
eBPF Programming Made Easy with eCLAT
Andrea Mayer∗†, Lorenzo Bracciale∗†, Paolo Lungaroni∗†,

Pierpaolo Loreti∗†, Stefano Salsano∗†, Giuseppe Bianchi∗†
∗University of Rome Tor Vergata, †CNIT

Abstract—With the rise of the Network Softwarization era,
eBPF has become a hot technology for efficient packet pro-
cessing on commodity hardware. However the development of
custom eBPF solutions is a challenging process that requires
highly qualified human resources. In this paper we propose the
eCLAT framework with the goal to lower the learning curve
of engineers by re-using eBPF code in a programmable way.
eCLAT offers a high level programming abstraction to eBPF
based network programmability, allowing a developer to create
custom application logic in eBPF with no need of understanding
the complex details of regular eBPF programming. To support
such modularity at the eBPF level, we created an eBPF library
that implements a virtual machine, called HIKe VM. The HIKe
VM library extends the conventional eBPF programs so that they
can be integrated in eCLAT. The eCLAT/HIKe solution does not
require any kernel modification.

I. INTRODUCTION

Extended Berkeley Packet Filter (eBPF) [1] is a technology
for packet processing in Linux/x86 nodes of datacenters, which
has recently gained a prominent position among the solutions
to improve the packet processing performance [2], [3], [4],
[5]. eBPF has been successfully adopted for the development
of Cilium [6], a leading framework for secure networking in
the Kubernetes container orchestration platform, for the GKE
Dataplane V2, and for Katran [7], a layer-4 load balancer
open-sourced by Meta.

Developing eBPF programs is not easy. There are a few
annoying limitations and issues in the eBPF architecture and
development model that generate complexity, preventing a
wider application of this technology and limiting the advan-
tages that eBPF could bring [8], [9]. In particular, eBPF
programs need to be verified by the kernel before being loaded,
this process is very annoying for the developer [10] and it
can increase the development time with a significant loss of
productivity.

In this work, we propose an approach where “small” and
independent eBPF programs can be easily arranged together
to build complex workflows, without changing their source
code but just composing them together in a programmable
way. Using a Unix similarity is like having many standalone
programs such as cut, tail, grep, sed, and using bash scripts to
compose them for a wide range of specific application needs.

The proposed approach is called eCLAT (eBPF Chains
Language And Toolset). eCLAT offers a python-like scripting
language for composing eBPF programs. An example of an
eCLAT script, which we call chain, is shown in Listing 1.
In the eCLAT scripts it is possible i) to define variables;
ii) to implement looping/branching operations, and iii) to

1 f l o w _ r a t e = f l o w m e t e r (p a c k e t)
2 # drop f l o w s g r e a t e r t h a n 10Mbps
3 i f f l o w _ r a t e > 1 0 :
4 d r o p p a c k e t ()
5 e l s e :
6 a l l o w p a c k e t ()

Listing 1: Example of an eCLAT chain. Inside a chain, eBPF
programs are called as they were functions, allowing an easy
and flexible programming of application logic.

execute independent eBPF programs (highlighted in green in
Listing 1).

In our vision, there will be two types of developers: i)
the expert eBPF developers, a minority of developers highly
skilled in eBPF programming that can develop the eBPF
components; ii) the eCLAT developers, the large majority that
writes eCLAT scripts using the eCLAT language and toolkit
to compose the custom applications. We believe that the high-
level python-like abstraction offered by eCLAT greatly simpli-
fies the learning curve for developers. System administrators
accustomed to command line tools can easily become eCLAT
developers and benefit from the power and the speed of eBPF,
without the difficulties of becoming eBPF programmers. Using
the eCLAT framework, a large number of novice programmers
can implement complex application logic exploiting the eBPF
powerful capabilities. Also the expert developers can benefit
from using the eCLAT scripts because it can boost their pro-
ductivity when a given problem can be solved by combining
existing eBPF programs.

In order to turn our vision to reality, we need a way
to execute the eCLAT Chains. We have designed a Virtual
Machine (VM) abstraction called HIKe (HIKe stands for Hide,
Improve and desKill eBPF). The HIKe VM is the execution
environment for the eCLAT Chains and it is developed as an
eBPF library. The eBPF programs that are composed inside a
chain (as shown in Listing 1) are more properly referred to
as HIKe eBPF programs or HIKe programs for short. In fact,
an eBPF program needs to be (easily) extended with proper
“calls” to the HIKe VM library in order to be used inside
the eCLAT framework. A HIKe program can be called as a
function inside an eCLAT chain and it will be executed in the
HIKe Virtual Machine.

The contributions of the paper are as follows: i) we propose
eCLAT as the first framework enabling the composition of
precompiled and pre-verified eBPF code ii) we designed a
Python-like scripting language that is transpiled in bytecode
for implementing network eBPF applications iii) we support

978-3-903176-51-5 © 2022 IFIP

2022 18th International Conference on Network and Service Management (CNSM)

28

the composition of programs at eBPF level with a VM abstrac-
tion called HIKe VM iv) we devised a distributed architecture
for the eBPF code management integrating a packet manager
for the eCLAT framework.

The paper is organized as follows: in Section II we introduce
eBPF and discuss some shortcomings, then in Section III we
present the eCLAT framework and scripting language. Section
IV provides some implementation insights, while Section V
discusses the evaluation of the proposed solution. We present
the related work in Section VI and finally conclusions are
drawn.

II. BACKGROUND: EBPF SHORTCOMINGS

eBPF is definitely a complex technology. Developing com-
plex systems based on eBPF is challenging due to the intrinsic
limitations of the model and the known shortcomings of the
tool chain (not to mention a few bugs that can affect this tool
chain). The learning curve of this technology is very steep and
needs continuous coaching from experts. In this section, we
provide an overview on the eBPF technology, then we discuss
some shortcomings.

A. eBPF overview

The extended Berkeley Packet Filter (eBPF) [11] is a low
level programming language that is executed in a Virtual
Machine (VM) running in the Linux kernel. eBPF has been
profitably used to efficiently and safely manage packets in
a very flexible way, defined by eBPF programs, without
requiring any changes in the kernel source code or loading
kernel modules.

eBPF programs can be written using assembly instructions
that are converted in bytecode or in a restricted C language,
which is compiled using the LLVM Clang compiler as depicted
in Fig. 1. The bytecode has to be loaded into the system
through the bpf() syscall that forces the program to pass a
set of sanity/safety checks performed by a verifier integrated
in the Linux kernel. In fact, eBPF programs are considered
untrusted kernel extensions and only “safe” eBPF programs
can be loaded into the system. The verification step assures that
the program cannot crash, that no information can be leaked
from the kernel to the user space, and it always terminates. In
order to pass the verification step, the eBPF programs must be
written following several rules and limitations that can impact
on the ability to create powerful network programs [12]. After
the verification, JIT (Just In Time) compilation translates the
eBPF bytecode into the specific instruction set for a given
architecture (i.e. x86, arm, 64 or 32 bits).

Once loaded, the execution of eBPF programs is triggered
by some internal and/or external events like, for example
the invocation of a specific syscall or the reception of a
network packet. The eBPF infrastructure provides specific data
structures, called BPF maps, that can be accessed by the eBPF
programs and by the userspace when they need to share some
information.

Focusing on packet processing, eBPF programs can be
attached to different hooks and packets trigger their execution.

Fig. 1: eBPF programs compilation and verification

Among these hooks, we focus for our purposes on the so-
called eXpress Data Path (XDP) hook. XDP [13] is an eBPF
based high performance packet processing component merged
in the Linux kernel since version 4.8. XDP introduces an early
hook in the RX path of the kernel, placed in the NIC driver,
before any memory allocation takes place. Every incoming
packet is intercepted before entering the Linux networking
stack and, importantly, before it allocates its data structure,
foremost the sk_buff. This accounts for most performance
benefits as widely demonstrated in the literature (e.g., [14]
[15] [16] [17]).

B. The verification hell

The verification phase is the one creating major issues in
the eBPF programming model. The kernel validation approach
is almost adequate for simple eBPF programs, i.e. few in-
structions, loop-free code, and no complex pointer arithmetic,
while it has been shown to be a very tough obstacle to the
development of complex applications [9]. As analyzed in [8],
there are four main issues: i) the verifier reports many false
positives, forcing developers to insert redundant checks and
assume quite contrived programming solutions; ii) the verifier
does not scale to programs with a large number of logical paths
(i.e.: nested branches); iii) it does not support programs with
unbounded loops; iv) its algorithm is not formally specified.
This often causes that even a semantically correct program
does not pass the validation.

One of the reasons for these problems is that the compiled
bytecode offered to the verification step is the results of the
optimization procedures executed by the compiler/optimizer.
For optimization reasons, the compiler/optimizer can change
the sequence of operations (preserving the correctness of the
program) with respect to the C source code and this can violate

2022 18th International Conference on Network and Service Management (CNSM)

29

Prog1Entry
Prog

Prog3

Prog2

Prog11

Prog21

Prog22

eBPF Programs

Fig. 2: Chaining eBPF programs with tail calls

some constraint that must be checked by the verifier. The final
bytecode obtained from the compilation of an eBPF program
often depends on the version of the used compiler/optimizer
(toolchain). Different versions of the compiler/optimizer may
not produce identical bytecode from the standpoint of the
individual instructions used as well as their order. At the same
time, the eBPF verifier evolves as new features are added in the
later releases of the kernel. All of this can affect the possibility
that a given program compiled with a specific version of the
toolchain is correctly verified on one specific kernel version
but is rejected on another one.

C. Poor program composition abstractions in eBPF

In the eBPF framework, a program can call another program
using the tail call approach. Figure 2 provides an example of
composition of eBPF programs that invoke each other via tail
calls. When an incoming packet is handed to the eBPF “Entry
Prog”, it can select another program to handle the packet and
execute it with a tail call. The execution control is handed
over to the callee eBPF program and the processing continues
along all the calling tree. With a tail call, the flow of execution
is passed to the called program and the execution context of
the calling program is terminated. There is no possibility of
executing a program and receiving return parameters to be
processed.

If the logic to concatenate the programs needs to be
changed, the affected eBPF programs need to be recompiled
(and pass the verification). For example, this strategy is imple-
mented by the state-of-the-art eBPF composition framework
called Polycube [18].

Very recently, the possibility of invoking eBPF global
functions that are verified independently has been introduced
in the eBPF model. The use of eBPF global functions can
simplify the work of an expert eBPF developer, easing the
code reuse, but it requires in any case the verification of the
eBPF program that contains the calls to the global functions.
In other words, the eBPF global functions do not fulfill the
requirements that led us to design and develop the eCLAT
solution.

D. Lack of a package manager

Considering the limitations in the reuse and composition
of eBPF programs, there is no surprise that there is not a

package manager tool for eBPF, with functionality similar to
pip (for Python modules) or to npm (for Javascript packages).
The eBPF package manager should facilitate the reuse and the
management of eBPF components, promoting the development
of an eBPF ecosystem.

III. THE ECLAT ABSTRACTION

eCLAT (eBPF Chains Language And Toolset) is a frame-
work that offers a high level programming abstraction to
eBPF. Such abstraction is implemented with a python-like
scripting language, called eCLAT Scripting Language, devised
for composing eBPF programs and configuring eBPF maps.
The overall goal is to lower the learning curve of engineers,
allowing them to re-use eBPF code in a programmable way.
This is possible thanks to a modular approach where eBPF
programs are modules and can be composed arbitrarily to im-
plement flexible application logic. To support such modularity
at the eBPF level, we have designed a virtual machine, called
HIKe VM that is able to execute the eCLAT programs, called
Chains, as discussed in the next subsections.

A. The eCLAT Scripting Language

In the eCLAT framework, the complex operations and
heavy lifting must be done within eBPF programs which are
programmed in C by experts and stand “outside” eCLAT.
Within eCLAT is it possible to call such eBPF programs as
they were conventional functions, passing to them some input
values (arguments) and receiving from them their return value.
Such values can be used in the eCLAT script to define the
application logic in a simple but programmable way.

To this aim, the eCLAT scripting language supports the def-
inition of variables, arithmetic operations, branching/looping
conditions and function calls which, as we said, masquerade
the call to eBPF programs. The eCLAT language also offers
the capability of importing modules, interacting with a package
manager. An example of an eCLAT script is shown in Listing
2. The full specification and the formal definition of the
eCLAT language grammar are in the documentation 1.

An eCLAT script is processed by the eCLAT framework (in
particular by the eCLAT deamon), performing the following
operations:

1. the package manager fetches the eBPF programs that are
imported

2. the code of the eCLAT script is transpiled to C language
3. the C code is compiled in bytecode for the HIKe Virtual

Machine
4. the bytecode is stored in eBPF maps ready to be executed

B. Architecture and modularity

The three main elements of the eCLAT framework are:
Chains, loaders and HIKe programs.

• Chains: an eCLAT script is organized in chains which
are defined like python function definitions. A chain is
a simple set of instructions to be executed on a packet

1https://hike-eclat.readthedocs.io/en/latest/eclat_doc.html

2022 18th International Conference on Network and Service Management (CNSM)

30

and contains the application logic. In the code listing 2,
the chain ddos_tb_2_lev is defined in lines 10-45.
eCLAT transpiles the code of each chain to generate the
bytecode which will be executed by the HIKe Virtual
Machine.

• Loaders: a loader is an eBPF program which is re-
sponsible for calling the execution of a specific chain.
For instance in the code listing 2, the loader ip6_sc
intercept all the IPv6 packets and for each packet call the
chain ddos_tb_2_lev. eCLAT gives the possibility to
configure each loader. For instance the ip6_sc loader
can be configured to call different chains according to the
destination IPv6 address of the received packet.

• HIKe Programs: a HIKe program is an eBPF program
which can be called in an eCLAT chain. The chain can
pass some arguments to the program which in turn can
return a value. Such programs are conventional eBPF
programs which must be slightly adapted (few lines
needed) to be executed inside the HIKe Virtual Machine.
Usually, each HIKe program is devised to do one job
such as count packets in a flow, classify, blacklist an IP
address or encapsulate. In the code listing 2 there are 8
different HIKe programs used such as l2_redirect.
It is important to note that eCLAT is not an eBPF
code composer: all the programs called from a chain
are compiled and loaded separately and independently
in memory, to avoid verification problems given by the
creation of a monolithic “large” eBPF program. Nicely,
no change in the code of the HIKe programs is required
when they are composed.

Chains, loaders and programs are stored on public repos-
itories together with their documentation. In this way, the
package manager of eCLAT can automatically download the
imported programs on demand. eCLAT programmers can
view the catalog of available eBPF programs (organized in
packages) and consult their documentation [19].

Fig. 3 shows the architectural view of eCLAT where we
can see eCLAT as composed by a daemon and a client line
interface (CLI). Section IV discusses the internal architecture
of the daemon and the CLI.

C. The HIKe Virtual Machine (HIKe VM)

To make eCLAT possible, it is necessary to find a way
to compose (pre-compiled and pre-verified) eBPF programs
using the function call pattern and without the hassles of
the verification phase. Unfortunately, these cannot be done
with the current eBPF framework. The idea we propose is to
decorate eBPF programs with specific code that allows them
to be composed in a chain specified with eCLAT. The logic
of the chain will be interpreted at run time, for this purpose
we designed a lightweight Virtual Machine abstraction, named
HIKe VM. The HIKe VM is a library of eBPF code that is exe-
cuted by the eBPF programs that are composed in the chain. In
what follows, we will refer to the decorated programs as HIKe
eBPF programs or simply HIKe programs. The HIKe VM is
designed as a register-based Virtual Machine using a subset

of the eBPF VM 64-bit RISC instruction set. The eCLAT
scripts are transpiled into a bytecode that is loaded in memory
(through eBPF maps). This bytecode is interpreted by HIKe
VM which fetches, decodes and executes the instructions.
The bytecode codifies logical and arithmetical instructions,
jump instructions to control the program flow, calls to HIKe
Programs and also calls to other chains. At run time, the HIKe
VM counts the number of instructions of the chain that are
executed. When the number of executed instructions exceeds
a configurable threshold (e.g. 64 instructions) the processing
is stopped (and the associated packet is dropped). In this way,
kernel blocking is avoided with a “run-time” check by the
Hike VM and not with a static analysis of code sanity as done
by the eBPF verifier.

The HIKe VM provides also a set of helper functions (e.g.,
for packet handling) which are in turn made available to
eCLAT programmers. A deeper technical discussion on the
HIKe VM can be found in [20], full details are provided in
[21]. An earlier version of the HIKe VM was used in [22].

1 from prog . n e t i m p o r t h ike_drop , h i k e _ p a s s , \
2 i p 6 _ h s e t _ s r c d s t , ip6_sd_tbmon , moni to r , \
3 i p6_ds t_ tbmon , i p 6 _ s d _ d e c 2 z e r o , l 2 _ r e d i r e c t
4 from l o a d e r s . b a s i c i m p o r t i p 6 _ s c
5

6 # send a l l IPv6 p a c k e t s t o our c h a i n
7 i p 6 _ s c [ipv6_sc_map] = { (0) : (d d o s _ t b _ 2 _ l e v) }
8 i p 6 _ s c . a t t a c h (’DEVNAME’ , ’ xdp ’)
9

10 d e f d d o s _ t b _ 2 _ l e v () :
11 PASS=0; DROP=1; REDIRECT=2;
12 REDIRECT_IF_INDEX = 6 ;
13 ADD=1; LOOKUP=2;
14 BLACKLISTED = 0 ;
15 IN_PROFILE = 0 ;
16

17 # (s r c , d e s t) i n b l a c k l i s t ?
18 u64 : r e s = i p 6 _ h s e t _ s r c d s t (LOOKUP)
19 i f r e s == BLACKLISTED :
20 # r e d i r e c t one p a c k e t o u t o f 500
21 r e s = i p 6 _ s d _ d e c 2 z e r o (5 0 0)
22 i f r e s == 0 :
23 m o n i t o r (REDIRECT)
24 l 2 _ r e d i r e c t (REDIRECT_IF_INDEX)
25 r e t u r n 0
26

27 m o n i t o r (DROP)
28 h i k e _ d r o p ()
29 r e t u r n 0
30

31 # check t h e r a t e p e r (d s t)
32 r e s = i p 6 _ d s t _ t b m o n ()
33 i f r e s != IN_PROFILE :
34 # check t h e r a t e p e r (s r c , d s t)
35 r e s = ip6_sd_tbmon ()
36 i f r e s != IN_PROFILE :
37 # add (s r c , d e s t) t o b l a c k l i s t
38 i p 6 _ h s e t _ s r c d s t (ADD)
39 m o n i t o r (DROP)
40 h i k e _ d r o p ()
41 r e t u r n 0
42

43 m o n i t o r (PASS)
44 h i k e _ p a s s ()
45 r e t u r n 0

Listing 2: eCLAT script for DDoS mitigation

2022 18th International Conference on Network and Service Management (CNSM)

31

Fig. 3: eCLAT Overall Architecture

D. An eCLAT Script Example

DDoS mitigation is a popular application of eBPF on XDP
[23]. Let us consider the following packet processing logic
that a developer wants to implement using eCLAT.

If the packet rate for any IP destination D is over a threshold
R1, analyze all IP sources Sany that are sending packet for this
“overloaded” IP destination D.
If an IP source S in Sany is sending packets with a packet rate

over a threshold R2, put the IP (S, D) in a blacklist for a duration
of T seconds.
During this interval T, drop all packets in the blacklisted (S, D)

couple and send a sample of the dropped packets (e.g., one
packet every 500 packets) to a collector.

Implementing this logic for a non-skilled eBPF programmer
is not easy. Using eCLAT, the non experienced programmer
can write a script like the one shown in Listing 2.

Specifically, the script ddos_tb_2_lev (DDoS with two
levels token bucket) uses and combines in a custom way 7
different eBPF HIKe programs, which are imported in lines
1-3. The Chain loader is called ip6_sc (line 4) and it selects

all the IPv6 packets. The Chain loader is configured in line
10, which binds the Chain ddos_tb_2_lev to the classifier.

In line 11 the ip6_sc is attached to the XDP hook of eth0
interface.

The logic of the ddos_tb_2_lev chain is defined starting
from line 13, as follows.

1 call the ip6_hset_srcdst program with a parameter
(LOOKUP). The result is 0 if the IPv6 (src, dst) is
blacklisted.

2 if the packet is blacklisted, send one packet every 500
to an interface that collect packet samples and drop the
others (line 14); count the REDIRECT and the DROP
events

3 if the packet is not blacklisted, check the IPv6 destination
against a token bucket. If the rate is out of profile for the
token bucket (per destination), check the IPv6 (source,
destination) against another token bucket. If the rate of the
(source, destination) flow is out of profile, put the (source,
destination) flow in the blacklist by calling again the
ip6_hset_srcdst, this time with parameter ADD,
and then drop the packet (increasing the DROP events
counter.

3 if the packet is not out of the profile, increment a counter
of the passed packets and exit the eBPF program by
handing the packet to the regular kernel processing.

eCLAT scripts support branching and looping instructions
(if, for, while, although in the limits set by the HIKe VM
and eBPF verifier), and simplify the operations to read/write
packets (resolving the endianness automatically). Variables
are typed, using the Python syntax for Syntax for Variable
Annotations (PEP 526) [24]. The data returned by Chains and
Programs are 64 bit long but can be cast to shorter subtypes.

As we can see already by this simple example script, eCLAT
provides the flexibility to define custom application logic in
an easy way, by reusing different standalone HIKe eBPF
programs as they were Python functions.

IV. IMPLEMENTATION

eCLAT has been implemented in Python as a daemon
(eclatd). The eCLAT daemon receives user commands from
a CLI (eclat) through a gRPC interface. The structure of the
data is described through a protocol buffer language [25].
Through the CLI, users can load an eCLAT script which
instructs the daemon to i) import all necessary HIKe eBPF
Programs by collecting their code, compile, inject and register
them to the HIKe VM; ii) translate the high-level code of
the chain in C language, compile and load them in the HIKe
VM; iii) manage the entry point (chain loader) by retrieving
its code, compile, inject and configure according to custom
parameters. The daemon is needed to assign run time IDs
to HIKe programs and chains and to use these IDs when
compiling/linking the chains. The daemon keeps the state of
eCLAT consistent and avoids concurrency issues in the loading
of programs and chains. The eCLAT CLI allows users to query
the daemon about the current status of eBPF maps.

2022 18th International Conference on Network and Service Management (CNSM)

32

As shown in Fig. 3, the eCLAT daemon is composed by the
following functional blocks:

• Protocol engine: implements the gRPC protocol service
and is responsible for the communication with the CLI;

• Controller: is responsible to set up the networking en-
vironment, to interact with the parser and to execute the
scripts invoking the managers. It generates/retrieves IDs for
HIKe eBPF Programs and HIKe Chains. Such identification
numbers will be fundamental for the chain compilation
phase since the HIKe Chains rely on numerical IDs for
calling HIKe eBPF Programs, rather than on the names
which are used in the eCLAT domain;

• Program: wraps and manages a HIKe eBPF Program.
The component fetches programs from the eCLAT public
repository, compiles them, and takes care of the loading
and unloading operations. Finally, it registers the output in
the HIKe Persistence Layer. During the compilation of the
HIKe eBPF Programs, the debug info about the program
(i.e.: variables, functions, structs, etc.) are automatically
extracted and registered in a JSON file. This file is parsed to
obtain all map/program associations as well as the number
of input parameters accepted by the specific HIKe eBPF
Program;

• Chain: handles the script part related to HIKe Chains.
It is in charge of translating the source code, from the
(python-like) eCLAT script to a C-defined HIKe Chain.
Then compiles it to generate artifacts (i.e. ELF file object)
through the execution of a dedicated Makefile. Finally, it
registers the output in the HIKe Persistence Layer. The
HIKe Persistence Layer contains a catalog between all the
HIKe Chains loaded (and thus their bytecodes) and the
Chain IDs assigned by the eCLAT Runtime Environment;

• Chain Loader: this component handles one or more HIKe
Chain Loader(s) and interacts with their maps. Using the
eCLAT scripting language, users can specify the chain
loader that has to be loaded, attached to the XDP hook
as well as the configuration that has to be enforced through
configuration maps;

• Parser: has the task of analyzing the eCLAT scripts and
creating the Abstract Syntax Tree (AST), in order to inter-
pret the provided commands and generate the C code which
defines the HIKe Chains;

• Command Abstraction Layer: provides an abstraction
over the different shell commands that need to be invoked
on the operating system to deal with eBPF / HIKe.

The eCLAT daemon automatically fetches the required
programs from the Package Repository. The repository con-
tains packages which in turn may contain different programs,
chains, or chain loaders. Few examples of programs are shown
in Table I, the full list is in [19].

When a user wants to execute an eCLAT script the flow
is the following. The eCLAT Daemon receives the scripts
from the eCLAT Chains described in the eCLAT language.
The daemon first download the required code from the eCLAT
Repo and then “transpiles” the eCLAT chain code into into C

language, generating the source code of HIKe Chains, which
is then compiled into a executable format suitable for being
loaded and executed by the HIKe VM. Actually this is not
only a compilation operation, because the eCLAT Daemon
also works as a linker: it resolves the references to HIKe
eBPF Programs and to other HIKe Chains called inside a
Chain and writes the HIKe eBPF Program IDs and Chain IDs
into the bytecode. Moreover, the eCLAT daemon manages the
dynamic compilation, verification and loading of the HIKe
eBPF Programs that are referred in the Chains. In fact, when
a HIKe Chain refers to a HIKe eBPF Program, the eCLAT
daemon checks if that program is already loaded and if not,
it loads it. The executable of a HIKe Chain (i.e. the bytecode
with some additional info) is stored by the eCLAT Daemon
in the HIKe Persistence Layer, which is based on eBPF maps.
The eCLAT Daemon also interacts with eBPF maps in the
HIKe layer, that are used by the HIKe eBPF Programs to
read/write information. The HIKe layer provides the Runtime
Environment for executing the bytecode of the HIKe Chains.

V. EVALUATION OF THE SOLUTION

A. Prototype

We have implemented a full prototype, running on a single
Docker container [26]. Inside the prototype, it is possible to
develop and test HIKe eBPF programs and eCLAT Chains.
In particular, we emulate a node implementing the eCLAT
framework and a node that generates traffic to be processed.
We provide a number of HIKe eBPF packages and programs
(see examples in Table I) and demonstrate how they can
be easily combined in eCLAT Chains to implement fairly
complex packet processing scenarios (like the DDoS example
coded in Listing 2). The technical documentation and the
instructions to replicate the experiments are available at [19].

B. Modularity

The greatest benefit of adopting the eCLAT framework is
in the flexibility and modularity it offers. Table II objectivize
the benefits of this approach by comparing the presented so-
lution with popular frameworks, Cilium and Polycube, across
different dimensions, and specifically:

• Application logic definition: how an eCLAT user can
define/implement a custom application logic? eCLAT
allows users to define their business logic in a pro-
grammable way through eCLAT scripts. Conversely, other
frameworks allow defining custom configuration. The
difference is that programming flows allow much more
expressibility than relying on a pre-defined set of param-
eters to configure;

• Composition topology: which topology of the data
pipeline is supported by the framework? eCLAT supports
arbitrary topology as the data flow can follow different
branches and loops. Other frameworks like Polycube are
limited by a linear topology: packets flow through a
predefined set of eBPF Programs which are connected
over through a set of tail calls. If developers want to
implement a custom calling logic with specific interaction

2022 18th International Conference on Network and Service Management (CNSM)

33

HIKe eBPF Program Package Name Description
ip6_dst_meter meter Counts the packets per IPv6 destination
ip6_sd_tbmon meter Token bucket monitoring per IPv6 (source, destination) couple

ip6_sd_dec2zero sampler Implement a counter-to-zero per IPv6 (source, destination) couple
show_pkt_info info Print debug information about a packet
ip6_alt_mark alt_mark Decode the Alternate Mark TLV in the Hop-by-hop Options Extension Header

TABLE I: Examples of HIKe programs available in the package repositories.

TABLE II: Comparison of the modularity features for different eBPF frameworks
Dimension Cilium Polycube eCLAT
Application logic defini-
tion

configuration and API configuration of modules and
topology

programmatic

Composition approach assembling and compiling dif-
ferent building blocks

interconnection of cubes
through ports (e.g., veth pairs)

dynamic composition of eBPF pro-
grams with no recompilation.

Composition topology - linear (tail call) arbitrary
Code generation BCC-based BCC-based transpiled from eCLAT script to C, and

compiled with CLang/LLVM
Modularity pre-defined programs big modules (cubes) any eBPF program
Extensibility submit a patch to the main

project
creation of a new cube within
the framework

conventional eBPF programs with mi-
nor modifications

patterns (i.e. a program calls another program accordingly
to given conditions), they must do it on their own;

• Composition approach: where the composition of dif-
ferent modules happens? eCLAT is the only one which
permits composition inside eBPF, without requiring any
eBPF Programs (modules) recompilation. This is different
from models where the composition happens in user
space and then, through code generation, eBPF programs
bytecode is injected;

• Code generation: differently from others, eCLAT is not
based on BCC [27] but on CO-RE [28] which is fostered
and maintained by the Linux kernel community;

• Modularity: What is a module? for Cilium there are pre-
defined generated programs, and Polycube relies mainly
on “big” modules (i.e. “the firewall”) as they can be only
chained together. Conversely, for eCLAT a module is a
standalone HIKe eBPF Program that can be also quite
small (i.e. “flow meter”) as its utility must not be absolute,
but functional of the context where it will be placed in the
HIKe Chain (i.e. in an if expression to decide a branch);

• Extensibility: How can an expert eBPF programmer cre-
ate a new module to extend the framework? HIKe/eCLAT
module can be any legacy eBPF program with very few
changes (3 or 4 lines of C needs to be added). Extending
other frameworks requires more skills.

C. Dataplane performance
In order to evaluate the dataplane performance of the eCLAT

framework, we defined a benchmark with a set of processing
operations. We called this benchmark MMLF (Match, Mark,
Lookup and Forward). We assume that a node is forwarding
packets and needs to identify the packets that belong to a
blacklist of source IP addresses. The packets in the blacklist
have to be marked with a given IP TOS. After the classification
and marking the packets are forwarded with a lookup in the
routing table. The classification and marking operations add

a processing burden to the normal forwarding operations, the
obvious goal is to keep this burden as low as possible. We
developed and compared three solutions: i) an IP set [29] based
approach (IP Set), ii) a chain of HIKe eBPF programs (HIKe);
and iii) a conventional eBPF program (eBPF). According to
our experience, the conventional eBPF solution is the most
difficult to be programmed, only the expert eBPF developers
can do it. The HIKe solution is simpler and it can be
programmed by the eCLAT developers. The IP Set solution
has an intermediate development complexity.

Our performance evaluation consists in measuring the max-
imum forwarding throughput of a node executing the MMLF
benchmark, for the three solutions (IPset, HIKe and raw
eBPF). The maximum forwarding throughput (Rmax) is de-
fined as the maximum packet rate (measured in kilo packets
per second) for which the packet drop ratio is smaller than or
equal to 0.5%, according to the methodology reported in [30].

In the experiments, we considered two types of packets: i)
packets that need to be marked; ii) packets that do not need
to be marked (their source address is not in the blacklist). For
reference, we have evaluated in the same conditions of our
experiment the maximum forwarding throughput of plain IPv6
forwarding performed by the Linux kernel (Plain). Table III
reports the Rmax (averaged over 30 experiments). To give
evidence of the reliability of the measurements, we report the
Coefficient of Variation (the Standard deviation divided by the
average value).

IP set No match Plain HIKe eBPF
Rmax 0.99 1.32 1.39 1.87 2.57
Cv 0.14% 0.10% 0.10% 0.21% 0.08%

TABLE III: eCLAT Dataplane Performance: Rmax in Mpps

The Rmax for the IP Set solution is 0.99 Mpps (for packets
that need to be marked). The reference Rmax for the plain

2022 18th International Conference on Network and Service Management (CNSM)

34

IPv6 forwarding operation (with a lookup in the routing
table) in the Linux kernel is 1.39 Mpps. The degradation
accounts for the cost of classification and marking using the
IP Set framework. We observe that the throughput of the
HIKe based solution is 1.87 Mpps (for packets that need
to be marked), with an increase of performance of 88% (a
factor 1.88x) with respect to the IP Set solution. The HIKe
solution performs the lookup in the kernel routing tables by
using an eBPF helper function. HIKe is faster than the plain
IPv6 forwarding in the kernel, despite the fact that it also
performs the classification and the marking in addition to the
route lookup. This is because it benefits from the advantages
of XDP/eBPF processing compared to regular Linux kernel.
As expected, the custom eBPF program achieves the highest
throughput for packets that needs to be marked (2.57 Mpps),
at the price of requiring expert eBPF programming skills. The
second column (No match) reports the Rmax for packets that
do not need to be marked, which is the same for the HIKe
and eBPF solutions. In this case, only the initial (unsuccessful)
match operation is performed and then the packet is left to the
kernel for the regular processing. The Rmax is 1.32 Mpps,
only a 5% reduction with respect to plain IPv6 forwarding.
This result shows that the performance penalty introduced by
the initial classification made by XDP/eBPF is minimal.

VI. RELATED WORK

eBPF has been extensively used for building fast and
complex applications in several domains such as tactile [31],
security [32], cloud computing [33] and network function
virtualization [34]. In what follows, we limit our analysis on
the limitations of the system and on the relevant framework.

A. eBPF limitations and investigations

eBPF provides advantages to network programmers but it
also presents several limitations that have been highlighted
by researchers and often tackled to provide mitigation or
propose re-design. A comprehensive review of eBPF technol-
ogy opportunities and shortcomings for network applications
is provided in Miano et al. [12] that analyzes the use of
eBPF to create complex services. The authors pinpoint the
main technological limitations for specific use cases, such as
broadcasting, ARP requests, interaction between control plane
and data plane, and when possible they identify alternative
solutions and strategies. Some of the problems reported in
[12] are part of the motivations which led us to the design
and development of HIKe and eCLAT. Gershuni et al. [8]
analyze a design of eBPF in-kernel verifier with a static
analyzer for eBPF within an abstract interpretation framework,
to overcome the current verifier limitations. The authors’ goal
is to find the most efficient abstraction that is precise enough
for eBPF programs and their choice of abstraction is based
on the common patterns found in many eBPF programs with
several experiments that were performed with different types
of abstractions. We also recognize the relevant role of the
“validation hell” and we believe that the HIKe architecture
can help to mitigate the problem.

B. eBPF frameworks for networking

There are several eBPF based projects and frameworks
devoted to simplify or manage the networking using eBPF.
The most popular ones are three: Polycube, Cilium and Inkev.
Polycube aims to provide a framework for network function
developers to bring the power and innovation promised by
Network Function Virtualization (NFV) to the world of in-
kernel processing, thanks to the usage of eBPF [18], [35].
Network functions in Polycube are called Cubes and can be
dynamically generated and inserted into the kernel networking
stack. Like us, Polycube is devoted to implement complex sys-
tems through the composition of cubes. However, Polycube’s
goal is not to reconstruct functional programming but to build
chains of independent micro-services. The absence of function
calls does not allow eBPF programs to return values or accept
input arguments, and thus it is not possible to change the flow
logic according to the output of a given program.

We have been inspired by the work [22] where eBPF
programs can be chained but our ideas of the HIKe VM and
of function calls are missing.

Another approach for using eBPF inside the NFV world
is provided by Zaafar et al. with their InKeV framework
[36]. InKeV is a network virtualization platform based on
eBPF, devoted to foster programmability and configuration
of virtualized networks through the creation of a graph of
network functions inside the kernel. The graph which repre-
sents the logic flow, is loaded inside a global map. The logic
implemented by the graph is merely related to the function
composition, while we provide a more complex flow within
the HIKe VM (e.g., branch instructions, loops, and in general
programmable logic). Such as for Polycube, the goal of InKeV
is to provide network-wide in-kernel NFV, which is not our
framework main goal but that can certainly be one of the most
important applications of it.

Cilium is an open source application of the eBPF tech-
nology for transparently securing the network connectivity
between cloud-native services deployed using Linux container
management platforms like Docker and Kubernetes [1]. With
respect to this work, Cilium has a totally different target
as it is focused on the security of applications running in
containers. Conversely, our target is the reusability of different
eBPF programs and their composability inside the chains,
separating the composition logic flow from the eBPF (HIKe)
programs themselves. We think big applications like Cilium
could greatly benefit from this new approach.

Risso et al. proposed an eBPF-based clone of iptables
[37]. The approach uses an optimized filtering based on Bit
Vector Linear Search algorithm which is a reasonably fast and
consolidated programming interface based on iptables rules.
Clearly, the focus of the work is not composability, but an
extended version of such an approach could be used to define
the entry point for the HIKe applications.

It is worth mentioning the application of eBPF to provide
a greater flexibility to Open vSwitch (OVS) Datapath [38],
[39]. The works propose to move the existing flow process-

2022 18th International Conference on Network and Service Management (CNSM)

35

ing features in OVS kernel datapath into an eBPF program
attached to the TC hook. Finally, several authors implement
eBPF Hardware Offload to SmartNICs [40], [41].

VII. CONCLUSIONS

eCLAT simplifies the creation of complex eBPF appli-
cations by providing a scripting language for implementing
custom application logic. With eCLAT it is possible to mesh
up eBPF programs, seen by the eCLAT script developers
as “simple” function calls. Each of these programs can be
reused in several different application contexts with no code
change needed. A Virtual Machine built inside eBPF and
called HIKe VM takes care of the runtime composition with
a minimal overhead. As further extension, we are considering
the possibility to “push” eCLAT chains in remote nodes to
achieve network programmability. Both HIKe and eCLAT
frameworks are available under a liberal open source license,
the pointers to the source code are in [19].

REFERENCES

[1] The Cilium project, “BPF and XDP Reference Guide,”
2021, available online at {https://docs.cilium.io/en/latest/bpf/\#
bpf-and-xdp-reference-guide}.

[2] M. Bertrone, S. Miano, F. Risso, and M. Tumolo, “Accelerating linux
security with ebpf iptables,” in Proceedings of the ACM SIGCOMM
2018 Conference on Posters and Demos, 2018, pp. 108–110.

[3] F. Parola, S. Miano, and F. Risso, “A proof-of-concept 5g mobile
gateway with ebpf,” in Proceedings of the SIGCOMM’20 Poster and
Demo Sessions, 2020, pp. 68–69.

[4] W. Tu, J. Stringer, Y. Sun, and Y.-H. Wei, “Bringing the power of ebpf
to open vswitch,” in Linux Plumbers Conference, 2018.

[5] Y. Ghigoff, J. Sopena, K. Lazri, A. Blin, and G. Muller, “Bmc:
Accelerating memcached using safe in-kernel caching and pre-stack
processing.” in NSDI, 2021, pp. 487–501.

[6] The Cilium Project, “Cilium Project Home Page,” https://cilium.io/,
2020, accessed: 15-01-2021.

[7] Engineering at Meta, “Open-sourcing Katran, a scalable network load
balancer,” 2021.

[8] E. Gershuni et al., “Simple and Precise Static Analysis of Untrusted
Linux Kernel Extensions,” in PLDI 2019: Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation. New York, NY, USA: Association for Computing
Machinery, 2019, p. 1069–1084.

[9] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal,
“Creating complex network services with ebpf: Experience and lessons
learned,” in 2018 IEEE 19th International Conference on High Perfor-
mance Switching and Routing (HPSR). IEEE, 2018, pp. 1–8.

[10] L. Nelson, J. Van Geffen, E. Torlak, and X. Wang, “Specification and
verification in the field: Applying formal methods to {BPF} just-in-time
compilers in the linux kernel,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI) 20), 2020, pp. 41–61.

[11] Jay Schulist, Daniel Borkmann, Alexei Starovoitov, “Linux Socket
Filtering aka Berkeley Packet Filter (BPF),” https://www.kernel.org/doc/
Documentation/networking/filter.txt, 2021.

[12] Sebastiano Miano et al., “Creating Complex Network Services with
eBPF: Experience and Lessons Learned,” in IEEE International Confer-
ence on High Performance Switching and Routing (HPSR2018). New
York, US: IEEE, 2018, pp. 1–8.

[13] T. Høiland-Jørgensen et al., “The express data path: Fast programmable
packet processing in the operating system kernel,” in Proceedings of the
14th International Conference on Emerging Networking EXperiments
and Technologies. New York: ACM, 2018, pp. 54–66.

[14] N. Van Tu et al., “evnf - hybrid virtual network functions with linux
express data path,” in 2019 20th Asia-Pacific Network Operations and
Management Symposium (APNOMS). New York: IEEE, 2019, pp. 1–6.

[15] D. Scholz et al., “Performance implications of packet filtering with linux
ebpf,” in 2018 30th International Teletraffic Congress (ITC 30), vol. 01.
New York: IEEE, 2018, pp. 209–217.

[16] M. AM Vieira et al., “Fast packet processing with ebpf and xdp:
Concepts, code, challenges, and applications,” ACM Computing Surveys
(CSUR), vol. 53, no. 1, pp. 1–36, 2020.

[17] N. Van Tu, J.-H. Yoo, and J. W.-K. Hong, “Accelerating virtual network
functions with fast-slow path architecture using express data path,” IEEE
Transactions on Network and Service Management, vol. 17, no. 3, pp.
1474–1486, 2020.

[18] S. Miano et al., “A Framework for eBPF-Based Network Functions in
an Era of Microservices,” IEEE Transactions on Network and Service
Management, vol. 18, no. 1, pp. 133 – 151, 2021.

[19] The eCLAT project, “eCLAT HIKe Technical Documentation,” https:
//hike-eclat.readthedocs.io/en/latest/index.html, 2021.

[20] A. Mayer et al., “Composing eBPF Programs Made Easy with HIKe
and eCLAT - Technical report,” 2021. [Online]. Available: https:
//github.com/hike-eclat/docs/blob/master/tech-docs/tr-hike-eclat.pdf

[21] A. Mayer, “Network programmability in Software Routers,” PhD Thesis,
https://tiny.one/mayer-phd-thesis, 2022.

[22] A. Mayer et al., “Performance Monitoring with Hˆ2: Hybrid Ker-
nel/eBPF data plane for SRv6 based Hybrid SDN,” Computer Networks,
vol. 185, 2021.

[23] G. Bertin, “XDP in practice: integrating XDP into our DDoS mitigation
pipeline,” in Technical Conference on Linux Networking, Netdev, vol. 2.
Nepean, Canada: The NetDev Society, 2017, pp. 1–5.

[24] R. Gonzalez, P. House, I. Levkivskyi, L. Roach, and G. van Rossum,
“Python syntax for syntax for variable annotations,” PEP 526, 2016.
[Online]. Available: \url{https://www.python.org/dev/peps/pep-0526/}

[25] Google Developers, “Protocol Buffers,” https://developers.google.com/
protocol-buffers, 2021.

[26] The eCLAT project, “eCLAT docker Github Page,” https://github.com/
netgroup/eclat-docker, 2021.

[27] “Bcc project,” https://github.com/iovisor/bcc.
[28] “BPF CO-RE (Compile Once – Run Everywhere),” https://nakryiko.

com/posts/bpf-portability-and-co-re/.
[29] Netfilter Project, “IP Sets Home Page,” https://ipset.netfilter.org/, 2021.
[30] A. Abdelsalam et al., “Performance of IPv6 Segment Routing in Linux

Kernel,” in 1st Workshop on Segment Routing and Service Function
Chaining (SR+SFC 2018) at CNSM 2018, Rome, Italy. New York,
US: IEEE, 2018, pp. 414–419.

[31] Z. X. et al., “Reducing latency in virtual machines: Enabling tactile
internet for human-machine co-working,” IEEE JSAC, vol. 37, no. 5,
pp. 1098–1116, 2019.

[32] S.-Y. Wang and J.-C. Chang, “Design and implementation of an intrusion
detection system by using extended bpf in the linux kernel,” Journal of
Network and Computer Applications, p. 103283, 2021.

[33] J. Levin and T. A. Benson, “Viperprobe: Rethinking microservice
observability with ebpf,” in 2020 IEEE 9th International Conference
on Cloud Networking (CloudNet). IEEE, 2020, pp. 1–8.

[34] M.Xhonneux, F.Duchene and O. Bonaventure , “Leveraging ebpf for
programmable network functions with ipv6 segment routing,” in Pro-
ceedings of the 14th International Conference on emerging Networking
EXperiments and Technologies. ACM, 2018, pp. 67–72.

[35] S. Miano et al., “A service-agnostic software framework for fast and
efficient in-kernel network services,” in 2019 ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS).
IEEE, 2019, pp. 1–9.

[36] Z. Ahmed, M. H. Alizai, and A. A. Syed, “Inkev: In-kernel
distributed network virtualization for dcn,” ACM SIGCOMM Computer
Communication Review, vol. 46, no. 3, jul 2018. [Online]. Available:
https://doi.org/10.1145/3243157.3243161

[37] M. Bertrone, S. Miano, J. Pi, F. Risso, and M. Tumolo, “Toward
an eBPF-based clone of iptables,” in Netdev 0x12, THE Technical
Conference on Linux Networking. Nepean, Canada: The NetDev
Society, 2018.

[38] W. Tu et al., “Bringing the Power of eBPF to Open vSwitch,” in Linux
Plumbers Conference 2018. San Francisco, California: The Linux
Foundation, 2018, p. 11.

[39] C.-C. Tu, J. Stringer, and J. Pettit, “Building an extensible open vswitch
datapath,” ACM SIGOPS Operating Systems Review, vol. 51, no. 1, pp.
72–77, 2017.

[40] J. Kicinski and N. Viljoen, “ebpf hardware offload to smartnics: cls bpf
and xdp,” Proceedings of netdev, vol. 1, 2016.

[41] M. Spaziani Brunella et al., “hXDP: Efficient Software Packet Process-
ing on FPGA NICs,” in USENIX OSDI 2020), 2020, pp. 973–990.

2022 18th International Conference on Network and Service Management (CNSM)

36

	4

