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Abstract—This paper contributes gLBF (guaranteed Latency-
Based Forwarding), a new algorithm for leaky bucket defined
traffic flows, feasible for low-cost, high-speed forwarding planes
in LAN/RAN/WAN networks to support simply computed, per-
hop bounded latency for high-precision communication services.
gLBF combines benefits of earlier algorithms such as Urgency-
Based Scheduling (UBS) and Cyclic Queuing and Forwarding
(CQF) while avoiding their downsides. gLBF does not require
per-hop, per-flow state such as shapers or (interleaved) regula-
tors, thus avoiding control complexity and limiting hardware cost.
It does not require strict network-wide time synchronization and
therefore eliminates the opex and capex of deploying IEEE1588.
It minimizes end-to-end jitter, thus eliminating the need for
playout buffers in endpoints to compensate for network jitter.

Index Terms—deterministic, latency, synchronous, guarantees,
synchronous, gLBF, LBF, CQF, UBS, TSN, LDN, TCQF, NewIP

I. INTRODUCTION

A growing number of applications require communication
services that are able to forward traffic with guaranteed or
deterministic latency bounds. Such services have been evolv-
ing for decades, mostly in limited physical domain networks
such as inside vehicles or on factory floors for applications
involving industrial machinery [18].

Standards for deterministic bounded maximum latency guar-
antees in packet forwarding networks were defined in the
latter part of the 1990s via the IETF “Guaranteed Services”
(GS) standard [17], but it was never adopted in significant
deployments. Instead, deterministic latency services first saw
wider deployments in Ethernet networks via vendor propri-
etary solutions that where replaced over time with several
IEEE “Time Sensitive Networking” (TSN) standards includ-
ing ”Cyclic Queuing and Forwarding” (CQF) [10] and later
” Asynchronous Traffic Shaping” based on the "Urgency Based
Scheduling” (UBS) algorithm [18]. Both are precursors to the
work presented here.

With TSN enjoying increasing adoption at Layer 2, there is
interest in revisiting deterministic service also in the context of
IP and for use across wide-area networks beyond the typically
more limited physical scope of TSN networks. This resulted in
the formation of the DetNet working group in the IETF. Many
core use cases build around high-speed wide-area IP networks
[9], which has led to a re-investigation of the algorithmic
requirements to best support these services in such networks.
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This paper proposes a novel algorithm called ”guaranteed
Latency Based Forwarding” (gLBF) for deterministic latency
in large scale (tenths of thousands of flows), high speed (link
speeds > 100 Gbps) and wide-area (radius > 10 km) networks,
including IP and MPLS networks. Its benefits could also be
useful for other networks.

gLBF eliminates what the authors considers to be problems
of prior algorithms for this type of deployments: per-hop,
per-flow state and needs for network-wide clock synchroniza-
tion. gLBF provides tightly bounded jitter, which the authors
consider crucial for many applications, and it provides the
same simple latency calculus as UBS, therefore providing the
same latencies as UBS, as well as its support of different
guaranteed latencies for different flows across the same paths
and compatibility with UBS Path Computation Engines (PCE)
and resource reservation systems.

gLBF requires what today can be called more advanced
queuing mechanisms than what UBS requires, such as "PIFO”
(Push-In-First-Out”) queues, which may take more time to get
implemented into high-speed, low-cost forwarding hardware.
A mechanism is described to support a subset of gLBF with
queuing mechanisms equivalent to those required for UBS.

The rest of the paper is organized as follows: Section II
discusses the current state of the art: Section II-A introduces
a model for the network architecture in which gLBF and
prior bounded latency mechanisms operate and Section II-B
introduces the relevant prior art latency control mechanisms.
Section III contributes an analysis of their problems for the
purpose of bounded latency, Section IV describes the main
contribution of this paper, gLBF and its different implemen-
tation options, Section V describes the authors experimental
validation of gLBF, and Section VI concludes the paper and
discusses desirable next steps.

II. PRELIMINARIES
A. Common system model

Notwithstanding other options to build a complete network
solution around gL.BF or the other discussed prior algorithms,
we describe Figure 1 as the common reference system model
for the purpose of this paper.

The traffic of interest is controlled via an Admission Con-
troller (AC) that tracks all flows and their parameters that are
guaranteed to be delivered across the network with determin-
istic latency. Optionally, there may also be a component called
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Fig. 1. Common Reference System Model

a Path Computation Engine (PCE) [4] which supports the AC
function by calculating the optimum path through the network
for each individual traffic flow.

Traffic enters the network via the network ingress or first-
hop router, also called the Provider Edge (PE) router. The PE is
responsible for ensuring that traffic does not exceed the bounds
the AC determines that it should have. This means that the
ingress PE will have per-flow state policing and/or will provide
adjustment to traffic flows entering the network. Likewise, the
PCE may instruct the PE to cause the traffic flow to be routed
across a particular path. Traffic is then routed across zero or
more Provider (Core) Routers (P routers) towards an egress
PE. In stateless” solutions, P routers will not have per-flow
state. Per-flow state may exist purely to steer traffic and/or to
perform per-flow shaping in support of bounded latency. The
latter type of state has in the past been considered to be most
expensive in high-speed networks.

B. Precursors and related technologies

This section explains and reviews technologies to the extent
that they contributed to this papers work. A broader review and
comparison of deterministic latency options can be found in
[12]. A mathematical overview of the algorithms can be found
in [7].

1) Urgency Based Scheduling: Urgency Based Scheduling
[UBS] is the deterministic latency algorithm adopted for IEEE
Time Sensitive Networking (TSN) Asynchronous Traffic Shap-
ing (TSN-ATS) [11]. UBS relies on per-hop, per-flow process-
ing. It is an improved mechanism compared to “Guaranteed
Services” (GS) [17]. UBS relies on so-called interleaved-
regulators compared to per-flow shaping and scheduling in
GS, reducing the required queuing hardware cost/complexity.

Because gLBF uses the same latency calculus as UBS, and
its explanation requires understanding it, we describe the UBS
calculus here.

UBS traffic flows (i) are characterized by a burstiness (%)
[e.g. bits] and a leak rate r(¢) [e.g. bits/sec]. These parameters
define a constraint for the cumulative amount of data [e.g. bits]
w(d, ) over any period d called the leaky bucket constraint:

w(i,d) <b(i) +dx*r(i) (1)

To support different guaranteed latencies for different flows
across the same interface, UBS uses a small number of strict
priority queues p = 1...N on an outgoing interface, for
example N = 8. The buffers required for each queue p is
Zieﬂowsp b;, where flows, is the set of flows that should
use priority queue p. The guaranteed maximum latency(p) of
a packet of priority(p) through a forwarder hop is roughly
(missing some fixed offset):

>

JjE flows(q),q<p

latency(p) = b(j)/ri 2

r; is the serving rate of the interface, e.g. [bps]. Both N and
the priority of a flow can be configured differently on every
hop of the path. This allows the provision of finer grained end-
to-end differences in latency across different flows than N, for
example by assigning a flow to p and p+ 1 on different hops
of its path.

Admission control in UBS needs to also ensure that the total
amount of traffic does not exceed the link serving rate:

r; > Z flowrate; 3)

JjEflows,

The per-hop calculations required for each packet of a
flow to determine the earliest time it can be forwarded so
the flow does not violate its leaky bucket constraint is the
same as in a per-flow shaper. Instead of using a per-flow
FIFO, calculating the head-of-fifo earliest departure time, and
then performing appropriate scheduling across all FIFO queues
with a head that is ready to be sent, UBS puts packets of all
flows received from the same input interface k£ and destined
for the same priority p into the same FIFO(k,p). It then only
calculates the earliest departure time for the head of each such
FIFO(k, p) based on the leaky bucket constraints of that flow
and schedules packets across those FIFOs(k,p) according
to strict priority across p and between different k& of the
same p based on earliest departure time. These FIFO(k,p)
are called “Interleaved Regulators” because they interleave
multiple flows and regulate the rate of their traffic. Interleaved
regulators are the core novel implementation simplification
that UBS contributes to the problem of deterministic latency
based forwarding.

2) Cyclic Queuing and Forwarding: In IEEE TSN Cyclic
Queuing and Forwarding [10] deterministic traffic packets are
sent via a periodic time cycles. Received packets are assigned
to a cycle purely by their receive time being within the
cycle time. This requires strict time synchronization across
forwarders and speed-of-light link propagation time must be
known and packets only be sent so their last bit will arrive on
the receiving forwarder before the cycle time ends there. The
higher the link propagation latency, the lower the percentage
of time during a cycle that packets can be sent. Typical CQF
networks can therefore only span few kilometers in diameter.

3) Tagged Cyclic Queuing and Forwarding (TQCF) : [15]
(updated by [16]) follows the model of CQF but attaches a
cycle tag to the packet, therefore removing the size limitation
of networks to support wide-area IP or MPLS networks.
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Link propagation latency only has to be known but can be
arbitrary large, and receivers can still appropriate map received
packets into the desired cycle buffer. TCQF still requires clock
synchronization, but its Mean Time Interval Error (MTIE) can
be one or two orders of magnitude (factor 10..100) larger than
required for CQF, therefore reducing the overall cost of clock
synchronization significantly. In addition, by using a larger
number of cycle buffers, such as 4, it is possible to also support
links with variable propagation latency.

4) Latency Based Forwarding: Despite its similar name,
Latency Based Forwarding (LBF) [3] started from a different
set of goals than gLBF. LBF is based on the model that
applications would indicate their Service Level Objective
(SLO) for end-to-end latency in each data packet, specifying
a desired [min..max] latency range. The network would then,
without any form of upfront resource reservation, attempt to
meet those demands against competing demands from other
packets by matching QoS actions against an implied latency
budget. (g)LBF is part of a larger effort to examine how better
network packet header information can support better network
services. This is also called NewlIP.

The resulting forwarding algorithm tracks the actual latency
of a packet hop-by-hop, predicting the remaining path latency
through controller or routing protocols, and ultimately calcu-
lating on each hop a local queuing budget for the packet based
on SLO, latency incurred, and remaining path information.
The packet is then prioritized through the use of intelligent
queuing, such that packets that have already been delayed on
prior hops would be subjected to less queuing delay on this
hop, all other requirements being equal. This approach opens
up a range of new deployment options, such as hiding latency
differences across different paths in a wide area network by
forcing packets to be delayed on every hop by the minimum
required latency. Integration of LBF with congestion control
mechanisms from TCP and other transport layer protocols is
future research work.

Because of the flexibility and complexity of the forwarding
algorithms of LBF, there has so far been no calculus for
guaranteeing latency for traffic of guaranteed bandwidth in
conjunction with LBF forwarding. Upon examination of the
UBS calculus and comparing the likely UBS forwarding plane
implementations with the ones proposed for LBF, it became
clear that a variation of LBF as presented in this paper can
close this gap. This is the origin of the work presented in this

paper.

III. PROBLEM ANALYSIS

Existing bounded latency mechanism have issues in the
face of constraints such as those of network equipment de-
sign, network deployment/operations and applications. Some
of these issues resulted in the design and implementation
of [15] and are described there. A more thorough problem
description was contributed by the authors via [8]. gLBF builds
on the experience with these prior mechanisms, combining
their benefits and eliminating their remaining problems.

This section summarizes these problems and contributes the

analysis for industrial control loop timing behavior to it.

Per-hop, per-flow state: GS and UBS require (inter-
leaved) regulator (“shaper”) state for every flow on every hop
where flows merge, which in typical topologies is every hop.
While such state is common in e.g. lower speed (10 Gbps)
in-building switches, it is uncommon and expensive to build
at low-cost and for large number of flows in routers with 100
Gbps speed per interface or higher, which is the standard for
wide area networks. When, as in GS/UBS, it is desired to
not introduce any queuing latency in the absence of compet-
ing traffic, this so called “regulator” state is unavoidable to
compensate for uncontrollable latency on the prior hop that
happens because of traffic from multiple interfaces colliding
on the same outgoing interface.

Per-hop, per-flow state has to be signaled from a resource
reservation system whenever a flow is added/deleted/changed.
This creates highly undesirable churn/stress for intermediate
hop routers for large scale networks with large number of
flows. Network solutions such as ”Segment Routing” (SR-
TE) [6] are today’s standard in wide-area networks specifically
with the architectural goal not to have such per-flow, per-hop
state and the need to signal it.

Packet scheduling is the biggest cost factor for hardware.
GS requires scheduling across all flows (per-flow shaper). UBS
requires scheduling only across O(#interfaces * #priorities)
interleaved regulators. This makes UBS scheduling hardware
less expensive than GS for switches with small #interfaces
such as in industrial Ethernet switches where commonly
#interfaces < 24. For aggregation routers in wide area net-
works, #interface can be multiple hundreds, so the hardware
improvement of UBS over GS is about a factor of 10 smaller.

Tightly bounded jitter: Path latency roughly is composed
from queuing latency and non-queuing latency, such as the
propagation latency of links (speed of light) and other, mostly
fixed non-queuing propagation latencies in forwarders. The
difference between the maximum and minimum latency is
called jitter. Here we consider queuing jitter. In GS and
UBS, queuing latency is zero in the absence of competing
traffic. In the presence of the maximum permissible amount
of competing traffic, queuing jitter is at maximum, resulting in
the guaranteed (maximum) bounded latency. This means that
queuing jitter in GS and UBS is maximum of any bounded
latency solutions. In (T)CQF mechanisms, queuing jitter is to
the largest extend independent of the amount of competing
traffic, and queuing jitter is therefore tightly bounded.

Because the amount of competing traffic may change in-
stantaneously, deterministic applications must be able to deal
with packets arriving with maximum latency, even if all prior
packets arrived with minimum latency. Many important type of
applications can effectively only process data synchronously.
In result, any packets arriving earlier than the maximum (guar-
anteed) bounded latency need to be buffered in the application
before it can be processed. This includes many industrial
control loop applications, but also most of media processing.
Shorter latency in the absence of competing traffic is not a
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benefit for these applications but an additional design cost
that may extend (especially in low end IoT receiver devices)
into the hardware design for buffers. Worse yet, the jitter in
GS/UBS depends on the network size, such as number of
router/switch hops and their maximum queue depths. Receiver
devices therefore may need to be designed against specific
assumptions about the type of network they can operate in.
This is not required with (T)CQF mechanisms.

Clock synchronization: Network wide clock synchroniza-
tion via IEEE1588 is required on forwarders using (T)CQF
mechanisms. TSN-ATS was developed after CQF also to
support bounded latency in networks, where such clock syn-
chronization is an undesirable cost factor, both for its hardware
requirements in switches, as well as operationally. Clock
synchronization is common and acceptable in some networks,
but it is uncommon in wide-area networks beyond mobile
fronthaul network.

Not requiring clock synchronization for GS/TSN-ATS does
not mean that it is not required on the hosts. Instead, appli-
cations may require clock synchronization, precisely because
of how GS/TSN-ATS operate. For example, in industrial
applications, Programmable Logic Controllers (PLC) do often
operate on a local clock without external synchronization,
periodically poll sensor data and send instructions to actors.
Such periodic communication is synchronous to the accuracy
of the network jitter. In TCQF, jitter across an arbitrary wide-
area network path is always in the order of the cycle time, for
example 10..100 usec. In GS/ATS across the same network,
jitter can easily be multiple msec, or up to a factor of 100
worse than with tagged CQF.

When network jitter is too large for the application to
operate in this fashion, the application itself may need clock
synchronization of sensors and actors, and without other
sources of clock synchronization, this would bring back clock
synchronization into the network, even if it is not used by
the deterministic mechanism of the network itself but only by
hosts connected to it.

Problem summary: Per-hop, per-flow state of asyn-
chronous deterministic latency solutions such as GS and UBS
is highly undesirable in wide-area networks, solutions such
as TCQF can provide bounded latency without this problem.
TCQF still requires clock synchronization across the network.
Eliminating the need for clock synchronization in the network
such as required for (T)CQF is highly desirable, but for wide
area networks it is not sufficient to do so at the cost of making
jitter become order of magnitude larger and depending on
network size. A deterministic latency mechanism not requiring
per-hop, per-flow state without the need for clock synchroniza-
tion and providing tightly bounded jitter would solve these
problems. This is what gLBF provides.

IV. GLBF
A. gLBF concept

The root problem for deterministic latency guarantees is to
avoid multi-hop packet clogging which happens when packets
from multiple flows pass through the same interface(s). A
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Fig. 2. UBS and gLBF per-hop processing

packet P1 from one flow may end up behind a long interface
queue, but the next packet P2 from the same flow, may arrive
when the queue has already cleared and pass through the
interface without any queuing delay. On the next hop, Pl
and P2 are clogged together, and across 2 or more hops
this ”’(micro)burst-accumulation” makes calculation of latency
guarantees a mathematically exponential problem.

In gLBF, each hop measures the packets queuing latency
through its interface, calculates the difference between this
queuing latency and the guaranteed latency for the hop, signals
this remaining latency value in the packet to the next hop,
and that next hop then delays the packet by this value.
This creates virtually zero-jitter guaranteed latency forwarding
(quasi-synchronous) and operates without per-flow state and
without network wide clock synchronization - both are not
required because of the in-packet field for the remaining per-
hop latency. gLBF also allows to use the same latency calculus
as UBS and provides therefore the same guaranteed latency.

In comparison, GS and UBS do require per-hop, per-flow
state because they do measure each flows burstiness on every
hop and delay a packet when it would otherwise be processed
too early (clogged) with respect to the prior packets of the
same flow. This also introduces worst-case jitter: zero in the
absence of competing traffic, and maximum in the presence
of maximum competing traffic.

B. gLBF Mechanism

Using the names from the gLBF part of Fig. 2, gLBF
operates as follows.

We assume that at X2, all packets comply with their
flows leaky bucket condition because of prior operations. The
maximum delay of a packet through Forwarder 2 FIFO is
MAX_FIFO. This can be calculated from UBS calculus
or simply as the latency of a bit through the full FIFO.
MAX_LINK is the maximum serialization time of the
largest permissible packet through link L1.

At X3, Forwarder 1 measures the packets delay through
its FIFO as FIFO_latency, (<= MAX_FIFO). It

also calculates packet_serialization_delay from the
packet size and link L1 speed. It finally calculates
glbf_delay = MAX_FIFO + MAX_LINK -
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FIFO_latency — packet_serialization_delay.  This
value is signaled as a new packet header field in the packet
to Forwarder 2. Forwarder 2 delays the packet by this value
before passing it to point Y2.

The result of this gLBF mechanism is that all packets will
arrive at Y2 at a time Hopl_Latency = MAX_FIFO +
MAX LINK later than their arrival time at X2. Therefore
they will all comply with their leaky bucket condition at Y2
if they did so at X2. This condition likewise applies to any
further gLBF hops. When a forwarder receives packets from
an untrusted sender and/or without the glbf delay parameter, it
needs to perform per-flow shaping so packets conform to their
leaky bucket conditions before entering the gl. BF network.

With a constant delay for every gLBF hop, all packets are
forwarded with their maximum bounded latency as calculated
by e.g. UBS calculus. Unlike UBS, gLBF will also ensure
that packets are delivered with very tightly bounded jitter,
which is determined solely by the latency through the last
hop Forwarders FIFO, whereas the jitter incurred on any
other hop across the gLBF network is compensated for by
the gLBF delay operations. If the actual receiver application
also understands gLBF, it can also implement the gLBF delay
stage and effectively process packets with zero path jitter after
that stage.

C. ASIC based gLBF

Sequential delay and FIFO stages will incur performance
issues or additional delay in real-world ASIC implementations.
The reason for this is that in the worst case, all packets may
need to be passed at exactly the same time across X2, for
example because each packet came from a different original
sender and was sent at the same time. Both stages can be
merged into a single Push-In-First-Out (PIFO) queue, in which
the rank of each packet is its desired time of release from the
delay stage (e.g. Y2 for Forwarder 2). This is depicted in
Figure 3.

When the packet arrives at time 7'1 at Forwarder 2, Y1, it
calculates rank = T'1 + glbf_delay and enqueues the packet
into the PIFO. When the packet is dequeued at Y3, time 7°3, it
calculates glbf_delay = MAX_FIFO + MAX_LINK —
(T3 — rank) — packet_serialization_delay. (T3 — rank) is
the time that the packet had to wait longer in the PIFO than its
desired gL BF'_delay, aka: the equivalent of F'I FO_latency.

D. Multi-priority gLBF

gLBF can be expanded to support multiple priorities and
therefore latencies in the same fashion as UBS does by using
a separate PIFO for each priority and dequeueing packets

from the highest priority PIFO whose head of queue packet
is ready, e.g. (rank < current_time). Each PIFOs has
its own MAX_FIFO parameter and may have a different
MAX_LINK parameter for purposes of gL.LBF calculations.

For per-flow stateless operations with multiple priorities,
each gL.BF hop needs to learn the packets priority from a
packet header. This can be a single priority parameter for all
hops, or a sequence of priority values, one per-hop, to allow
different priorities across different hops, as UBS does as well.

In Segment Routing for IPv6 (SRv6) network technology, a
sequence of (128 bit) IPv6 addresses is used to steer packets
through the network. Therefore a similar type of header,
requiring for example 4 bit per hop for up to 16 priorities
per hop, would be a relatively insignificant impact to overall
packet header size.

E. FIFO based gLBF

100 Gbps or faster PIFO are subject of research for high-
speed ASIC/FPGA, but not available in shipping products. We
describe how to utilize single stage FIFO, using the design and
calculus experience from UBS single stage FIFO queuing.

In UBS, every (IIF,P) combination of Incoming InterFace
(ITIF) and Priority (P) has its own interleaved regulator (IR),
which is a FIFO where packets are dequeued using per-flow
(regulator) state on the head of queue packet. Only packets
for the same (IIF,P) can share the same IR because only their
arrival order is also their departure order. Likewise, in gLBEF,
each PIFO for a particular priority P can be replaced by a set
of (IIF,P) FIFO combined with the logic to dequeue packets
based on the earliest rank of the head of those FIFOs.

(IIF,P) FIFOs cannot support different priorities for a packet
on different hops, because the FIFO into which a packet needs
to get enqueued is the priority of the packet on the receive-side
hop of the forwarder (up to point 2), but the dequeuing of the
packet is based on the packets priority of the send-side hop of
the forwarder (up to 3). Only when those two priorities of a
packet are the same can it stay in the same single-stage FIFO,
or else dequeue order is not the same as enqueue order. A
single packet header priority parameter can support this model.
Single priority deployments require no priority header field at
all and just a FIFO per IIF to avoid PIFO implementation.

This per-path priority limitation can be resolved by a com-
bination of (IIF,Input-Prio,Output-Prio) FIFOs and according
dequeuing logic, but this would result in a logic more complex
than UBS, and is therefore just one out of likely multiple
options for implementing full PIFO queuing logic in longer-
term hardware designs.

V. VALIDATION

To validate gLBF, we developed a simple, purpose-built
time discrete simulation tool in Perl [21] to understand and
diagnose gLBF behavior with as little as possible software
code to understand and. The goal was to understand the gLBF
algorithm in operation, find cases where burst accumulation
across a single hop cause latency to exceed the calculated
bounds (in the absence of gl.LBF) and then to add gLLBF and

582



2021 3rd International Workshop on High-Precision, Predictable, and Low-Latency Networking

Router 1 . X3,Y2,Y3: Measure per-flow/per-packet
Flowl 4%y’ leaky bucket, buffer and latencies

Flow2 FIFO ..
Flow3 ® Link L1 (gLBF) Router 4 ™,
only for gLBF test

Fowd Router 2 30 Mbps -~ =
a4 NN
Flows _ (777 - Flow3, Flows, Flow?
Flows @[ _rro | Link L2 @ 8LF delay (piF0) (@ FIF0 |@ T
Flow? Router 3 30 Mbps 30 Mbps
Flows
rows —@[ fro @t

30 Mbps

Do not care: Flow1, Flow2, Flow4, Flows,
Flows, Flow3 sent to other interfaces

Fig. 4. Validation test setup

validate that it would not only fix that issue, but also achieve
the synchronous latency across that single hop.

This tool operates at simulated 1 nsec times to allow
bit-accurate measurements for link speeds up to 1 Gbps.
For reasons of space in this paper, we can only summarize
validation of the most conclusive test scenario we tested. In a
first set of test runs, we validated the existence of the FIFO
(micro)burst-accumulation problem (to verify the validation
tool and problem statement). In a second set of test runs, we
validate and quantify that gl BF solves these problems through
the introduction of the gLLBF latency step. We use example
parameters that allow for virtual time test runs of 1 second
duration.

Router 1, Router 2, and Router 3 are set up to each
receive three rate-controlled traffic flows, each with a bitrate of
10Mbps, burst sizes of 3 packets, and slightly different packet
sizes per flow: Router 1 = (900, 1000, 1100) bytes, Router 2
= (930, 1030, 113) bytes and Router 3 = (1370, 1170, 970)
bytes. These values are chosen to maximize the problem of
burst accumulation in the absence of gLBF. All nine flows
arrive on Router 4, but only Flow 3 (from Router 1), Flow 6
(from Router 2) and Flow 7 (from Router 3) are forwarded
across Router 4 FIFO to L4. The remaining flows are assumed
to be routed by Router 4 to other interfaces that we do not care
about. We use three routers (1, 2, 3) to feed Router 4 because
if the output interface from Router 4 was fed by just a single
interface (of the same speed), there would be no further burst
accumulation on Router 4 in the absence of gL.BF.

Upon origination (into Router 1,2,3), all three flows stay
within their leaky bucket constraint:

w(i,d) <b(i) +dx*r(i) 4)

where b(4) is the burst size of flow i, r(7) is the rate of flow
1 (10 Mbps), d is a period of time, and w(%, d) is the maximum
permitted total amount of data of flow ¢ across period d.

The validation tool measures compliance of a flows packets
with the flows leaky bucket condition of [UBS] applied to the
timestamp every packet of the flow is observed with:

// Initialization
for(i:I) { state[i].timestamp := 0;
state[i].level := b(i); }

receive(p, 1, t) { // packet p of flow i1 arrives at t
state[i] .timestamp = dt = t - state[i].timestamp;
state[i].level += dt * statel[i].rate;
if (state[i].level > if(state[i].bsize)

state[i].level = state[i].bsize;
state[i].level -= 8 % p.length;
if (state[i] .level < 0)
state[i].levelerrors++;

When a flow exceeds its leaky bucket condition, level
becomes negative. Packets of the flow during this period use
more buffer space than allocated in a real system and they
would be discarded.

In our first set of validation runs without gL BF, we observe
level errors for the flows arriving from Router 2/3, and note
that their latency’s through Router 2/3 FIFO stay within the
bounds of their calculated buffer / burst size limits. However,
this changes when flows 3,6,7 go through the Router 4 FIFO.
The maximum calculated buffer size for the admitted flows for
the Router4 FIFO is 3 * (1100 + 1130 + 970) = 9600 bytes
and the maximum guaranteed latency through Router4 FIFO
is therefore 2.56 msec (9600 bytes at 30 Mbps). Because of
burst accumulation, the validation shows a maximum buffer
utilization of 11540 bytes or 1940 bytes above the target
guaranteed maximum and therefore a maximum latency of
2.82 msec. This is the validation proof for the problem to be
solved by deterministic forwarding solutions.

Our second set of validation runs observes how the same
setup behaves with gL.BF activated in Routers 1/2/3/4. For
Routers 1/2/3 this means we do activate the calculation of
glbf_delay at X3 and for Router 4 we active the gLBF delay
component reacting on it, so ultimately, we do want to see
that the Hop 1 buffer utilization and latency stays within the
target bounds.

In result, in Y1, we observe FIFO hop latencies of 315445
nsec to 2808003 nsec and 1224 packets with leaky bucket
violations, lowest level of -15232 bits. After gLBF delay on
Router 4, observing packets at Y2, no packet has a leaky
bucket condition violation, and the FIFO gLBF latencies are
2693334 nsec for all packets from Router 1, 2693334 nsec for
all packets from Router 2 and 3101334 nsec for all packets
from Router 3. The constant latency across all packets from
a particular router proves the zero jitter that gLBF achieves,
compensating for the jitter that was seen in the test runs before
gLBF was enabled. The absolute delays are different across
the Router 1, 2, 3 hops because the FIFO buffer size in Routers
1, 2, 3 are different due to the flows’ divergent packet sizes.
The latencies measured match the latencies expected by the
UBS calculus.

Finally, we observe the FIFO latency on Router 4 after
gLBF delay to show that the maximum FIFO buffer utilization
is again within the limits of the worst-case buffer utilization
under worst-case leaky-bucket conformant flows, as opposed
to the earlier observation of overrunning these buffers with just
FIFO forwarding. The maximum buffer utilization observed is
8630 bytes (out of the theoretical maximum of 9600 bytes for
the three flows burst sizes), and a maximum FIFO latency
of 2.25 msec, so all packets stay within the theoretical limits
for the buffer size. In comparison, with gLBF delay removed,
the validation shows 6 packets exceed the buffer limit with
a maximum buffer utilization of 11540 bytes (20% beyond
9600 bytes) and a maximum FIFO latency of 2.82 msec (10%
beyond the theoretical limit of 2.56 msec).
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Note that our tests do not account for the speed of light
propagation latency of Link 1, because it does not impact the
gL.BF algorithm. If there is significant propagation latency, as
there would be in any target wide area network deployment,
then the physically observed latencies between the X and Y
measurement points would simply be larger by that propaga-
tion latency than the latencies validated here.

Even though only anecdotal through simple worst-case flow
collision experiments, the validation shows what the authors
think to be theoretically easy to grasp:

gL BF delay of packets reconstitutes packet flows to their
prior-hop inter-packet spacing. If on that prior hop, packets of
flows stay within their leaky bucket condition, then they too
will do so after gLBF delay on the following hop. Therefore
the non-exponential calculation of per-hop FIFO latency as
done in rate-controlled service disciplines such as UBS can
be reused in gLBF, but without the systematic challenges
introduced by per-flow shaper/interleaved regulators or cyclic
queuing as in prior mechanisms.

gL BF achieves per-hop zero-jitter forwarding relative to the
nodes local clock, whereas (T)CQF would introduce jitter in
the order of a cycle (e.g. 100usec), and UBS would introduce
per-hop jitter in the order of the per-hop bounded latency.

VI. CONCLUSIONS AND OUTLOOK

gL BF is a new mechanism that enables predictable, virtually
synchronous per-hop-latency, enabling high-precision commu-
nication services that provide end-to-end latency guarantees
as required by many time-sensitive networking applications.
gLBF combines the time-synchronization free multi-priority
bounded benefits of UBS with the low-jitter and per-flow-
stateless operation of (T)CQF, allowing low-cost implemen-
tation and low operational complexity.

The principle of gLBF can be used to compensate for the
variability of not only the queuing part of forwarding and
the (packet size dependent) link serialization latency, but for
any variable latency that can be predicted or measured. For
example, in complex routers latency through ingress line card
or fabric may be variable and/or line cards may not have a
common time basis and appropriate adoption of gLBF across
these components can be used to create virtually synchronous
latency across such complex routers.

The exact behavior of gLLBF under differences in clock
speed across consecutive hops deserves further examination,
similar to the errors introduced into clock differences in pre-
existing asynchronous systems (that are equally not discussed
by initial publications of those mechanisms). The authors
believe that differences in clock speed below some N percent
across hops will require worst case the need to overestimate
per-hop latency and buffer utilization by N percent and to limit
link utilization to (100-N)%, but experimental or theoretical
validation of this is subject to future work.
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