures as depicted in Figure 7(c) referred to

as SP1, and Figure 7(b) referred to as SP2. Results for both

are shown in Figure 11(a) and Figure 11(b), respectively. We

show latency to achieve different percentages of information

coverage and the radio-on time necessary for 100% informa-

tion coverage (in the inset). In both SP1 and SP2, FlexiCast

shows consistently better performance. Specifically, it shows

a latency and radio-on time improvement of about 30% (both)

in SP1 and around 34% and 23% in SP2 on average compared

to MiniCast.
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Fig. 12: Latency and radio-on time (inset) in two sub-networks of
testbed DCube. Sub-network in (a) is a multi-hop cluster following
a standard network model where FlexiCast performs as good as
MiniCast. Sub-network in (b) is of type 7(b) where FlexiCast shows
significant improvement over MiniCast and all other protocols.

C. Evaluation of FlexiCast in testbed

In general testbed networks are mostly homogeneous and

follows standard patterns. For appropriate evaluation we select

specific nodes within the testbed networks and define sub-

networks with non-uniform/skewed structure. Two such sub-

networks of DCube are selected. The first sub-network is

an usual multi-hop cluster where FlexiCast works similar to

MiniCast. The second one is a carefully selected 22-node

sub-network of the type shown in Figure 7(a) with a 6-hop

string consisting of one node per-hop and a three-hop cluster

of 16-nodes. Figure 12(a,b) show the latency for different

percentages of information coverage and radio-on times for

information coverage above 99% in FlexiCast. Huge improve-

ments in FlexiCast can be seen in this sub-network owing to

the use of the time varying schedule. Specifically, FlexiCast is

found to perform 37% faster and consume 45% lesser radio-

on time compared to MiniCast. Moreover, FlexiCast performs

66% and 72% faster and consumes 60% and 62% lesser radio-

on time compared to Chaos and LWB, respectively.

Similarly, in the testbed Indriya, we select a 16-node sub-

network, having structure similar to the one shown in Figure

7(b) without any cluster in the junction point. Even under this

small setting, FlexiCast exhibits an improvements of 23.8% in

latency and 45.3% in radio-on time, compared to MiniCast.

We also experiment with many other parameters such

as cluster positions, strings-widths, overall topology, etc. In

addition, we also evaluate the full system where MiniCast

gradually converges to FlexiCast, along with adaptation of

FlexiCast with possible changes in the network structure in

both emulation as well as testbed. However, due to space

limitation we cannot include them in this paper.

VII. CONCLUSION

Network structure significantly influences the performance

of network protocols. However, actual structure of a system

gets defined only after it’s deployment. Therefore, prior design

optimization is almost impossible. To mitigate this issue in

the context of low-power IoT systems, in this work we

introduce the concept of structure-adaptive protocols that can

adapt themselves as per the structure of the network in run-

time. We design and implement a protocol FlexiCast and

a supporting system to demonstrate the concept. Through
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extensive evaluation of FlexiCast in simulation and testbeds we

show that structure-adaptability in FlexiCast makes it perform

considerably better than several state-of-the-art data-sharing

strategies. As a future step, we aim to further improve the

performance of FlexiCast with clever application of multiple-

frequencies [44] and multiple Start-of-Field-Delimiters [45],

[46] for in parallel operations in different segments of the

underlying structure.
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