
HSFL: An Efficient Split Federated Learning
Framework via Hierarchical Organization

Tengxi Xia†, Yongheng Deng†, Sheng Yue‡, Junyi He§, Ju Ren†∗, Yaoxue Zhang†
†Department of Computer Science and Technology, Tsinghua University, Beijing, China

‡School of Computer Science and Engineering, Central South University, Changsha, China
§School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China

∗Corresponding author
Email: {xtx19,dyh19}@mails.tsinghua.edu.cn, {renju, zhangyx}@tsinghua.edu.cn,

sheng.yue@csu.edu.cn, w

Abstract—Federated learning (FL) has emerged as a popular
paradigm for distributed machine learning among vast clients.
Unfortunately, resource-constrained clients often fail to partici-
pate in FL because they cannot pay for the memory resources
required for model training due to their limited memory or
bandwidth. Split federated learning (SFL) is a novel FL frame-
work in which clients commit intermediate results of model
training to a cloud server for client-server collaborative training
of models, making resource-constrained clients also eligible for
FL. However, existing SFL frameworks mostly require frequent
communication with the cloud server to exchange intermediate
results and model parameters, which results in significant com-
munication overhead and elongated training time. In particular,
this can be exacerbated by the imbalanced data distributions of
clients. To tackle this issue, we propose HSFL, a hierarchical
split federated learning framework that efficiently trains SFL
model through hierarchical organization participants. Under the
HSFL framework, we formulate a Cloud Aggregation Time
Minimization (CATM) problem to minimize the global training
time and design a light-weight client assignment algorithm based
on dynamic programming to solve it. Moreover, we develop a
self-adaption approach to cope with the dynamic computational
resources of clients. Finally, we implement and evaluate HSFL on
various real-world training tasks, elaborating on its effectiveness
and superiority in terms of efficiency and accuracy compared to
baselines.

Index Terms—Federated Learning, Split Learning, Edge Com-
puting.

I. INTRODUCTION

Federated Learning (FL) [1] is a promising distributed
machine learning paradigm which enables distributed clients
to collaboratively train a shared model without exposing
their privacy-sensitive raw data. In the typical FL framework,
clients perform model training locally using their raw data,
and only the model updates are uploaded to the central cloud
server for aggregation. Then the aggregated model updates
are sent back to the clients for the next round of training.
Despite attractive privacy-preserving benefits, a critical chal-
lenge of FL is the significant resource requirements for model
training and communication [2]. Model training, especially
for complex deep neural networks, results in considerable
memory and computation overhead [3]. Besides, for collab-
orative learning, clients have to iteratively exchange model
updates with the central cloud server, which brings significant

communication overhead [4], [5]. Such massive resource re-
quirements can be prohibitive for resource-constrained mobile
clients, hindering FL’s widespread adoption.

To mitigate the resource constraints of clients, Split Fed-
erated Learning (SFL) [6] proposed to split the whole model
into multiple portions and assign a part of the model to the
cloud server for assisted training. Specifically, clients perform
forward propagation on their client-side models in parallel
and commit the intermediate results to the cloud server to
complete the training of the server-side model. Although
SFL can relieve clients’ memory and computation burden,
clients have to frequently commit the intermediate results of
model training to the cloud server, which brings additional
transmission time and consumes significant communication
resources.

To solve the above problems, we propose to exploit the
great potential of edge servers, as communicating with the
edge server can significantly reduce the communication over-
head and transmission delay of clients compared to the central
cloud server. To this end, we propose a novel framework
HSFL, i.e., Hierarchical Split Federated Learning, where edge
servers play the role of training assistants and model aggrega-
tors of SFL. In HSFL, clients train the client-side model using
their local data and commit the intermediate results to the edge
server to train the server-side model. After several client-edge
collaborative training, clients commit the client-side model
parameters to the edge server, which aggregates the model pa-
rameters and sends the aggregated parameters back to clients.
Then, after sever edge aggregations, the edge servers send the
edge model parameters to the cloud server, which aggregates
the edge parameters and returns the aggregated parameters to
edge servers for the next round of training. For the HSFL
framework, the critical challenge is determining which edge
server should cooperate with each client, reducing the model
training time and enhancing the model accuracy. To achieve
this goal, we aim to minimize the required time per cloud
aggregation by solving the formulated Cloud Aggregation
Time Minimization (CATM) problem. On the other hand, the
data distribution on the client side presents the not identically
and independently distribution (Non-IID). Therefore we try to
make the data distribution of each edge server more balanced,

978-3-903176-51-5 © 2022 IFIP

2022 18th International Conference on Network and Service Management (CNSM)

1

Cloud Aggregation⑤ Model
Weights

Edge Aggregation

④ Aggregated
Weights

③Weights① Smash
Data

② Gradient

Edge Aggregation

⑥ Aggregated
Weights

Dynamically
changing client

model

Client ModelClient ModelDynamically
changing client

model

Entire Model

Fig. 1: The framework of our proposed HSFL.

which has been demonstrated to be effective in improving the
learning performance [4], [7]. To strike a delicate trade-off
between model accuracy and training time, we devise a light-
weight assignment mechanism to determine for each client
which edge server it should collaborate with. To deal with the
dynamic changes of client computing resources, we design an
adaptive algorithm that can dynamically adjust the association
strategies between clients and edge servers. To evaluate the
performance of HSFL, we conduct extensive experiments on
various real-world training tasks and compare them with state-
of-the-art FL mechanisms. Experimental results demonstrate
that HSFL can significantly improve the learning accuracy and
reduce the model training time. The main contributions of this
paper are summarized as follows:

1) We propose a Hierarchical Split Federated Learning
framework (HSFL) that enables collaborative model
training between clients and edge servers, which over-
comes client resource limitations with reduced time con-
sumption.

2) Under the HSFL framework, we study the Cloud Aggre-
gation Time Minimization (CATM) problem and design
a light-weight adaptive assignment algorithm to solve it
while considering the dynamic changes in client comput-
ing resources.

3) We conduct extensive experiments with real-world
datasets. Experimental results demonstrate the efficacy
of HSFL in terms of model accuracy and training time
compared with state-of-the-art baselines (i.e., FL, SFL
and HFL).

II. SYSTEM DESCRIPTION AND PROBLEM DESIGN

In this section, we first describe the Hierarchical Split
Federated Learning Framework (HSFL), afterward formally
design the Cloud Aggregation Time Minimization (CATM)
problem, and finally analyze the rationalization of the prob-
lem. The symbols used in this paper are summarized in Table
I.

A. Hierarchical Split Federated Learning Framework

This section mainly describes our proposed HSFL frame-
work. We consider an HSFL framework comprising a set of N
resource-constrained clients (denoted by N), a set of M edge
servers (denoted byM) and one cloud server. In Fig. 1, edge
servers and the central cloud server have the entire model
structure, and clients own part of the model structure. The
dotted line represents the dynamically changing computing
resources of clients. To model the dynamic change in clients’
computation resources, we let lti denote the number of layers
that client i can perform training in the t-th round of cloud
aggregation. Specifically, we select some clients from the
client setN and assign them to M edge servers. In each client-
edge collaborative training, clients train the client-side model
using their local data and transmit the intermediate results to
the edge server to train the server-side model. After El times
client-edge collaborative training, clients send the client-side
model parameters to the edge server for parameters aggregate,
and the edge server updates the server-side model and returns
the aggregated parameters to clients. This process is called
edge aggregation. After Ee times edge aggregation, edge
servers send the model parameters to the cloud server, which
aggregates the edge parameters and returns the aggregated
parameters to edge servers for the next round of training.
Finally, we describe cloud aggregation time as follows:
Cloud aggregation time:

1) The time of each round cloud aggregation TA is de-
termined by the last edge server that completes Ee

times edge aggregation. The TA can be expressed as
TA = max{TE

j }.
2) We use TE

j to denotes the time of the edge server j
complete Ee times edge aggregation, which is deter-
mined by the last clients that completes El times client-
edge collaborative training. The TE

j can be expressed as
TE
j = max

i∈Sj

{Ci} + tCj , where tCj is a constant that is

the transmission time when edge server j sends model
parameters to the cloud server.

3) The time for a client i to complete El times client-edge
collaborative training Ci = tai + tSi + tui,j , where tai is the
time for the client complete client-side model training,
tSi is the time of edge-server cooperating with the client
to finishes the server-side model training; and tui,j is the
trans time between the client and edge server.

B. Problem Definition

The edge data distribution refers to the distribution of data
connected to edge server clients [7]. In the HSFL framework,
we aim to solve the cloud aggregation time minimization
problem. Furthermore, we refer to the difference in edge
data distribution as the edge distribution distance and design
an edge distribution distance minimization problem to make
the data distribution of each edge server more balanced and
thus improve the learning performance. Thus, we describe the
above problems as follows.
Cloud Aggregation Time Minimization (CATM):

2022 18th International Conference on Network and Service Management (CNSM)

2

TABLE I: PRINCIPAL NOTATIONS
Symbol Definition

N The number of clients.
M The number of edge servers.
El The number of local iterations performed by

clients in each edge aggregation.
Ee The number of edge aggregations performed by

edge servers in each cloud aggregation.
B(t) The client assignment scheme in t-th cloud ag-

gregation
H The number of cloud aggregation times.
Li The minimum resources that client i can join in

model training.
Ri The maximum resources that client i can join in

model training.
Di The data size of client i.
Sj The set of clients associated with edge server j.
V E
j Association limitation at edge server j.

TA
t The cloud aggregation time in the t-th round

TE
j The time of edge server j completes edge aggre-

gation.
Ct

i The time for the client i to finish model training
in t-th round of cloud aggregation.

We give a set of clients N and a set of edge servers M.
Then, how to design a reasonable client assignment scheme to
assign N clients to M servers that minimize the required time
per cloud aggregation. Define bti,j ∈ {0, 1} as a binary variable
that indicates in the t-th round cloud aggregation, whether
client i is to be associated with edge servers j (bti,j = 1)
or not (bti,j = 0). The time of per cloud aggregation can be
expressed as follows:

TA
t = max

j∈M
{TE

j (B(t))} (1)

Where TE
j (B(t)) denotes the time of edge server j completes

Ee times edge aggregation under the t-th round assignment
scheme, and B(t) is the assignment scheme of the t-th
round, B(t) = {bti,j}. The time to complete Ee times edge
aggregation can be expressed as follows:

TE
j (B(t)) = max

i∈Sj

{Ct
i · bti,j}+ tCj ∀j ∈M (2)

In addition to cloud aggregation time, it is equally vital to
make edge data distribution more balanced. Therefore we
define the edge distribution distance to model the balance
between edge distributions.
Edge Distribution Distance Minimization (EDDM):

Besides the cloud aggregation time, we also consider mak-
ing the data distribution of each edge server more balanced, ef-
fectively improving learning performance [4], [7]. To quantify
the balance between edge data distributions more intuitively,
we define the edge distribution distance, which is the KL
divergence between the edge server data distribution and the

uniform distribution. During each cloud aggregation, the edge
distribution distance can be described as follows:

DA
t =

m∑
j=1

DKL(P
t
j ||Pu) (3)

In each cloud aggregation, DKL(·||·) is the KL divergence
between the data distribution and uniform distribution of the
edge server j in the t-th round of cloud aggregation. To strike
appropriate balances among cloud aggregation time and edge
distribution distance, we formalize the above two problems
as Eq.(4). Edge servers usually have limited communication
resources, so we constrain the number of connected clients
to the edge serve j within V E

j , shown in constraint (5). The
constraint Eq.(6) means that each client can connect to at most
one server in each cloud aggregation. Finally, in the constraint
Eq.(7), we set bti,j as the decision variable, indicating whether
client i is associated with edge server j in round t.

min F =
H∑
t=1

(λTA
t + (1− λ)DA

t) (4)

s.t.
N∑
i=1

bti,j ≤ V E
j ∀j ∈M (5)

M∑
j=1

bti,j ≤ 1 ∀i ∈ N (6)

bti,j ∈ {0, 1} ∀i ∈ N ,∀j ∈M (7)

C. Problem Analysis

In Eq.(4), we first consider the CATM problem and in
order to obtain higher accuracy, the EDDM problem is also
taken into account. For each round cloud aggregation t ∈
{1, 2, ...,H}, the clients assignment scheme is B(t). However,
they are difficult to process simultaneously for the following
reasons. On the one hand, to minimize the time required for
each cloud aggregation, we need to consider the physical
distance between clients with edge servers and the resources
that the client participates in training. On the other hand,
physical distance is not equivalent to distribution distance. In
other words, we also need to consider the distance between
the edge distribution and the uniform distribution to obtain
higher accuracy. To strike a better trade-off, we incorporate a
parameter λ to tune the cloud aggregation time and edge data
distribution.

III. ALGORITHM DESIGN

To solve our proposed CATM problem, we first prove it
is an NP-hard problem, afterward we design a light-weight
client assignment algorithm to solve it.

A. Problem transformation

Combining Eq.(1) and Eq.(2) can be expressed as follows:

TA
t = max

j∈J
{max
i∈Sj

{Ct
i · bti,j}+ tCj } (8)

2022 18th International Conference on Network and Service Management (CNSM)

3

In Eq.(8), the max operation is complicated for us, so we use
the Minkowski distance [8] to transform it. The Minkowski
distance as follows:

n
max
i=1
|xi − yi| = (

n∑
i=1

|xi − yi|p))
1
p (9)

When p→∞, Minkowski distance means the max element
in an array.

lim
p→∞

(
n∑

i=1

|xi − yi|p))
1
p = max

i=1,...,n
|xi − yi| (10)

Substituting Eq.(10) into Eq.(4), then we rewrite the objective
function (4) as follows:

min F =
H∑
t=1

(λTA
t + (1− λ)DA

t) (11)

s.t. DA
t =

M∑
j=1

DKL(P
t
j ||Pu) (12)

TA
t = lim

p→∞
(

m∑
j=1

| lim
k→∞

(

N∑
i=1

bti,j · |Ci|k)
1
k + tCj)|p)

1
p

(13)
Constraints : (5), (6), (7).

Proof. We simplify DA
t (12), assuming that the data distribu-

tion pi of client i is the uniform distribution. At this point, the
data distribution of edge servers is always uniform distribution
in any assignment scheme, where P t

j = Pu and DA
t = 0 the

Eq.(11) is converted to Eq.(14).

min F =
H∑
t=1

λTA
t (14)

N∑
i=1

bti,j ≤ V E
j , ∀j ∈M

M∑
j=1

bti,j ≤ 1, ∀i ∈ N

bti,j ∈ {0, 1}, ∀i ∈ N ,∀j ∈M

The Eq.(14) can be simplified to the 0/1 multiple knapsack
problem [9]. The client is viewed as the good of 1 weight
and Ci value. The edge server is viewed as the knapsack,
where the capacity of the knapsack is limited to V E

j . Now
we need to put n goods into m knapsacks and minimize the
objective function (14). At this point, the special case of our
problem transforms into a 0/1 multiple knapsack problem. The
0/1 multiple knapsacks problem is a classic NP-hard problem,
and we reduce the problem (14) to the 0/1 multiple knapsacks
problem. Eq.(14) is a particular case of Eq.(11), so the original
problem (11) can be reduced to a 0/1 multi-knapsack problem.
That is, our proposed CATM problem is an NP-hard problem.

B. Two-Stage Client Assignment (TSCA)

Given M edge servers and N clients, we associate clients
with edge servers in each cloud aggregation, thus minimizing
the objective function (11). It’s worth noting that the number
of clients connecting to an edge server cannot exceed its
connection limit V E

j . For this object, we present the Two-
Stage Client Assignment algorithm, which is described in
Algorithm 1. We use a two-stage approach to design the client
assignment scheme and minimize the objective function (11).

Dynamic Stage: We use the se to present the set of clients
connected to the edge server e, and |se| to denote the number
of clients connected to the edge server e. We first put the client
i to the edge server e, until |se| = V E

e . Then, we minimize
our object function (11) by exchanging client i and client
is, where client is is means the client has connected to the
edge server. Exchange Stage: Select one client i in edge
server e, and selected client k in the other edge server e′, then
calculates the value of ∆Fi,k. Based on the calculated value
∆Fi,k, we find out the association pair of the client i and
client k that maximizes the value of ∆Fi,k. Then exchange
the client i and client k.

DKL(Pe||Pu) = −
∑
k

Pe(k) ln
Pu(k)

Pe(k)
(15)

= −
∑
k

Pe(k)(lnPu(k)− lnPe(k))

=
∑
k

Pe(k) lnPe(k)−
∑
k

Pe(k) lnPu(k)

To reduce the TSCA algorithm’s time complexity, we
design an optimized function CheckEIE(·,·,·) based on maxi-
mizing information entropy as described in Algorithm 1. We
use e denotes an edge server, ci and cr to denote whether the
client is connected to the edge server e, respectively. The ∆H
indicates the variable of change in information entropy of the
edge server e caused by exchanging client ci and client ck. If
∆H > 1e−3 exchange client ci and client ck, otherwise not.

C. Self Adaption Assignment (SAA)

In this section, we present the self-adaption assignment
algorithm to face the clients’ resources change, which details
in Algorithm 2. At the beginning of each round of cloud
aggregation, clients whose computing resources have changed
commit model training information lt∗ to the cloud server.
Afterward, we calculate the deviation ∆F of the objective
function when the assignment scheme B(t − 1) of the t − 1
round is applied to the next round. If ∆F > Z, we use
B(t− 1) as the t round scheme, otherwise get a new scheme
B(t) through Algorithm 1, where Z is our acceptable change
threshold, we set Z = 1e−7.

D. Workflow of HSFL

In fig. 2 describes the workflow of HSFL. The workflow
of HSFL consists of client assignment, client-side training,
edge-side training, client-side backward, edge aggregation,
and cloud aggregation. Each part of the workflow describes

2022 18th International Conference on Network and Service Management (CNSM)

4

Clients
Assignment

2

1

Client 2

Client 1

4

3

Client 3

Client 4

Cloud Server

Edge Server

Edge Server

Client-side
Training

Client-side
Training

Client-side
Training

Client-side
Training

Edge-side
Training

Edge-side
Training

Edge
Aggregation

Edge
Aggregation

Cloud
Aggregation

2
1

3
11 12

Client-side
Backward

Client-side
Backward

Client-side
Backward

Client-side
Backward

3

4

6

8

5 7 9
10

1 2

3 4

Collaboration Training

4

5
6

7

8

9
10

11

Aggregation Stage

Fig. 2: The workflow of HSFL.

as follows, and details describe in Algorithm 3.

1) Initially, the client sends information to the central cloud
server (1). Then, the cloud server utilizes this submitted
information to execute Algorithm 1, assigning clients
to edge servers (2). Next, the cloud server sends the
associate result to clients (3).

2) During the collaboration training stage, the client exe-
cutes client-side model training in parallel (4). Then,
the client sends the intermediate result and labels to the
specified edge server (5). After that, the edge server
assist clients with edge-side training in parallel (6) and
sends the gradient to the client (7), then client backward
follow this gradient (8). Finally, go back to (4) and
repeat the collaboration training stage El times.

3) Enter the Aggregation Stage, the client sends the partial
model parameters to the edge server (9), edge server
uses the FedAvg [1] algorithm to aggregate the model
parameters (10). After Ee times edge aggregations, edge
servers commit the model parameters to the cloud server
(11). The cloud server uses the FedAvg algorithm to
aggregate the model parameters (12) and then sends the
aggregated parameters to edge servers. Afterward, edge
servers update the edge model and back it to clients.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to demon-
strate the efficacy of HSFL, which are compared with state-
of-the-art baselines on real-world tasks.

A. Experimental Setting

Environment Setup. We build the HSFL framework em-
ulation system by PyTorch 1.10.0, use the sleep function in
python to simulate the transmission delay between devices,
and adopt widely used deep learning tasks and the correspond-
ing deep learning model to evaluate our framework.

Datasets and Models. We adopt three widely used datasets
and the corresponding models: 1) CIFAR-10 [10] dataset and
the ResNet18 model in [11], 2) Fashion-MNIST [12] dataset

and the ResNet34 model in [11]; and 3) Mnist [13] dataset
and CNN model retrieved from PyTorch1. The CIFAR-10
dataset contains a train set of 50,000 training images and a
test set of 10,000 test images. Each image is a 32x32 color
image associated with a label from 10 classes, the Fashion-
MNIST dataset consists of a training set of 60,000 examples
and a test set of 10,000 examples. Each example is a 28x28
gray scale image associated with a label from 10 classes; and
the mnist dataset contains a training set of 60000 training
examples, and a test set of 10000 test examples. For Non-IID
data distribution at clients, we assign each client 2 different
sample labels, each label with 300 samples.

Other parameters and baselines: In specific, we set
µE = 1e−5s/km, µC = 1e−6s/km, where µE is the trans-
mission latency between the client and edge servers, µC

is the transmission latency between the client and cloud
server. For parameters related to model training, we set the
size of local mini batch as β = 32 and the learning rate
τ = 0.005. We choose three different geo-locations network
topologies from the Internet Topology Zoo [14], i.e., Aarnet
(Australia,19 nodes), Belenet2010 (Belgium, 19 nodes) and
Chinanet (China, 38 nodes). These networks have the latitude
and longitude information of clients, which is used to calculate
the distance among clients via the Haversine formula [15]. We
obtain the shortest distance between clients using the Dijkstra
algorithm and addition one location in Hong Kong, China, is
included to represent the cloud server.

• Classical FL (FL): Distributed clients directly commu-
nicate with the cloud server to commit model parameters
[1].

• Cloud-based SFL (SFL): This work combines the
strengths of FL and SL, which allows a cloud server
(master) to assist resource-constrained clients in complet-
ing model training, which then submits model parameters
to another server (fed server) for aggregation [6].

1Retrieved from https://github.com/pytorch/examples/blob/master/mnist.

2022 18th International Conference on Network and Service Management (CNSM)

5

Algorithm 1: Two-Stage Client Assignment (TSCA)
Input: (1) Data size Di; (2) Number of client-side

model training layers lti ; (3) client-side training
time tai,t.

Output: Client assignment scheme B(t)
Initialize se ← ∅, Pe ← 0 for each e ∈M;
Function CheckEIE(ca,cr,e):

The information entropy H(P).
∆H ← H(Pe − cr + ca)−H(Pe)
if ∆H > 1e−3 then

return True
else

return False
end

Dynamic Stage:
for e ∈M do

for i ∈ N do
if |se| < V E

e then
se ← se + i

else if |se| = V E
e then

for is ∈ se do
if CheckEIE(i,is,e) then

∆F ← F (se − is + i)− F (se)
if ∆F < 0 then

se ← se + i− is
end

end
end
Exchange Stage:
for (e, e′) ∈M do

for i ∈ se do
for k ∈ se′ do

if CheckEIE(i,k,e) or CheckEIE(i,k,e′)
then

Fb ← F (se) + F (se′)
Fa ← F (se − i+ k) + F (se′ − k + i)
Compute ∆Fi,k ← Fa − Fb

end
Find the maximum ∆Fi,k

se ← se − i+ k
s′e ← s′e + i− k

end
end

• Astraea (HFL): Based on the hierarchical federated
learning framework, which tries to make the data dis-
tribution of each edge mediator more balanced [7].

B. Performance Comparison with baselines

We first conduct performance experiments against the
HSFL framework and baselines, mainly investigating their
accuracy at the same number of iterations. Given the number
of resource-constrained clients N = [10, 20, 30, 40] and the
number of edge servers M = 3. In particular, FL and SFL
are without the edge aggregation stage. Therefore, to make the
cloud aggregation frequency the same, we set the cloud fre-

Algorithm 2: Self Adaption Assignment(SAA)
Input: (1) Current cloud aggregation round t; (2)

Number of client-side model training layers lti ;
Output: Clients assignment scheme B(t)
if t=0 then
B(t)← Algorithm 1.

else
∆F ← |Ft(B(t− 1))− Ft−1(B(t− 1))|
if ∆F > Z then
B(t)← B

else
B(t)← Algorithm 1.

end
end
return B(t)

4 20 40 60 80
Iterations

10

15

20

25

A
cc

ur
ac

y
(%

)

(a) 10 clients
HSFL SFL FL HFL

4 20 40 60 80
Iterations

10

15

20

25

A
cc

ur
ac

y
(%

)

(b) 20 clients

4 20 40 60 80
Iterations

10

15

20

25

A
cc

ur
ac

y
(%

)

(c) 30 clients

4 20 40 60 80
Iterations

10

15

20

25

A
cc

ur
ac

y
(%

)

(d) 40 clients

Fig. 3: Accuracy comparison of our method and baselines
on the CIFAR-10 dataset for different client numbers. The
number of the clients are set to 10, 20, 30, and 40.

quency CF = El ·Ee. CIFAR-10: We use CIFAR-10 dataset
and resnet18 model, we set El = 2, Ee = 2 and CF = 4. As
shown in Fig. 3, the advantage of HSFL in accuracy is valid.
For example, as shown in Fig. 3(d) which records the result of
the client performing 80 iterations, the accuracy of baselines
is 19.77% (SFL), 17.53% (FL), and 20.81% (HFL), but our
method accuracy achieves 22.86% (HSFL). Fashion-MNIST:
In Fig. 4, we use the Fashion-MNIST dataset and ResNet34
model to compare the performance, we set El = 2, Ee = 2
and CF = 4. For example, as shown in Fig. 4(d) which
records the result of the client performing 80 iterations, the
accuracy of baselines is 23.92% (SFL), 23.2% (FL), and
24.34% (HFL), but our method achieves 25.48% (HSFL).
The above experiments demonstrate that HSFL can improve
accuracy in the same iteration.

2022 18th International Conference on Network and Service Management (CNSM)

6

Algorithm 3: Workflow of HSFL
Input: (1) H is the number of cloud aggregation;
for cloud aggregation round t = 1, 2, 3, ..,H do

if t=1 then
Initialize WE

j (Edge server-side model)
Initialize WC

i (Client-side model)
Client scheme B(t) ← execute Algorithm 1;

else
Client scheme B(t) ← execute Algorithm 2;

end
sj ← B(t) get clients set from B(t)
/*Edge Training*/
for each server j ∈M in parallel do

for each client i ∈ sj in parallel do
for local iteration l = 1, 2, 3, ..., le do

/*Client-side training*/
Gets smash data and label from client i
(∆xi, yi)← WC

i

Send (∆xi and labels yi) to server j
/*Server-side training*/
Calculate ỹi with ∆xi on WE

j

loss lj ← loss function(yi, ỹi)
/*Server-side backward*/
Get gradient ∆gi ← backward on(li)
Send ∆gi to client i
/*Client-Side Backward*/
client i backward on ∆gi

end
end
/*Edge aggregation*/
client send model parameters wi to edge server
j

WE
j ←

∑
i∈sj

Diwi∑
i∈sj

Di

Client-side model update ←WE
j

end
/*Cloud aggregation*/
for edge server j ∈M in parallel do

Dj ←
∑

i∈sj
Di

WE
j ←

∑
i∈sj

Diwi∑
i∈sj

Di

end

WC
t+1 ←

∑
j∈M Djw

E
j∑

j∈M Dj

Server-side model update ← WC
t+1

end

C. Impact of Edge

With the framework performance guaranteed, we then stduy
the impact of number of edge servers, including N ,M ,V E

j .
Specifically, we set N = [20, 30], M = [2, 3, 4] and
V E
j = [6, 4, 3]. As shown in Fig. (5), the performance of

model accuracy and iterations on the Mnist dataset and the
CNN model. We can achieve the following advantages. First,
our approach can outperform the other two baselines in all
settings. For instance, in Fig.5(a), when M = 3, the accuracy

4 20 40 60 80
Iterations

10

15

20

25

A
cc

ur
ac

y
(%

)

(a) 10 clients
HSFL SFL FL HFL

4 20 40 60 80
Iterations

10

15

20

25

A
cc

ur
ac

y
(%

)

(b) 20 clients

4 20 40 60 80
Iterations

10

15

20

25

A
cc

ur
ac

y
(%

)

(c) 30 clients

4 20 40 60 80
Iterations

10

15

20

25

A
cc

ur
ac

y
(%

)

(d) 40 clients

Fig. 4: Accuracy comparison of our method and baselines on
the Fashion-Mnist dataset for different client numbers. The
number of the clients are set to 10, 20, 30, and 40.

of our approach can achieve 92.746% with 80 times iterations
, while the approach of SFL and FL can only achieve the
performance of 75.15% and 61.33%. Second, our method
converges faster than other two baselines in all settings. For
example, in Fig.5(c), where M = 3, the loss of our approach
can decrease to 0.48 with 20 times iterations, while the
approach of SFL and FL can only achieve the loss of 1.44
and 1.67.

4 20 40 60 80
Iterations

10

40

70

100

A
cc

ur
ac

y
(%

)

(a) 20 clients
HSFL(2) HSFL(3) HSFL(4) SFL FL

4 20 40 60 80
Iterations

10

40

70

100
A

cc
ur

ac
y

(%
)

(b) 30 clients
HSFL(2) HSFL(3) HSFL(4) SFL FL

4 20 40 60 80
Iterations

0

0.5

1

1.5

2

2.5

3

Lo
ss

(c) 20 clients

HSFL(2) HSFL(3) HSFL(4) SFL FL

4 20 40 60 80
Iterations

0

0.5

1

1.5

2

2.5

Lo
ss

(d) 30 clients

HSFL(2) HSFL(3) HSFL(4) SFL FL

Fig. 5: The accuracy vs. Iterations under different settings of
M

D. Efficiency Comparison with SplitFL
We compare the efficiency with SplitFL (SFL) [6] and

use the CIFAR-10 dataset and the Fashion-Mnist dataset. We

2022 18th International Conference on Network and Service Management (CNSM)

7

50 100 150 200 250
Data Size

100

200

300

400
450

Tr
an

sm
is

si
on

 V
ol

 (M
B

)
(a) Transmission Vol

HSFL SFL FL HFL

10 20 30 40 50
Transmission Volume (x50M)

10

15

20

25

A
cc

ur
ac

y
(%

)

(b) Performance

Fig. 6: The relationship between transmission volume and
accuracy.

investigate the time required to complete t = [5, 10, 15, 20]
rounds of cloud aggregation. In order to simulate the dynamic
change of client computing resources, in each round of cloud
aggregation, we randomly select the number of layers lti for
model training on the client-side between Li and Ri. As
shown in Table II and Table III, where N = 20, M = 3 and
V E
j = 3, the edge server are located in network topologies

Aarnet, Belenet and Chinanet. We can see that our method can
outperform the SFL significantly in these network topologies.
For instance, in Table III, finish 20 times cloud aggregation,
the seconds of 3218.94 is required in SFL, while our proposed
HSFL only takes 2914.06 seconds.

TABLE II: Fashion-Mnist Training Time (s).
Cloud aggregation

5 10 15 20
HSFL 679.93 1312.46 1935.35 2523.05
SFL 790.27 1470.12 2145.44 2825.99

TABLE III: CIFAR-10 Training Time (s).
Cloud aggregation

5 10 15 20
HSFL 809.27 1489.37 2196.40 2914.06
SFL 863.71 1653.78 2445.18 3218.94

E. Transmission Volume with Baselines

Whether the HSFL framework or other baselines, clients
invariably require communication with cloud servers (or edge
servers). Therefore, we study the client’s transmission volume
as crucial. For this reason, we use the Fashion-MNIST dataset
to investigate the transmission volume of different data sizes.
As shown in Fig. (6a), when the data size of each client
is greater than 100, the client’s transmission volume under
the HSFL framework is higher than FL. In Fig. (6b), we
compared the model’s accuracy when the client uses the
same transmission volume. The results show that our method
significantly improves other baselines.

V. RELATED WORK

Emerging distributed learning technology, such as Fed-
erated Learning (FL) [1], Hierarchical Federated Learning

(HFL) [16], Split Learning (SL) [17], and Split Federated
Learning (SFL) [6], has garnered a lot of attention both in
industry and academia in recent years.

FL brings some unique challenges, including huge com-
munication costs, imbalanced data, privacy and resource con-
straints [2], [18], [19], etc. Efficiency [20]–[22], incentives
mechanism [23]–[25], privacy [26]–[28], client selection [29],
[30] and some application frameworks such as visual detection
Platform [31] etc.

In order to reduce the communication overhead and im-
prove the convergence speed of the model, Hierarchical Fed-
erated Learning (HFL), first mentioned in [16], reduces the
client’s communication overhead by introducing edge servers.
In [4], the overall communication overhead minimization
problem is considered in the HFL scenario. Although these
works [32]–[35] mention other issues with HFL, many poten-
tial issues with HFL remain to be exploited.

Except for data privacy, the model’s privacy has also gradu-
ally attracted attention. Split Learning (SL) proposed in [17],
[36], which considers both model privacy and data privacy
divides a deep learning network into multiple parts that reside
on different devices. In [37], the performance of FL and SL
is verified in different experimental environments. In [38],
expanded the application scope of SL and can use SL on 1D
CNN models. Many works focus on the security and privacy
of SL, [39] propose an atack method to expose security risks
in SL, protection and attack always go together, [40] attention
is paid to how to mix intermediate results and labels without
losing efficiency. Inspired by SL, to implement efficient FL
models on resource-constrained devices, SFL [6] combines the
advantages of FL and SL, using a powerful server to assist
multiple clients for model training and aggregation of model
parameters. However, the clients participating in SFL training
frequently communicate with the cloud server, generating a
considerable transmission delay and significantly increasing
the training time, which is unacceptable for IoT devices. In
order to address this issue, we propose the HSFL framework
to improve the convergence speed of the model and reduce
the time required for clients to participate in SFL training.

VI. CONCLUSION

In this work, we present the design, implementation, and
evaluation of HSFL, an efficient split federated learning
framework via hierarchical organization. Then, we formu-
late the Cloud Aggregation Time Minimization problem and
design an efficient client assignment mechanism to asso-
ciate clients and edge servers. Extensive experimental results
demonstrate the effectiveness and efficiency of our framework.
We believe that our proposed framework will provide a
valuable solution for split federated learning. In the future,
we will propose a decentralized approach to designing client
assignment schemes and reduce the communication overhead
of clients.

REFERENCES

[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Aguera y Arcas. Communication-efficient learning of

2022 18th International Conference on Network and Service Management (CNSM)

8

deep networks from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282, 2017.

[2] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao
Jiao, Ying-Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao.
Federated learning in mobile edge networks: A comprehensive survey.
IEEE Communications Surveys & Tutorials, 22(3):2031–2063, 2020.

[3] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen.
Hermes: an efficient federated learning framework for heterogeneous
mobile clients. In Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking, pages 420–437,
2021.

[4] Yongheng Deng, Feng Lyu, Ju Ren, Yongmin Zhang, Yuezhi Zhou,
Yaoxue Zhang, and Yuanyuan Yang. Share: Shaping data distribution
at edge for communication-efficient hierarchical federated learning. In
IEEE ICDCS, pages 24–34, 2021.

[5] Zhiyuan Wang, Hongli Xu, Jianchun Liu, He Huang, Chunming Qiao,
and Yangming Zhao. Resource-efficient federated learning with hier-
archical aggregation in edge computing. In IEEE INFOCOM, pages
1–10, 2021.

[6] Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, Seyit
Camtepe, and Lichao Sun. Splitfed: When federated learning meets
split learning. arXiv preprint arXiv:2004.12088, 2020.

[7] Moming Duan, Duo Liu, Xianzhang Chen, Yujuan Tan, Jinting Ren, Lei
Qiao, and Liang Liang. Astraea: Self-balancing federated learning for
improving classification accuracy of mobile deep learning applications.
In IEEE ICCD, pages 246–254, 2019.

[8] Mahinda Mailagaha Kumbure and Pasi Luukka. A generalized fuzzy
k-nearest neighbor regression model based on minkowski distance.

[9] Xiangjing Lai, Jin-Kao Hao, Fred Glover, and Zhipeng Lü. A two-phase
tabu-evolutionary algorithm for the 0–1 multidimensional knapsack
problem. Information sciences, 436, 2018.

[10] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In IEEE CVPR, pages 770–
778, 2016.

[12] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv
preprint arXiv:1708.07747, 2017.

[13] Y.LeCun. The mnist database of handwritten digits. In http://yann.
lecun. com/exdb/mnist/, 1998.

[14] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and
Matthew Roughan. The internet topology zoo. IEEE JSAC, vol.29, no.
9, pp. 1765-1775, 2011.

[15] C Carl Robusto. The cosine-haversine formula. The American Mathe-
matical Monthly, vol.64, no. 1, pp. 38-40, 1957.

[16] Lumin Liu, Jun Zhang, SH Song, and Khaled B Letaief. Client-edge-
cloud hierarchical federated learning. In IEEE ICC, pages 1–6, 2020.

[17] Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural
network over multiple agents. Journal of Network and Computer
Applications, 116:1–8, 2018.

[18] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bel-
let, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary
Charles, Graham Cormode, Rachel Cummings, et al. Advances and
open problems in federated learning. arXiv preprint arXiv:1912.04977,
2019.

[19] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne,
Jun Li, and H Vincent Poor. Federated learning for internet of things:
A comprehensive survey. IEEE Communications Surveys & Tutorials,
2021.

[20] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung,
Christian Makaya, Ting He, and Kevin Chan. When edge meets
learning: Adaptive control for resource-constrained distributed machine
learning. In IEEE INFOCOM, pages 63–71, 2018.

[21] Nguyen H Tran, Wei Bao, Albert Zomaya, Minh NH Nguyen, and
Choong Seon Hong. Federated learning over wireless networks:
Optimization model design and analysis. In IEEE INFOCOM, pages
1387–1395, 2019.

[22] Bing Luo, Xiang Li, Shiqiang Wang, Jianwei Huang, and Leandros
Tassiulas. Cost-effective federated learning design. In IEEE INFOCOM,
pages 1–10, 2021.

[23] Yongheng Deng, Feng Lyu, Ju Ren, Yi-Chao Chen, Peng Yang, Yuezhi
Zhou, and Yaoxue Zhang. Fair: Quality-aware federated learning with

precise user incentive and model aggregation. In IEEE INFOCOM,
pages 1–10, 2021.

[24] Yufeng Zhan, Peng Li, Zhihao Qu, Deze Zeng, and Song Guo. A
learning-based incentive mechanism for federated learning. IEEE
Internet of Things Journal, 7(7):6360–6368, 2020.

[25] Ming Tang and Vincent WS Wong. An incentive mechanism for cross-
silo federated learning: A public goods perspective. In IEEE INFOCOM,
pages 1–10, 2021.

[26] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad
Farokhi, Shi Jin, Tony QS Quek, and H Vincent Poor. Federated
learning with differential privacy: Algorithms and performance analysis.
IEEE Transactions on Information Forensics and Security, 15:3454–
3469, 2020.

[27] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and
Hairong Qi. Beyond inferring class representatives: User-level privacy
leakage from federated learning. In IEEE INFOCOM, pages 2512–2520,
2019.

[28] Liang Gao, Li Li, Yingwen Chen, Wenli Zheng, ChengZhong Xu, and
Ming Xu. Fifl: A fair incentive mechanism for federated learning. In
ICPP, pages 1–10, 2021.

[29] Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie
Baracaldo, Yi Zhou, Heiko Ludwig, Feng Yan, and Yue Cheng. Tifl: A
tier-based federated learning system. In ACM HPDC, pages 125–136,
2020.

[30] Baturalp Buyukates and Sennur Ulukus. Timely communication in
federated learning. In IEEE INFOCOM WKSHPS, pages 1–6, 2021.

[31] Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu, Yuanyuan
Chen, Lican Feng, Tianjian Chen, Han Yu, and Qiang Yang. Fedvi-
sion: An online visual object detection platform powered by federated
learning. In AAAI, volume 34, pages 13172–13179, 2020.

[32] Seyyedali Hosseinalipour, Sheikh Shams Azam, Christopher G Brinton,
Nicolo Michelusi, Vaneet Aggarwal, David J Love, and Huaiyu Dai.
Multi-stage hybrid federated learning over large-scale d2d-enabled fog
networks. IEEE/ACM Transactions on Networking, 2022.

[33] Jinze Wu, Qi Liu, Zhenya Huang, Yuting Ning, Hao Wang, Enhong
Chen, Jinfeng Yi, and Bowen Zhou. Hierarchical personalized federated
learning for user modeling. In ACM WWW, pages 957–968, 2021.

[34] Siqi Luo, Xu Chen, Qiong Wu, Zhi Zhou, and Shuai Yu. Hfel: Joint
edge association and resource allocation for cost-efficient hierarchical
federated edge learning. IEEE Transactions on Wireless Communica-
tions, 19(10):6535–6548, 2020.

[35] Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning
with hierarchical clustering of local updates to improve training on non-
iid data. In IEEE IJCNN, pages 1–9, 2020.

[36] Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural
network over multiple agents. Journal of Network and Computer
Applications, 116:1–8, 2018.

[37] Yansong Gao, Minki Kim, Sharif Abuadbba, Yeonjae Kim, Chandra
Thapa, Kyuyeon Kim, Seyit A Camtepe, Hyoungshick Kim, and Surya
Nepal. End-to-end evaluation of federated learning and split learning
for internet of things. arXiv preprint arXiv:2003.13376, 2020.

[38] Sharif Abuadbba, Kyuyeon Kim, Minki Kim, Chandra Thapa, Seyit A
Camtepe, Yansong Gao, Hyoungshick Kim, and Surya Nepal. Can we
use split learning on 1d cnn models for privacy preserving training? In
ACM ASIA-CCS, pages 305–318, 2020.

[39] Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi. Unleash-
ing the tiger: Inference attacks on split learning. In ACM SIGSAC, pages
2113–2129, 2021.

[40] Danyang Xiao, Chengang Yang, and Weigang Wu. Mixing activations
and labels in distributed training for split learning. IEEE Transactions
on Parallel and Distributed Systems, vol. 33(no. 11):pp. 3165–3177,
2021.

2022 18th International Conference on Network and Service Management (CNSM)

9

	1

