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Abstract—Network functions virtualization (NFV) realizes di-
verse and flexible network services by executing network func-
tions on generic hardware as virtual network functions (VNFs).
A certain network service is regarded as a sequence of VNFs,
called service chain. The service chaining (SC) problem aims at
finding an appropriate service path from an origin node to a
destination node while executing the VNFs at the intermediate
nodes in the required order under resource constraints on nodes
and links. The SC problem belongs to the complexity class NP-
hard. In our previous work, we modeled the SC problem as an
integer linear program (ILP) based on the capacitated shortest
path tour problem (CSPTP) where the CSPTP is an extended
version of the SPTP with the node and link capacity constraints.
We also developed the Lagrangian heuristics to achieve the
balance between optimality and computational complexity. In this
paper, we further propose a deep reinforcement learning (DRL)
framework with the graph neural network (GNN) to realize the
CSPTP-based SC adaptive to changes in service demand and/or
network topology. Numerical results show that (1) the proposed
framework achieves almost the same optimality as the ILP for the
CSPTP-based SC and (2) it also works well without retraining
even when the service demand changes or the network is partly
damaged.

Index Terms—Network functions virtualization (NFV), service
chaining, capacitated shortest path tour problem (CSPTP), deep
reinforcement learning (DRL), graph neural networks (GNNs).

I. INTRODUCTION

With rapidly spreading smartphones and internet of things
(IoT) devices, diverse services have constantly been created
and the network traffic has exponentially been increasing. To
achieve sustainable networking, automatic network operations
based on network functions virtualization (NFV) have attracted
many network service providers. NFV can decouple network
functions from dedicated hardware and execute them as virtual
network functions (VNFs) on generic hardware [1]–[3]. As
a result, it can deploy network services with agility and
flexibility as well as reducing capital expenditure (CAPEX)
and operating expenditure (OPEX).

In NFV networks, a certain network service can be inter-
preted as a sequence of VNFs, called a service (function)
chain. Given a service chain request (SCR), an NFV orches-
trator has to solve a service chaining (SC) problem, which
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aims at finding a special path (i.e., service path) from an
origin node to a destination node while executing the VNFs
at the intermediate nodes in required order under resource
constraints [1]. It is well known that the SC problem belongs
to the complexity class NP-hard [1].

Several existing studies pointed out the similarity between
SC and shortest path tour problem (SPTP) [4], [5]. SPTP is
a variant of shortest path problem and aims at finding the
shortest path from an origin node to a destination node while
visiting at least one node from given disjoint node subsets,
T1, . . . , Tk, in this order. Focusing on this similarity, Bhat and
Rouskas proposed an algorithm called depth first tour search
(DFTS) to efficiently solve SPTP [4]. In our previous work [5],
we modeled the SC problem as the capacitated SPTP (CSPTP)
and formulated an integer linear program (ILP) for the CSPTP-
based SC. CSPTP is an extension of SPTP with constraints on
node and link capacities with real values. We also proposed
the Lagrangian heuristics to solve the online CSPTP-based
SC by taking account of the balance between optimality and
computational complexity [6]. This approach, however, may
not sufficiently work under dynamical demand change and/or
network dynamics (e.g., temporal link failures).

Machine learning (ML) techniques have been applied to
various domains in networking to solve diverse and com-
plex optimization problems under uncertain environments [7].
Specifically, graph neural networks (GNNs) have been one
of the promising approaches to explore hidden representation
in networks from the complex relationship between network
traffic and topologies [8]–[13]. In recent years, there are
several studies applying ML and reinforcement learning (RL)
techniques to SC [14]–[17]. They, however, did not sufficiently
consider the following issues of CSPTP-related SC: (1) allow-
ing the use of identical links as many times as required, (2)
ensuring the service chain requirements, (3) meeting resource
constraints, and (4) achieving resource allocation adaptive to
demand and topology changes.

In this paper, we propose a deep RL (DRL) framework
with the GNN for the online CSPTP-based SC, where the
NFV orchestrator immediately serves a new SCR arriving at
the NFV network. More specifically, the proposed framework
aims at realizing resource allocation adaptive to changes in
service demand and/or network topology (e.g., link failures).
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Through numerical results, we demonstrate the fundamental
characteristics of the proposed framework as well as its
generalization capabilities against demand/topology changes.

The rest of the manuscript is organized as follows. Section II
gives the related work. In Section III, we introduce the
some preliminaries, i.e., CSPTP-based SC, DRL, and GNN.
In Section IV, we propose the DRL framework with the
GNN for CSPTP-based SC. Section V shows the fundamental
characteristics of the proposal. Finally, Section VI gives the
conclusion and future work.

II. RELATED WORK

A. Service Chaining Problem

Bhat and Rouskas first pointed out the similarity between
SC and SPTP, and proposed the DFTS algorithm to find the
shortest path tour [4]. DFTS, however, does not consider the
resource constraints. The SPTP aims at finding the shortest
path from an origin to a destination while visiting at least
one intermediate node from given disjoint node subsets in
required order [18]. Focusing on this similarity and the re-
source constraints on the NFV network, we modeled the SC
problem as the CSPTP-based SC, where the CSPTP is an
extended version of SPTP supporting general constraints on
node and link capacities with real values [5]. In addition, we
formulated the CSPTP-based SC as an ILP using a special
network model called augmented network. In what follows,
we refer to it as CSPTP-based ILP. The augmented network
model can efficiently and agilely handle the SC problem under
the online processing, compared with other existing network
models, i.e., layered graph and expanded network models [19],
[20].

To overcome the computational complexity, we further
proposed a simple greedy-based heuristic algorithm [5] and
a more sophisticated Lagrangian heuristics [6]. In [21], Gao
and Rouskas applied the game-theoretic approach to SPTP-
realted traffic steering for service chaining. However, these
approaches respond the SCR one by one in a myopic manner
and lack the adaptability to demand/network dynamics. In
particular, the Lagrangian heuristics requires environment-
dependent parameter tuning. In this paper, we propose a DRL
framework to achieve the CSPTP-based SC that can achieve
effective resource allocation in response to the demand trend.

B. Machine Learning for Networking

ML techniques have been applied to various domains in
networking and expected to realize automated network op-
timization even under uncertain environments [7]. Specifi-
cally, GNNs have been one of the promising approaches
to explore the hidden representation of network traffic and
topologies [15], [16], [22]. GNNs for networking can find
complex relationship among network traffic features, traffic
steering, and topologies to estimate performance metrics [15],
[16], [22]. There are several studies applying ML and RL
techniques to SC [14]–[17]. Pei et al. proposed deep learning
based two-phase VNF selection and chaining algorithms for
networks with software defined networking (SDN) and NFV

Physical node VNF Imaginary node Physical link Virtual link

1st subpath 2nd subpath 3rd subpath 4th subpath

Service path

Service chain requirement

Physical network

Augmented network

Fig. 1: Overview of CSPTP-based SC.

support [17]. Chen et al. proposed quality of service (QoS) and
quality of experience (QoE) aware SC based on RL in SDN
and NFV enabled slices [14]. Rafiq et al. proposed GNN-based
SC in SDN to realize the delay-aware traffic steering [15].
Heo et al. proposed GNN-based SC using the encoder-decoder
model to minimize the total delay of service path and extended
this model by applying RL algorithms [16]. Almasan et al.
applied message passing neural networks (MPNNs) to the
DRL framework to solve the minimum cost flow problem in
optical networks and showed the generalization capabilities of
MPNN based GNN over different topologies [22].

Inspired by the approach in [22], we propose the DRL
with GNN framework to solve SC, which is more difficult
than the conventional routing problem considered in [22]. The
proposed framework aims at realizing (1) adaptive resource
allocation based on the learning of demand trend and (2)
generalization capabilities against topology changes due to
link failures, thanks to both the DRL and GNN.

III. PRELIMINARIES

In this section, we briefly introduce the preliminaries of the
proposed framework from the viewpoint of CSPTP-based SC,
DRL, and GNN, respectively.

A. CSPTP-based Service Chaining

In this paper, we consider the system model used in [5].
Fig. 1 illustrates the overview of the CSPTP-based SC.

1) Service Chain Request: We assume the online SC
where the NFV orchestrator immediately serves a new SCR
c arriving at the NFV network. As shown in the top layer
of Fig. 1, each SCR c has the service chain requirements
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rc = (oc, dc,Rc, bc, {pc,fc,m}k=1,...,Mc
) where oc and dc

represent an origin node and a destination node, respectively.
Let Rc be a sequence (fc,1, . . . , fc,Mc) of Mc functions in
required order. bc and pc,fc,m denote the required bit rate
and the processing resources required for executing the kth
function fc,m at a physical node, respectively.

2) Physical Network: A physical network is defined as a
directed graph G = (V, E ,X ), where V (resp. E) denotes
a set of physical nodes (resp. links). Let X denote a set
of features of physical links, i.e., X = {xe}∀e∈E , and xe

represents a vector of D > 0 features of physical link e,
i.e., xe = (xe,1, . . . , xe,D). The NFV network supports a set
of F distinct functions, F = {f1, . . . , fF }, and consists of
two types of the physical nodes: VNF-enabled nodes VVNF

and conventional ones (i.e., routers and switches). Each VNF-
enabled node i ∈ VVNF can have one or more functions
Fi ⊆ F where each function f ∈ F is possessed by part
of VNF-enabled nodes, i.e., Vf ⊆ VVNF.

3) Augmented Network: To cope with CSPTP-based SC,
the augmented network G+ = (V+, E+,X+) is constructed by
extending the physical network G with imaginary nodes V̂ and
virtual links Ê in∪Êout where V+ = V∪V̂ , E+ = E∪Ê in∪Êout.
X+ denotes a set of features on physical and virtual links,
i.e., X+ = {xe}e∈E+ . An imaginary node v̂c,fc,m ∈ V̂ is
responsible for function fc,m and is connected to VNF-enabled
node(s) having fc,m. Links incoming to (resp. outgoing from)
imaginary node v̂f , called virtual links, are defined as Ê in
(resp. Êout). Note that Ê in = {(v, v̂f ) | v ∈ Vf , v̂f ∈ V̂, f ∈
Fv} (resp. Êout = {(v̂f , v) | v ∈ Vf , v̂f ∈ V̂, f ∈ Fv}). The
virtual link (v̂f , v) ∈ Êout indicates that the VNF-enabled
node v ∈ Vfc,m has the function fc,m. Each virtual link
(v̂f , v) (resp. physical link (i, j)) has the residual processing
capacity Pv̂f ,v of physical node v for executing function f
(resp. residual link capacity Bi,j) at the arrival of SCR c. The
middle layer of Fig. 1 illustrates an example of the augmented
network.

4) Service Path: With the help of the augmented network,
the service path wc with origin oc, destination dc, and re-
quired functions Rc can be decomposed into a sequence of
Mc + 1 subpaths, i.e., wc = (wc,1, . . . , wc,Mc+1). The pair
(oc,m, dc,m) of origin and destination nodes of the mth sub-
path wc,m is given by (oc, v̂fc,1) for m = 1, (v̂fc,m−1

, v̂fc,m)
for m = 2, . . . ,Mc, and (v̂fc,Mc

, dc) for m = Mc + 1. Note
that selecting the virtual link in the service path determines
the physical node on which the corresponding function is
conducted. Each subpath does not contain any loop while the
entire service path may have loop(s). As a result, a certain
link may be used more than once in the service path. Let
E+wc
⊆ E+ be a set of links included in the service path wc

i.e., E+wc
= Ewc

∪ Ê inwc
∪ Êoutwc

, where Ewc
is a set of physical

links included in wc and Ê inwc
(resp. Êoutwc

) is a set of incoming
(resp. outgoing) virtual links included in wc. The bottom layer
of Fig. 1 shows an example of the service path.

B. Deep Reinforcement Learning

RL aims at learning a long-term strategy (i.e., policy) to
solve an optimization problem under a certain environment,
which is defined by a set S of states [23]. Q-learning is an RL
algorithm making the agent learn an optimal policy π : S →
A. It maintains a table with the size of |S|×|A|, where (s, a)th
element is initialized as zero or a random value and updated
with a q-value for the combination of state s and action a.
Given a state s ∈ S, an agent takes an action a according
to the current policy π, which yields the reward r and the
transition to a next state s′ with a probability Pr(s′, r|s, a).
Here, the q-value Q(s, a) is updated according to the rule
based on the Bellman equation [24]:

Q(s, a)← (1− α)Q(s, a) + α(r + γmax
a′∈A

Q(s′, a′)),

where γ (0 ≤ γ ≤ 1) denotes a discount rate indicating the
importance of the future reward and α (0 < α ≤ 1) is a
learning rate.

Deep Q-network (DQN) can solve one of the potential
drawbacks of Q-learning, i.e., the scalability against the size of
state and action space, by approximating the q-value function
using a deep neural network (DNN) and learning it through
observed states and actions [25]. The state transition informa-
tion {s, a, r, s′} is stored in a memory called an experience
replay buffer, which is used for training DNNs.

C. Graph Neural Network

GNNs are deep learning based methods to operate the
graph domain [8]–[13]. Given the graph structure and node
feature information as inputs, a GNN outputs the node, edge,
or graph-level representation by graph convolution operation
in the spectral or spatial domain. Message passing neural
networks (MPNNs) are a well-known type of GNNs, which is
a unified framework for the graph convolution operations (i.e.,
aggregation, update, and readout) in the spatial domain [13].
In MPNNs, each node in the graph initially has its own
features. Then, it collects the features from the neighbors
and aggregates them into a message. It further combines the
message with its own features and updates its features as the
hidden embedding. These operations are repeated along with
multiple layers of MPNNs. The output of the final layer defines
the node-level representation, i.e., embedding of each node,
and it can generate a graph-level representation through the
readout operation.

Graph convolutional networks (GCNs) are one of the most
popular baseline GNN models and employ the first-order
neighboring aggregation and the self-loop update [9]. GCN
with the renormalization trick can be defined as the following
layer-wise aggregation and update operations:

X(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2X(l)Θ(l)

)
. (1)

Here, Ã = A + I ∈ RN×N is the adjacent matrix with self
loops where A is the original adjacent matrix of the undirected
graph G with N nodes and I is the identity matrix. D̃ = D+I
is the degree matrix of Ã. X(l) ∈ RN×D represents a feature
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Fig. 2: DRL framework with GNN for the CSPTP-based SC.

matrix at the lth GCN layer, where X(0) = [x1, . . . ,xN ]T

indicates an original feature matrix. Θ(l) indicates a learnable
weight matrix for the lth layer, and σ(·) is a general element-
wise nonlinear activation function, e.g., rectified linear unit
function (ReLU) [26].

To cope with more information derived from a graph, graph
diffusion convolution (GDC) was proposed, which generalizes
the graph convolution by removing the restriction of using only
the direct neighbors [10]. GDC replaces the adjacency matrix
A with the following diffusion matrix S:

S =

∞∑
n=0

ηnT
n, (2)

where T ∈ RN×N is a transition matrix whose (i, j)th element
means the transition probability from node i to node j. Tn

gives the n-step transition probabilities and ηn > 0 is the
weighting coefficient for Tn. If the diffusion matrix S is
dense, the sparsified diffusion matrix S̃ was used to obtain the
spatial locality by removing links with small values of S in
a simple manner, e.g., top-k-based sparsification or threshold-
based sparsification.

IV. PROPOSED SCHEME

A. Overview

In this paper, inspired by the DRL with GNN architecture
for network routing problems [22], we propose the DRL based
framework with a GNN for the CSPTP-based SC. The SC
problem as CSPTP is more challenging than the conventional
routing problem as the shortest path problem. The agent,
i.e., the NFV orchestrator, aims at accepting as many SCRs
as possible, which will be achieved by the minimization of
the overall physical and virtual link utilization in the NFV
network. The proposed DRL agent is realized by the double-
DQN algorithm [27], where the q-value function is modeled by

a GNN. (We will give the DRL agent design in Section IV-C
and the GNN architecture in Section IV-C3.)

Fig. 2 illustrates the overview of the DRL based framework
with a GNN for the CSPTP-based SC. At each time step,
the agent (i.e., NFV orchestrator) monitors the environment,
i.e., NFV network (the bottom center in Fig. 2) and obtains
a network state and an SCR as inputs from the environment
(the bottom left in Fig. 2). More specifically, the network state
is represented by the features of each link in the augmented
network, which will be described in Section IV-B. Next, the
agents finds the service path candidates Wc, i.e., an action
set A (the top layer in Fig. 2). We will show the details
of the action set in Section IV-C2. For each service path
candidate (i.e., action), it generates an SC-embedded state
from the current state s ∈ S by concatenating the network-
related features and SC-related ones and then computes the
q-value of the anction-embedded state, with the help of GCN
and GDC (the top layer in Fig. 2). The details of the agent
operation will be described in Section IV-C1. Note that the
existing work [22] adopts a different GNN approach, i.e.,
MPNN. Finally it performs an appropriate action a ∈ A, i.e.,
selecting an appropriate service path, according to the policy π
(the bottom right in Fig. 2), and then obtains the reward r, the
next SCR c′, and the next state s′ ∈ S from the environment
(the bottom center in Fig. 2).

B. Environment

In this paper, we consider the environment as the augmented
network with link features, as shown in the middle layer of
Fig. 1. More specifically, the network state s is defined as the
feature matrix X = [x1, . . . ,x|E+|]

T where xe is a D = 5
dimensional feature vector of physical/virtual link e ∈ E+,
i.e., xe = (xe,1, . . . , xe,5). The feature vector xe is composed
of the SC-related features, i.e., xe,1, xe,2, and xe,3, and the
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Algorithm 1 Agent operation.

Require: Agent agent, environment env, the number K of
actions, training iteration id τ , training interval M .

1: s, c, rc ← INIT(env)
2: R← 0
3: do
4: Wc ← K-DFTS(K, rc)
5: Q ← ∅
6: for wk

c ∈ Wc do
7: s̃kc ← ALLOCATE-SCR(env, c, rc, w

k
c )

8: Q ← Q∪ {(wk
c , GET-Q-VAL-FROM-GNN(s̃kc , w

k
c )}

9: wk′

c ← EPSILON-GREEDY(Q, ε)
10: r, allocated, s′, c′, r′c ← STEP(env, s, wk′

c )
11: R← R+ r
12: MEMORIZE(agent, {s, a, r, s′})
13: if τ mod I = 0 then
14: TRAIN-GNN-USING-REPLAY-BUFFER(agent)

15: s, c, rc ← s′, c′, r′c
16: while allocated = true

network-related features, i.e., xe,4 and xe,5. The SC-related
features are calculated per service path candidate wc ∈ Wc

to evaluate its deployment cost in terms of resource usage.
xe,1 is the number of times that the link e is used in wc.
Please note that xe,3 can be more than one if the service
path candidate wc has loop(s), which makes the problem more
difficult than the conventional routing problem [22]. xe,2 is
SCR c’s bandwidth requirement bc (resp. processing capacity
requirement pc,fc,m ) for the physical (resp. virtual) link e. xe,3

is the link e’s utilization uc,e required to support wc. Focusing
on the SC-related features only for the links used in wc, we
set xe,1, xe,2, and xe,3 to be zero for the links unused in wc.
(Similar assumption is also used in [22].)

The network-related features are used to evaluate the overall
utilization of NFV network, which will contribute to saving
the network resources for future requests. For this purpose,
we apply the link betweenness centrality [28] and the residual
capacity of link e as the network-related features xe,4 and xe,5,
respectively. Note that these features are also used in [22].

C. Agent Design

1) Agent Operation: The agent operates through the inter-
actions with the environment. We assume that the agent learns
the optimal policy through T ≥ 1 training iterations, each
of which consists of L ≥ 1 episodes. Algorithm 1 presents
a pseudocode describing the proposed agent behavior in one
episode of the τ th training iteration (τ = 1, . . . , T ). At the
beginning of the episode, the environment env is initialized
by calling the INIT() function, which also generates a new
SCR c with the service chain requirements rc (line 1). At the
same time, the cumulative reward R is set to be zero (line 2).

Algorithm 1 executes the following procedures as long
as the agent succeeds in allocating a service path to a
new SCR c, i.e., the corresponding binary flag allocated

is true (lines 3–16). Since considering all possible service
path candidates will result in a highly dimensional action
space, the action set is limited to K service path candidates
as in [22]. The agent calculates the set of K service path
candidates, Wc = {w1

c , . . . , w
k
c }, by calling the K-DFTS()

function (line 4). We will describe the details of K-DFTS()
function in Section IV-C2. Note that symbols A and Wc will
be used interchangeably. We also initialize a set Q of each
pair of action a and its yielding q-value Q(s, a) to an empty
set (line 5).

For each service path candidate wk
c ∈ Wc, the agent com-

putes the corresponding q-value using the GNN (lines 6–8).
More specifically, the agent first generates the SC-embedded
state s̃kc using the ALLOCATE-SCR() function (line 7). As
described in Section IV-B, s̃kc is represented by the feature
vector xe of each link e. With the state s̃kc as the input, the
agent then computes the corresponding q-value Q(s̃kc , w

k
c ) by

calling the GET-Q-VAL-FROM-GNN() function and adds the
new element (wk

c , Q(s̃kc , w
k
c )) to Q (line 8). The details of

the GET-Q-VAL-FROM-GNN() function will be explained in
Section IV-C3.

Next, the agent selects a service path candidate wk′

c from
Wc according to Q and the ε-greedy exploration strategy [23]
by calling the EPSILON-GREEDY() function (line 9). In the
STEP() function, the agent tries to apply the service path
candidate wk′

c to the NFV network and then obtains the reward
r, the binary flag allocated, the next state s′, and the next
SCR c′ with r′c from the environment (line 10). Here, we
design the reward r after selecting wk′

c such that it should
be nonnegative and becomes large in case of low utilization
of network resources:

r = ω1 exp

(
−
∑

e∈E
wk′

c

uc,e

)
+ ω2 exp

(
−
∑

ê∈Êout

wk′
c

uc,ê

)
,

where the first (resp. second) term is related to the usage
degree of physical links (resp. virtual links) in wk′

c , ω1 > 0
(resp. ω2 > 0) is the corresponding weighting parameter, and
Ewk′

c
(resp. Êout

wk′
c

) is a set of physical links (resp. outgoing

virtual links) in wk′

c . Note that the cumulative reward R is
defined as the sum of reward r during one episode.

The agent updates the cumulative reward R (line 11)
and stores the transition (experience), i.e., {s, a, r, s′}, into
the experience replay buffer (line 12). The stored tran-
sition will be used to train the GNN by executing the
TRAIN-GNN-USING-REPLAY-BUFFER() function every I ≥ 1
training iterations (lines 13–14). The GNN model is trained
such that a loss function L(Θ) with the learnable weight
matrix Θ approaches to zero by using the samples Z randomly
chosen from the experience reply buffer. L(Θ) is defined as
follows:

L(Θ) =
∑

{s,a,r,s′}∈Z

(Q(s, a | Θ)− (r + γmax
a′∈A

Q(s′, a′ | Θ)))2

+ λEL1(Θ),
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where the first term is the mean squared error between the
estimated q-value and observed one. The second term indicates
L1 regularization penalty to prevent overfitting, where EL1(Θ)
is the L1 regularization and λ > 0 is a weighting parameter.

2) Action Set: To obtain the action set, i.e., K service path
candidatesWc, we propose a K-DFTS algorithm by extending
the DFTS algorithm [4]. K is expected to be a moderate
value, e.g., 5, to hold the balance between computational
complexity and flexibility of steering traffic. To derive the
exclusive service path candidates as much as possible, we
design the K-DFTS algorithm as follows. The agent calculates
the first service path candidate under rc by using the DFTS
algorithm [4]. Since saving the network resources leads to
accepting more SCRs in future, the cost of each link (i, j) is
defined as bc/Bi,j , pc,f/Pi,j , and zero in case of (i, j) ∈ E ,
(i, j) ∈ Êout, and (i, j) ∈ Ê in, respectively. Then, it updates
the NFV network by removing a virtual link with the highest
utilization in the service path candidates selected so far, and
calculates the next service path candidate in the same way. It
continues this procedure to obtain K service path candidates.

3) GNN architecture: With the graph structure and link
feature information as inputs, the GNN model outputs the q-
value by the following procedures. To deal with link features
and neighborhood links, we first transform the augmented
network by treating links as nodes. Note that two nodes
in the transformed augmented network are connected if the
corresponding two links in the original augmented network
are connected to the same node. Let A denote the adjacency
matrix of the transformed augmented network. As a result,
we can interpret the link features of the original augmented
network as the node features of the transformed one.

Next, to extract the hidden representation in the graph
domain, we apply the topological augmentation to A and
obtain the diffusion matrix S, which is given by Eq. (2),
according to the extended version of GDC [10]. The extended
version of GDC applies the weighted PageRank [29] into
GDC to derive the transition matrix T, where the weight
of a link (ei, ej) in the transformed augmented network is
defined as the minimum of the normalized residual capacities
of links ei and ej in the original augmented network. We
further calculate the sparsified diffusion matrix S̃ by using
the threshold-based sparsification. Then, a two-layer GCN is
applied to the sparsified diffusion matrix S̃ and link feature
matrix X to derive the hidden representation X(l) according
to Eq. (1). Next, the graph-level features X

(l)
G ∈ RD are

obtained by applying the sum-pooling to the feature matrix
X(l) ∈ RN×D across nodes. Finally, the readout function
modeled by DNNs computes the q-value from X

(l)
G .

V. NUMERICAL RESULTS

A. Evaluation Settings

The NSFNET topology with 14 nodes and 21 links is used
for the evaluation, which is available at the Internet topology
zoo [31]. The original capacity of each physical link (i, j) is
set to be identical, B̂i,j = 1Gbps. As for each virtual link

TABLE I: Service chain demand and requirements (NAT:
Network Address Translator, FW: Firewall, TM: Traffic Mon-
itor, WOC: WAN Optimization Controller, IDPS: Intrusion
Detection Prevention System, and VOC: Video Optimization
Controller).

Service Sequence of functions Demand bc

Web service NAT-FW-TM-WOC-IDPS 18.2% 1 Mbps
VoIP NAT-FW-TM-FW-NAT 11.8% 4 Mbps
Video streaming NAT-FW-TM-VOC-IDPS 69.9% 16 Mbps
Online gaming NAT-FW-VOC-WOC-IDPS 0.1% 32 Mbps

TABLE II: Relationship between function type and processing
requirements per SCR [30].

Function type NAT FW TM IDPS VOC WOC

pc,fc,m 0.00092 0.0009 0.0133 0.0107 0.0054 0.0054

(v̂f , v), the original capacity P̂v̂f ,v is set to be 1/|Fv| such
that the physical node v equally divides and distributes the
processing resource of one CPU to its supporting functions
Fv . Each function f ∈ F is assigned to Vf = 3 VNF-
enabled nodes randomly selected. Table II gives the processing
requirement pc,f,k for executing each function f ∈ F .

An event-driven simulator is developed according to Algo-
rithm 1. The SC scenario in one episode is as follows. A new
SCR c with a random o–d pair occurs in the NFV network
(i.e., environment) according to the demand distribution in
Table I. Next, the NFV orchestrator (i.e., agent) allocates the
resources to the SCR c according to the ε-greedy exploration
strategy. To examine how many SCRs the NFV orchestrator
can simultaneously support, we assume that each established
service path holds until the end of simulation. If the NFV
orchestrator fails to allocate resources to the SCR c, the
simulation is terminated. The set of accepted SCRs is defined
as Caccept. These procedures are repeated TL times where T
and L are the number of iterations and that of episodes in one
iteration, respectively. (T, L) = (100, 50) is used for both the
training and testing phases.

The DRL+GNN agent is implemented by using Pytorch and
Pytorch geometric libraries [32], [33]. In the training phase,
we use the Adam optimizer [34] with the initial learning rate
of 10−4 and the discount rate γ = 0.95. We train the model
every I = 2 training iterations by using 5 batches with 32
samples randomly chosen from the experience replay buffer.
The experience replay buffer has the size of 5000 samples
with the first-in first-out (FIFO) updating policy. As for the
ε-greedy exploration strategy, in the training phase, ε initially
takes one, keeps the value during the first ten iterations, then
exponentially decays with the base of 0.99 every two episodes,
and approaches asymptotically to 0.01. On the other hand,
in the testing phase, ε is fixed to be zero in order to apply
the learned GNN model and lines 12–14 in Algorithm 1 are
skipped.

As for the evaluation metric, we use the average number
of SCRs that are successfully allocated per episode, i.e.,
Caccept = |Caccept|. Note that we have confirmed that the
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Fig. 3: Evolution of number Caccept of accepted SCRs in
training phase.

TABLE III: Service demand distribution of each demand trend
scenario for the testing phase.

Demand
trend

Web
service

VoIP Video
stream-
ing

Online
gaming

Cosine
similar-
ity θ

Base 18.2% 11.8% 69.9% 0.1% 1
Different 1 24.2% 17.8% 51.9% 6.1% 0.96
Different 2 30.2% 23.8% 33.9% 12.1% 0.82
Different 3 36.2% 29.8% 15.9% 18.1% 0.54

cumulative reward R shows the similar tendency to Caccept

in the following results. In terms of the efficient resource
allocation, we also use the total amount of incoming traffic
among accepted SCRs, i.e., Baccept =

∑
c∈Caccept

bc. From
the viewpoint of the computational complexity, we adopt
the computation time, which is the average time required to
calculate a service path in the testing phase. We compare
the DRL+GNN scheme with the following three schemes:
(a) a random scheme where the agent randomly selects an
action regardless of the state, (b) a DQN scheme where the
agent computes the q-value based on the DNN only with
graph pooling, (c) the Lagrangian heuristics for CSPTP-based
SC [6], and (d) the online CSPTP-based ILP [5] where the
objective function is modified to minimize the overall physical
and virtual link utilization. To cope with the topological
change, the DQN scheme first obtains the graph-level features
XG ∈ RD by applying the sum-pooling to the feature matrix
X ∈ RN×D across nodes and then computes the q-value by
applying the two-layer neural networks to XG. To solve the
online CSPTP-based ILP, we use the existing solver CPLEX
12.8 [35] with the parallel optimization parameter (i.e., the
number of threads) of 32. In the calculation, we use the server
with Intel Xeon Gold 6226R 16 core, 196 GB memory, and an
NVIDIA GeForce RTX 3090 GPU.

B. Fundamental Characteristics

We train the DRL+GNN scheme and the DQN scheme
under the NSFNET topology. As for the Lagrangian heuris-
tics, we use it with appropriate parameter tuning. Fig. 3
illustrates the evolution of the number Caccept of accepted
SCRs averaged over L = 50 episodes per iteration during
the training phase. Since all the schemes except both CSPTP-

based ILP and Lagrangian heuristics randomly adopt a service
path candidate per SCR during the first 10 iterations, due
to the ε-greedy exploration strategy with ε = 1, they show
almost the same behavior. On the other hand, they show
different behavior after the 11th iteration. Since the random
scheme continues the random selection, it cannot improve
Caccept. On the contrary, the DRL+GNN scheme increases
Caccept with iteration, which is confirmed as the learning
effect with the decay of ε, and becomes competitive with
the online CSPTP-based ILP. Someone might wonder why the
DQN+GNN scheme sometimes overcomes the online CSPTP-
based ILP. This is because the online CSPTP-based ILP gives
the optimal solution per SCR but does not guarantee the
optimality in the long-term perspective. The DQN scheme also
shows the learning effect but has the slower convergence rate
than the DRL+GNN scheme.

We also observe that the performance improvement between
the DRL+GNN scheme and the random scheme is not so
large, i.e., less than 8.8%. This comes from the fact that both
schemes share the same K-DFTS algorithm with a moderate
value of K (i.e., K = 5) for calculating the action set, as
mentioned in Section IV-C2. Larger K value would improve
the performance of the DRL+GNN scheme at expense of the
computational complexity. In future work, we will investigate
how much K affects the performance and computational
complexity.

C. Adaptability to Different Service Demand Trend

Next, we evaluate the trained models in terms of the
adaptability to demand trend through the evaluations under the
following scenarios. We first prepare the base (demand trend)
scenario, which is the same environment in the training phase
except for the random seed value. Then, we prepare the three
different demand trend scenarios (i.e., different 1, different 2,
and different 3) in descending order of its cosine similarity θ
to the base service demand trend. More specifically, we make
these scenarios by modifying the base scenario as follows:
We reduce a certain amount of the service demand of video
streaming and equally dividing it among the others. Table III
shows the service demand distribution in each scenario with
its cosine similarity θ to the base scenario.

Fig. 4 (resp. Fig. 5) depicts the box-and-whisker plot of
Caccept (resp. Baccept) for each scheme in the base and
different demand trend scenarios. The box-and-whisker plot
consists of three parts, i.e, box, two whisker lines, and outliers.
The box has the height ranging in [Q1, Q3] where Q1 (resp.
Q3) is the first (resp. third) quartile and includes a horizontal
line as the median. The upper (resp. lower) whisker line is
connected between Q3 (resp. Q1) and the upper (resp. lower)
bound, over (resp. under) which the data samples are regarded
as outliers, denoted by points. The length of whisker line is
given by 1.5(Q3 −Q1).

We first focus on Caccept of each scheme in the base demand
trend scenario. As we expect, the performance of each scheme
has almost the same as that achieved at the end of the training
phase in Fig. 3. As a result, the DRL+GNN scheme exhibits
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TABLE IV: Copmarison of computation time.

Scheme Computation time per SCR [ms]
CSPTP-based ILP 142
DRL+GNN scheme 81
Lagrangian heuristics 61
DQN scheme 77
Random scheme 65

the slightly higher performance compared with the online
CSPTP-based ILP. Baccept in Fig. 5 shows the same tendency
as Caccept in Fig. 4.

Next, we compare the results among the four scenarios.
At first, someone might wonder why Caccept of each scheme
increases with decrease of the cosine similarity θ (from the
left to right in Fig. 4). This is because the different band-
width requirement bc among services as shown in Table I.
More specifically, in the preparation of the three different
scenarios, we reduce β% service demand of video streaming
and add β/3% service demand to each remaining service,
which reduces the bandwidth requirement in proportion to
16β− (1+4+32)β/3 ≃ 3.67β. Since the amount of network
resource is identical among all scenarios, such increasing trend
does not arise in terms of Baccept, as shown in Fig. 5.

We observe that both the DRL+GNN scheme and DQN
scheme have competitive Caccepts and Baccepts with the online
CSPTP-based ILP in all scenario, thanks to their generaliza-
tion capabilities. Note that the DQN scheme requires more
training iterations as shown in Fig. 3. On the other hand,
the Lagrangian heuristics gradually degrades the performance
with decrease of θ and consequently exhibits almost the same
performance as the random scheme. This indicates that the
Lagrangian heuristics fine-tuned for the base scenario cannot
adapt to the demand change.

Finally, we evaluate the computational complexity under
the base scenario. Table IV presents the computation time
of the five schemes. We observe that the DRL+GNN scheme
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Fig. 6: Impact of the number Eremoved of removed links on
the number Caccept of accepted SCRs.

can reduce the computation time by 57% compared with the
CSPTP-based ILP while suppressing its increase in the range
of 5–32% compared with other schemes.

D. Adaptability to Topology Change with Link Failures

In actual systems, some of the links may be temporarily
down, due to equipment failures, which changes the net-
work topology. In this section, we evaluate how much the
DRL+GNN scheme learned through the original NSFNET
topology can work well even under the NSFNET topology
with link failure(s). In the testing phase, we prepare link failure
scenarios by changing the number Eremoved of links removed
from the NSFNET topology from 1 to 4. More specifically,
for each Eremoved, we randomly remove Eremoved link(s) from
the original NSFNET topology at the beginning of an episode.

Fig. 6 depicts the relationship between Eremoved and Caccept

for the five schemes. In this figure, we show the average with
95% confidence interval. We observe that all the schemes
decrease Caccept with Eremoved. Comparing the results of the
DRL+GNN scheme, the DQN scheme, Lagrangian heuristics,
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and random scheme with those of the online CSPTP-based
ILP, we confirm that the performance degradation becomes
0.8%–1.4%, 1.5%–3.5%, 1.3%–3.6%, and 6.4%–7.1%, respec-
tively. The smaller performance degradation of the DRL+GNN
scheme comes from the capabilities of the GNN and the sim-
ilarity between the original topology and modified topology.
The DQN scheme (resp. Lagrangian heuristics) decreases its
performance due to the lack of graph-feature learning (resp.
insufficient parameter tuning).

VI. CONCLUSION

In this paper, we have proposed the deep reinforce-
ment learning (DRL) framework with the graph neural net-
work (GNN) for the capacitated shortest path tour problem
(CSPTP)-based service chaining (SC). The proposed frame-
work adopts the GNN architecture for computing the q-values,
which consists of the graph convolutional network and graph
diffusion convolution. Through the numerical results, we have
shown that the proposed framework is competitive with the
online CSPTP-based ILP and achieves resource allocation
adaptive to the demand trend and the topology changes due to
link failures, thanks to both the DRL and GNN. In future work,
we plan to examine to what extent the proposed framework
can realize the generalization capabilities through evaluations
over other real-world network topologies.
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