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Abstract—In addition to providing network operators with
benefits in terms of flexibility and cost efficiency, softwarization
paradigms like SDN and NFV are key enablers for the concept of
Service Function Chaining (SFC). The corresponding networks
need to support a wide range of services and applications
with highly heterogeneous requirements that change dynamically
during the network’s lifetime. Hence, efficient management and
operation of such networks requires a high degree of automation
that is paired with fast and proactive decisions in order to cope
with these phenomena.

In particular, determining the optimal number of VNF in-
stances that is required for accommodating current and up-
coming demands is a crucial task that also affects subsequent
management decisions. To enable fast and proactive decisions in
this context, we propose a machine learning-based approach that
uses recent monitoring data to predict whether to adapt the cur-
rent number of VNF instances of a given type. Furthermore, we
present a methodology for generating labeled training data that
reflects temporal dynamics and heterogeneous demands of real
world networks. We demonstrate the feasibility of the approach
using two different network topologies that represent WAN and
mobile edge computing use cases, respectively. Additionally, we
investigate how well the models generalize among networks and
provide guidelines regarding the prediction horizon, i.e., how far
ahead predictions can be performed in a reliable manner.

Index Terms—NFV, SFC, Deployment, Placement, Machine
Learning, Management, Orchestration.

I. INTRODUCTION

Network softwarization paradigms such as SDN and NFV

promise operators numerous improvements regarding the scal-

ability, flexibility, as well as resource and therefore cost

efficiency of their networks. In the case of SDN-enabled

networks, the logically centralized control and the separation

of control and data planes pave the way for programmable

networks [1]. With NFV [2], dedicated hardware middleboxes

such as firewalls and load balancers are replaced with software

instances that run on commodity servers, enabling adaptability

to fluctuations in terms of network- as well as service-level

requirements. Finally, specific services can be realized by

routing packets through sequences of the resulting Virtualized

Network Functions (VNFs) in the context of Service Func-

tion Chaining (SFC). However, successful management and

operation of current and future networks and services requires

addressing several research challenges in order to maximize

the aforementioned benefits.

In particular, the complexity, heterogeneity, and temporal

dynamics of use cases in the networking domain call for a

high degree of automation as well as fast decision making.

These aspects are crucial to achieve self-driving networks [3],

[4] that can autonomously adapt to dynamic conditions. In the

context of NFV and SFC, the following tasks are particularly

relevant:

• Making proactive VNF deployment decisions, i.e., decid-

ing whether to increase, decrease, or keep the current

number of VNF instances in order to meet performance

requirements of current and upcoming demands.

• Optimizing VNF placement and chaining, i.e., determin-

ing VNF locations and routing SFC demands through

their requested set of VNFs while minimizing costs and

maximizing QoS-/QoE-levels.

Since the decision whether to instantiate a new VNF in-

stance is the foundation for the subsequent placement and

chaining processes, it can have a significant performance im-

pact on the entire network. Hence, in this manuscript, we focus

on predicting VNF deployment actions. In order to cope with

the large amount of monitoring data that is collected under

heterogeneous conditions, originates from various sources,

and is stored at different levels of granularity, we design a

prediction mechanism that is based on machine learning (ML).

Alongside our prediction mechanism, we present a method-

ology for generating realistic data traces under different net-

work conditions and training models before deploying them

in a production network. In addition to evaluations regarding

the accuracy of our prediction mechanism under dynamic

conditions using real world topologies that represent a WAN

and a mobile edge computing scenario, we provide several

guidelines for network operators. First, we assess the impor-

tance of features that are used by the prediction mechanism

in order to identify relevant metrics that should be collected

by a monitoring system. Additionally, we conduct a param-

eter study regarding the prediction horizon which provides

quantitative insights into the trade-offs regarding accuracy
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when making long-term predictions. Finally, we shed light

into the generalizability of the models by training them on

one topology and testing their performance on another.

This article extends our previous work [5] in several direc-

tions. Firstly, we consider a catalog of realistic SFCs rather

than using random permutations of VNFs. Secondly, we im-

prove the prediction performance of our models by integrating

additional features, e.g., those related to the arrival process

of individual SFCs. Thirdly, evaluations regarding the impact

of the prediction horizon, the performance in the context

of another network topology, and investigations w.r.t. model

generalizability provide deeper insights into the feasibility and

applicability of our proposed methodology.

The remainder of this manuscript is structured as follows.

In Section II, we provide an overview of related work in the

areas of VNF deployment, placement, and chaining, as well

as relevant studies that focus on applying machine learning

techniques to network-related problems. We introduce the

problem statement and outline the main steps of our proposed

methodology in Section III. After presenting evaluation results

in Section IV, we conclude the paper and discuss directions

for future work in Section V.

II. RELATED WORK

In this section, we cover three main research areas that

are relevant to our study. On the one hand, these include the

application of machine learning to network-related problems in

general and to NFV management and orchestration problems

in particular. On the other hand, approaches for solving VNF

placement and chaining problems are discussed.

A. Machine Learning in the Networking Context

The continuously increasing heterogeneity of use cases in

current and future communication networks as well as the

heterogeneity of deployment options for NFV-based solu-

tions [6] leads to a large parameter space that can not be

efficiently optimized with traditional methods. Furthermore,

the diversity of emerging applications calls for a high degree

of flexibility, adaptability, and automation [7]. Due to the

successful application of machine learning in a wide range of

domains as well as the widespread availability of ready-to-use

frameworks and libraries, numerous machine learning-based

approaches have been proposed to accelerate and automate

decision making in the networking domain [8], [9]. The

problems addressed by these approaches range from general

networking problems such as heavy hitter detection [10] to

specific problems that arise in softwarized networks [11], [12].

However, several of these works point out that results heavily

depend on the data set and parameters that are used, and

therefore are hard to reproduce and verify. Hence, in addition

to proposing a methodology that covers the entire process from

data set generation to model training and evaluation, we also

publish the source code in order to foster reproducibility and

allow extensions.

B. Machine Learning in Virtualized Networks

In the particular context of virtualized networks, machine

learning approaches have been used for admission control in

the scenario of Virtual Network Embedding (VNE) [13] as

well as resource assignment [14]. In contrast to the VNE

problem, we consider the use case of NFV and SFC where a

single VNF instance can be shared among multiple requests.

Furthermore, we predict what actions should be taken to

accommodate future demands rather than making decisions

for demands as they arrive. An approach that shares more

similarity with ours has been proposed in [15], where re-

source requirements of VNFs in a virtualized IP Multimedia

Subsystem (vIMS) are predicted and used as an input to

a threshold-based resource allocation mechanism. However,

the authors consider only a limited degree of heterogeneity:

on the one hand, temporal dynamics are represented by two

alternating arrival rates whereas we employ a continuous,

time-varying arrival rate. On the other hand, only two types

of requests (audio / video calls) that use a similar set of

vIMS VNFs are used, as opposed to our scenarios which

feature different chains of different lengths. Machine learning

techniques have also been applied to various demand, resource,

and performance prediction tasks in NFV-based networks,

e.g., CPU usage prediction of VNFs [16]–[18] as well as

prediction of service metrics in cloud environments [19]. In

order to improve the accuracy of our proposed decision making

approach, the output of such mechanisms could be integrated

in the form of additional features.

C. VNF Placement and Chaining

Numerous works deal with the optimization problem of

placing and chaining VNFs [20]. Most approaches are based

either on Integer Linear Programming (ILP) and are capable

of returning optimal solutions but are feasible only for small

networks, or on heuristics that do not have optimality guaran-

tees but produce results significantly faster [21], [22]. A recent

study also shows the applicability of reinforcement learning

techniques to the VNF placement problem [23]. However,

while the proposed optimization schemes can operate offline

or online, the corresponding works do not cover prediction or

proactive decisions that are crucial for fast admission of newly

arriving requests. In order to address this aspect, we use ILP-

based solutions to generate ground-truth labels for temporally

dynamic request traces and use them to train supervised

learners that can predict VNF deployment decisions.

III. PROBLEM STATEMENT AND PROPOSED

METHODOLOGY

In this section, we first introduce the problem of predict-

ing VNF deployment actions and then outline our proposed

methodology for obtaining a machine learning-based model

that is capable of making such predictions.

The general setting of our prediction problem is similar to

that of the VNF placement problem [21], [22]. In particular,

we consider a physical network that is represented as an

undirected graph whose nodes have resources such as CPU
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Fig. 1: Overview of the prediction process.

and memory, and whose links have bandwidth capacities. Fur-

thermore, a VNF catalog defines the available types of VNFs

that can be deployed alongside their resource consumption

and bandwidth capacity per instance. SFC requests arrive in

the network and are characterized by their time of arrival,

duration, bandwidth demands, and the requested SFC, i.e., a

sequence of VNFs that need to be traversed by each packet of

the corresponding flow. Finally, we assume that a monitoring

system collects various network statistics such as the number

of active requests in the network, the arrival rate of SFC

requests, the required bandwidth per VNF type, as well as

the number of active instances per VNF type.

Given a timestamp tcur, the VNF type under consideration,

and a prediction horizon p, the task of predicting a deployment

action consists of deciding whether the current number of

active VNF instances of that type should be increased (+1),

decreased (−1), or kept the same (0) in order to accommodate

the set of SFC requests that will be active at time tcur+p. To

this end, a prediction algorithm gets access to the most recent

a seconds of monitoring data, i.e., a monitoring window of

[tcur − a, tcur]. A graphical representation of the prediction

process as well as the most relevant variables is provided in

Figure 1. In the following, we present the steps for deriving a

prediction model for this family of problems.

A. Proposed Methodology

We interpret the outlined prediction problem as a classifi-

cation problem where the task consists of assigning a class

in {+1,−1, 0} to a vector of features that are extracted from

the monitoring window. In particular, we employ supervised

learning - a common method for addressing such classification

problems. In this context, an algorithm learns patterns in

the relationship between features and class membership from

labeled examples.

Hence, one important step consists of generating pairs of

feature vectors and class labels that correspond to realistic

situations in dynamic NFV / SFC environments. To generate

such problem instances, we utilize realistic network topolo-

gies, a time-varying SFC request arrival process that is based

on real world traffic matrices, five types of VNFs that are

combined into SFCs of different lengths, as well as varying

flow durations and bandwidth requirements.

In order to obtain labels regarding the optimal number of

VNF instances per type, we leverage an ILP-based algorithm

from literature that is invoked at each arrival event. Finally,

different machine learning algorithms are trained and evalu-

ated w.r.t. their prediction performance. In the following, we

provide a detailed description of each step. An implementation

of the entire procedure is available on GitHub1.

1) General Configuration: In the first step, general aspects

of the network environment are configured. These include the

network topology graph, the traffic matrix, the VNF catalog,

as well as parameters that control the overall network load and

the composition of VNF chains.

For the results that are presented in this work, we use

two network topologies that represent a WAN as well as a

mobile edge computing (MEC) scenario, respectively. These

two scenarios represent two common SFC use cases: the WAN

case covers the perspective of a service provider who can

instantiate VNFs at different locations of a regional or global

cloud provider. In contrast, the MEC scenario is representative

of a telco operator who owns the entire infrastructure and can

plan at a finer granularity.

In the case of the WAN scenario, we utilize the Internet22

network with 12 nodes and 15 links. In addition to the

topology data, traffic matrices that contain the amount of

traffic between each pair of nodes for consecutive 5-minute

intervals are available. By aggregating and normalizing the

total amount of traffic in the network for each interval, we

extract realistic temporal dynamics that capture inter- as well

as intra-day phenomena and integrate them into the SFC

request arrival process. An exemplary development of the

resulting normalized traffic volume over the duration of one

week is displayed in Figure 2. As mentioned above, the

traffic volume exhibits distinct temporal characteristics such

as peaks and valleys during the five work days as well as a

lower volume combined with less regular patterns during the

weekend. The mean normalized traffic volume over the entire

week equals 0.73.
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Fig. 2: Traffic matrix data from the Internet2 network is used

for integrating temporal dynamics into our SFC request traces.

The topology that is used for the MEC scenario consists of

16 nodes and 15 links and is depicted in Figure 3. It contains

four central offices (COs) whose servers are connected to

a hierarchical structure of edge, core, and center routers.

Additionally, a cloud data center (DC) can be reached via

the center router to access additional computational resources

in case the capacity at the COs runs low. However, accessing

these resources poses a trade-off in terms of latency since

the whole network needs to be traversed in order to reach the

cloud DC. In order to reduce the run time of the ILP solver, we

1https://github.com/dpnm-ni/2019-ni-deployment-prediction
2http://www.cs.utexas.edu/%7Eyzhang/research/AbileneTM/



abstract details regarding the internal interconnection structure

of servers within the cloud DC and CO servers, and represent

them by individual leaf nodes, respectively.
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Fig. 3: MEC topology.

For the VNF catalog, we use data that is published in [22]

and contains the VNFs firewall (FW), proxy (P), network ad-

dress translation (NAT), and intrusion detection system (IDS)

alongside data regarding their CPU resource consumption and

resulting bandwidth capacity. Additionally, the VNF catalog

contains a WAN optimizer (WANO) whose characteristics are

extracted from the data sheet of a VNF provider3.

Furthermore, by defining a peak SFC request arrival rate as

well as an average flow duration, it is possible to control the

load in terms of the number of simultaneously active requests

in the network. Finally, requested VNF chains can be config-

ured w.r.t. the occurrence probability of certain chain lengths

as well as their composition, e.g., whether chains should be

constructed by randomly permuting the corresponding number

of items from the VNF catalog or by using predefined chains

from an SFC catalog. In the evaluations that are presented

in this manuscript, we use the SFC catalog that is shown

in Table I. Requests of each SFC follow a separate arrival

process whose peak rate is determined by the desired fraction

of the total traffic volume for the corresponding service chain.

We use a broad mix of chain lengths, traffic fractions, and

occurrence probabilities of individual VNFs for two reasons.

On the one hand, this reflects the heterogeneity of services

and applications in modern communication networks. On the

other hand, such a mix allows us to assess the effects of the

aforementioned characteristics on the prediction performance.

TABLE I: SFC catalog.

SFC Fraction of total traffic

(1) NAT-FW-IDS 60 %

(2) NAT-WANO 20 %

(3) NAT-P 10 %

(4) NAT-FW-IDS-WANO 10 %

2) SFC Request Generation: While the abovementioned

peak request arrival rate dictates the average amount of arrivals

during the network’s lifetime, the variation of these arrivals

is affected by two factors. On the one hand, we use the

3https://www.riverbed.com/document/datasheets/
steelhead-family-specsheet19.pdf, CCX PERF-TIER4 (500 Mbps, 16 vCPUs).

normalized traffic volume to modulate the arrival process,

i.e., we set the time-varying arrival rate to be the product

of the peak request rate and the normalized traffic volume

at a given time. In particular, we first generate SFC request

arrivals at the peak rate for the entire trace duration and then

remove requests according to a probability that is derived from

the normalized traffic volume at the corresponding time. For

example, we remove a request whose arrival time equals tarr

with probability (1 − v(tarr)), where v(tarr) refers to the

normalized traffic volume at time tarr. On the other hand, the

distribution that is employed for generating request interarrival

times has an impact on the variability of the arrival process.

Furthermore, the overall variability is also affected by the

distributions regarding the duration and requested bandwidth.

After this step, we obtain an SFC request trace that contains

the following information for each SFC request: arrival time,

duration, source and destination nodes, requested bandwidth,

as well as the requested VNF sequence.

3) Placement Calculation: Given the information in the

SFC request trace, we use the ILP-based solver for the

placement problem that is proposed in [22] to calculate the

optimal number and placement of VNF instances after each

arrival. To this end, we determine the set of active requests at

the corresponding time and transform them into an instance of

the placement problem. Afterwards, we extract the information

that is relevant for our prediction task, i.e., the number of

instances per VNF type. The placement algorithm optimizes

different OPEX aspects such as deployment, energy, and

forwarding costs as well as resource fragmentation.

4) Training Data Generation: By combining the SFC re-

quest trace with the solver results, we can generate the labeled

training data for our supervised learning algorithms. Given the

width of the monitoring window a and the prediction horizon

p, we generate one monitoring window for each arrival.

First, various features are extracted from the monitoring

window. On the one hand, these include statistics that are

independent of the VNF type like the number of active

requests as well as the request arrival and departure rate in

the monitoring window. On the other hand, we also track

features that are specific to the VNF type under consideration,

e.g., the total requested bandwidth for that type as well as

its bandwidth utilization. The latter is derived by normalizing

the requested bandwidth with the total capacity of instantiated

VNFs. Furthermore, we extract the maximum amount of

available bandwidth for each VNF type among all nodes

in order to assess the fragmentation of remaining capacity.

Finally, temporal features such as the time since the last arrival

and departure per VNF type and SFC are captured as well.

After feature extraction, the deployment action for each VNF

type is determined by computing the sign of the difference

between the number of VNF instances at time tarr + p and

tarr.

5) Model Training & Evaluation: For model training, we

leverage the H2O [24] machine learning framework that offers

several state-of-the-art supervised learning algorithms such as

XGBoost, Gradient Boosting Machine (GBM), Deep Random



Forest (DRF), Extremely Randomized Trees (XRT), and Neu-

ral Networks (NN). Furthermore, it is possible to extract key

performance indicators (KPIs) such as the accuracy and mean

per class error as well as information on feature importance.

For example, the latter is represented by the frequency at

which a certain feature is used for splitting a decision tree and

to which extent this split reduces the resulting classification

error. If not stated otherwise, we use a ratio of 75 % / 25 %

to divide our data set into training and testing data, and report

KPIs w.r.t. the latter when evaluating model performance.

We deliberately chose this straightforward approach towards

supervised learning in order to achieve the following goals:

• Model explainability and assessment of feature impor-

tance to derive operational guidelines.

• Investigation of the general applicability of the proposed

methodology to the problem.

• Avoidance of early overspecialization to allow model gen-

eralizability to similar problems in softwarized networks.

Parameter Values: In order to investigate the feasibility

of the models for predicting VNF deployment decisions, we

evaluate their prediction performance in the WAN and MEC

scenarios using the respective network topologies. Additional

parameters that are used in our experiments are summarized

in Table II.

TABLE II: Parameters that are used in the evaluation.

Parameter Value(s)

Peak SFC request arrival rate 1 per 30 sec

Average flow duration 1,000 sec

Distribution and coeff. of variation
of interarrival times and flow durations

normal (0.25)

Distribution of requested bandwidth uniform(70 Mbps . . . 120 Mbps)

Function chains and probabilities cf. Table I

Source / destination nodes
Internet2: random pairs

MEC: random pairs of COs

Width of monitoring window a 600 sec

Prediction horizon p 60 sec

We use a combination of peak arrival rate and average

flow duration that leads to enough fluctuation in terms of the

number of VNF instances without overburdening the network.

While the distributions of interarrival times and flow durations

can affect prediction performance, our evaluations have shown

that this impact is limited. Hence, we only present results that

were obtained using normally distributed SFC request arrivals.

By considering variation in terms of the requested bandwidth,

effects regarding the fragmentation of allocated resources are

integrated into the evaluation as well. Finally, since VNF

chains are formed between random pairs of nodes (Internet2)

or central offices (MEC) and have varying lengths, the ability

of the prediction model to cope with such stochastic aspects

can be investigated. We use a monitoring window of 10 min

and a prediction horizon that covers an average of two arrivals

at the peak rate.

For each of the two topologies that are used to represent

the WAN and MEC scenarios, we generate SFC request traces

from which we extract 20,000 labeled feature vectors that are

used for model training. In order to account for the fact that

the per-class occurrence probabilities are not always balanced

and therefore in order to prevent classifications that favor the

majority class, we additionally set per-observation weights so

that the total weight per class in the data set is equal.

IV. PERFORMANCE EVALUATION

In this section, we present evaluation results regarding our

two scenarios. In order to identify a suitable machine learning

algorithm for our prediction task, we first train several learners

on our data. Afterwards, we fine-tune hyper parameters of the

most promising algorithm and report detailed prediction results

of the final model. These include the confusion matrix as well

as information regarding feature importance. In the second

part, we perform a parameter study w.r.t. the prediction horizon

in order to quantify the trade-offs between the capability of

making long-term predictions and their accuracy. Finally, we

analyze how well the models generalize by evaluating the

MEC prediction performance of a model that has been trained

in the WAN scenario and vice versa.

All evaluations have been performed on a server that has a

total of 64 GB of RAM and is equipped with an Intel Xeon

Silver 4114 CPU with 10 cores and two NVIDIA Quadro

P5000 GPUs. For the detailed analysis regarding model choice

and hyper parameters that is presented in Section IV-A, we

exemplarily report results regarding the firewall VNF and the

Internet2 topology using a prediction horizon of 60 seconds.

Subsequent evaluations show aggregated results and cover all

combinations of VNFs and topologies.

A. Model Choice and Hyper Parameter Tuning

In order to assess the feasibility of different algorithms

for our prediction task, we use the AutoML4 function of

the H2O framework. This function allows training multiple

models from each of the major families of machine learning

algorithms that are compatible with a given data set. In our

case, these are XGBoost, GBM, DRF, XRT, and NN. Using a

total training time of 10 hours, the model that performed best

w.r.t. the mean per class accuracy was based on XGBoost

and achieved a mean per class accuracy of 75.7%. While

some models such as GBM and XRT achieved accuracy values

within less than 1% of this value, we decided to choose

XGBoost since this algorithm also had less fluctuations w.r.t.

the accuracy among different configurations.

The XGBoost algorithm has numerous hyper parameters5

that can be tuned in order to control trade-offs regarding over-

and underfitting. Since an exhaustive evaluation of all param-

eter combinations is not feasible due to the large parameter

space, we perform a random grid search. In this context, we

train over 500 models using hyper parameter combinations

from a set of candidates that are summarized in Table III.

While some parameters like the number of trees did not have

a significant impact on the prediction performance, changes to

4http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
5http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/xgboost.html



TABLE III: Tested XGBoost hyper parameters and values.

Parameter Values Chosen Value

Number of trees {80, 100, . . . , 200} 140

Maximum depth {4, 6, 8, 10} 8

Minimum child weight {1, 2, . . . , 10} 6

Learning rate {0.05, 0.1, . . . , 0.4} 0.05

Row / column sample rates {0.6, 0.8, 1} 0.6

L2 regularization (λ) {0.8, 1} 0.8

L1 regularization (α) {0, 0.01} 0

sampling and learning rate as well as the L2 regularization pa-

rameter improved the models’ tendency to overfit the training

data. The final model achieves a mean per class accuracy of

77.8% on the testing data, i.e., an accuracy improvement of

2.1% when compared to the model obtained in the first step.

The chosen hyper parameter values are reported in the table.

1) Confusion Matrix: For a detailed analysis of classifi-

cation performance, we provide the confusion matrix of the

final model in Table IV. For each combination of actual

and predicted class label, it displays the number of items

in the testing set that were classified accordingly. While the

majority of predictions are accurate, a significant number of

misclassifications can be observed at the boundary of the “0”

class, i.e., cases of “+1” and “-1” getting predicted as “0” and

vice versa. This phenomenon can be explained by the fact that

while the classes are encoded in a categorical fashion, they are

actually derived from numerical values, i.e., the difference in

the number of VNF instances. Hence, errors are more likely to

happen between classes that are numerically close. However,

due to the stochastic and time-varying properties of the SFC

request arrival process, errors of the type “+1 misclassified as

-1” - while rarely - can also be observed.

TABLE IV: Confusion matrix for the best-performing predic-

tor of firewall-related actions in the Internet2 topology.

Predicted
Total Recall

+1 0 -1

A
ct

u
a

l +1 832 248 34 1,114 0.75

0 478 1,871 174 2,523 0.74

-1 2 110 776 888 0.87

Total 1,312 2,229 984

Precision 0.63 0.84 0.79

2) Feature Importance: In order to provide network opera-

tors with guidelines regarding the choice of metrics that should

be collected by a monitoring system, we list the features that

are most important for predicting VNF deployment actions

in Table V. These features are involved in the majority of

decision tree splits and help reducing the classification error.

On the one hand, features that are directly related to the VNF

for which actions are predicted dominate this list and are

shown in the top part. These features are mostly related to

the global relationship between the total requested bandwidth

for the particular VNF type and the available capacity that is

provided by instantiated VNFs, e.g., utilization and remaining

capacity. On the other hand, local features such as the mean

available firewall capacity per node help determining the

likelihood of being able to accommodate additional requests

without instantiating more VNFs. Finally, features that are

related to the arrival process and the type-independent load

situation help anticipating and adapting to temporal dynamics.

Although the firewall VNF is part of two SFCs, information

regarding the departure time of SFC1 has a higher importance

due to the fact that it is the chain with the highest relative

traffic volume and therefore arrival rate (cf. Table I).

TABLE V: Feature importance when predicting deployment

actions for the firewall VNF. Features in the upper part are

firewall-specific whereas the ones in the bottom part reflect

global and SFC-level characteristics.

Feature Relative importance

Remaining firewall bandwidth capacity 1.00

Firewall bandwidth utilization 0.74

Mean remaining firewall capacity per node 0.36

Time since last arrival 0.35

Time since last departure (SFC1) 0.26

Mean arrival rate 0.12

3) Performance w.r.t. other VNFs and MEC Scenario:

Having discussed in-depth results for one particular scenario

in the previous subsection, we provide an overview of the

prediction performance that is achieved in the case of the MEC

topology as well as all five VNFs that are part of our study

in this section. On the y-axis, Figure 4 displays the mean per

class accuracy that is achieved when training XGBoost models

for different VNFs that are listed on the x-axis. Differently

colored bars represent the two topologies.
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Fig. 4: Prediction performance w.r.t. different VNFs in the

WAN and MEC scenarios. Prediction horizon p = 60s.

There are two main observations. First, the prediction per-

formance regarding all VNFs is similar for a given topology.

The proxy VNF is the only exception to this phenomenon,

which can be explained by several of its characteristics: the

proxy VNF is part of only one SFC and this SFC amounts to

only 10 % of the total traffic volume. Hence, a lower number of

instantiated proxies is sufficient for serving the corresponding

traffic and the lower arrival rate reduces fluctuation w.r.t. this

number, resulting in a higher degree of predictability. Second,

the accuracy that is achieved by models that are trained to

make predictions in the MEC scenario is consistently lower



than of those for the WAN scenario. This can be explained

by the fact that the MEC scenario has several characteristics

that increase the difficulty of the prediction task. On the one

hand, there is a larger fluctuation in the number of VNF

instances. Since the placement optimizer tends to avoid long

detours for SFC requests, VNFs are placed so that the servers

at the central offices of source and destination nodes host all

required VNFs in a chain. On the other hand, the availability

of the cloud data center (CDC) can lead to a state transition

where VNF instances have to be placed at the CDC due to

the limited capacity of the central offices. During this state

transition, migrations and relocation can occur, which, in turn,

further increase the fluctuation in the network. Nonetheless,

a mean per class accuracy of over 70 % is achieved for

all VNFs. In order to improve the performance further, we

plan to integrate additional topology-, request-, and node-level

features that help identifying the outlined state transitions and

node relationships.

B. Impact of the Prediction Horizon

The models discussed in the previous section were trained

to make predictions with a prediction horizon of p = 60 s.

While this value represents a reasonable balance between

short- and long-term predictions, some use cases might call

for lower values, higher values, or even combined predictions.

For instance, short-term predictions could be used to prevent

imminent performance degradation by placing additional VNF

instances in a greedy fashion while long-term predictions

leave enough time for finding an optimal placement for VNF

instances before the corresponding requests arrive.

Hence, in order to quantify the relationship between the

prediction horizon and the prediction performance, we conduct

the following parameter study. For values in the range from

10 to 100 seconds and increments of 10 seconds, we generate

corresponding data sets for each parameter value and VNF

based on our labeled ground truth from the ILP solver (step 4

of the methodology). In order to obtain statistically significant

results, we train five models for each combination of VNF and

value of p, using a different seed for splitting the data into

training and testing set in each repetition. We report results

regarding the Internet2 topology in this section. However,

qualitatively analogous results have been obtained in the

case of the MEC topology, albeit with an accuracy offset

that is caused by the characteristics we discussed previously.

Furthermore, it is worth noting that since the VNF placement

problem is NP-hard [22], predicting the number of required

VNF instances is hard even when all problem parameters

are known. Hence, even in the context of a short prediction

horizon, a perfect accuracy can not be guaranteed.

Figure 5 contains four plots that correspond to different

VNFs under consideration. Since the IDS and firewall VNFs

occur in the same set of function chains, our prediction models

have similar accuracy levels for these VNFs. Hence, we omit

results regarding the IDS VNF in the following. For values

of the prediction horizon on the x-axis, the y-axis denotes the

mean per class accuracy that is achieved by the corresponding

models and error bars represent 95 % confidence intervals

that are obtained from multiple repetitions. Analogously to

previous observations, the models achieve a similar prediction

performance w.r.t. the different VNFs. Again, the proxy VNF

poses the only exception since it is significantly easier to

predict due to its characteristics, i.e., lower total number of

instances and higher SFC request interarrival times. These

characteristics also explain the insensitivity towards the in-

vestigated range of values for the prediction horizon.
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Fig. 5: Impact of the prediction horizon on the accuracy of

predicting deployment actions for different VNFs.

In contrast, the mean per class accuracy of models that

predict deployment actions for the remaining VNFs drops

in an almost linear fashion when the prediction horizon is

increased. The accuracy develops from values around 82 %

in the case of p = 10 s to around 75 % when p = 100 s.

Hence, even in the context of long-term predictions, reliable

statements are possible. However, prior to deploying such

prediction mechanisms, network operators should consider the

resulting accuracy trade-off.

C. Generalizability of Prediction Models

A desirable feature of prediction models is their capability to

generalize well across different problem instances. In contrast

to instance-specific models, general models avoid the need for

laborious re-training upon each configuration change and can

be used directly while also integrating specific characteristics

of the new configuration. In order to assess the generalizability

of our models and to derive insights that help improving it,

we conduct the following experiments. For each VNF, we

create three data sets that contain labeled data for the Internet2

topology, the MEC topology, and their union, respectively. For

each data set, a prediction model is trained on 75 % of the data.

Afterwards, the trained models are individually applied to the

three testing sets that are constructed from the remaining 25 %

of each data set.

The results of these experiments are depicted in Figure 6.

Each subplot represents a VNF while x- and y-axes show

training and testing sets, respectively. The color of each cell

corresponds to the mean per class accuracy that is achieved

by the different models and additionally contains a label with

the exact accuracy value.

The highest accuracy values in each subplot tend to be

located along the diagonal. This stems from the fact that
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Fig. 6: Cross-prediction accuracy for different VNFs. Predic-

tion horizon p = 60 s.

these values represent cases in which training and testing

data originate from the same scenario (Internet2, MEC) or

the same mix of scenarios (Both) and therefore, involve

no generalization. Additionally, the accuracy levels that are

achieved when using the mixed data set are close to the mean

of the two accuracy values that are obtained for the individual

data sets. This indicates that when model training is performed

on the union of data sets, decision thresholds for features are

adapted in a way that balances inaccuracies between the data

sets. In the case of the WANO VNF, the characteristics in the

individual scenarios are similar enough so that the combined

model even manages to outperform the individual ones by

leveraging the larger amount of training data. The performance

regarding the proxy VNF is very stable for all combinations

due to the fact that this VNF has the most predictable arrival

process and therefore exposes almost identical characteristics

in all considered scenarios.

When performing cross-prediction, i.e., training on one data

set and testing on another, accuracy decreases of up to 8 % can

be observed in comparison to the corresponding values on the

diagonals. However, such a drastic drop is only observed in

the case of the firewall VNF whereas predictions regarding

other VNFs generalize significantly better. Furthermore, the

direction “training on MEC, testing on Internet2” results in

higher accuracy levels than the reverse. A likely explanation

for this phenomenon is that models trained on the MEC

scenario learn both general relationships as well as MEC-

specific characteristics. Hence, when applied to the Internet2

scenario, the general relationships are sufficient for making

good predictions. In contrast, models trained on the Inter-

net2 scenario tend to misclassify situations due to a lack of

topology-specific knowledge.

In summary, the current models already generalize well

w.r.t. different topologies. As discussed previously, we expect

further improvements by adding topology-, node-, and request-

level features. Furthermore, training the model on a wider

range of topologies prior to applying it to a new one is

expected to add stability.

V. CONCLUSION

Efficient management and operation of current and future

softwarized networks requires fast decision making while

facing heterogeneous demands in dynamically changing en-

vironments. As a step towards networks that can automat-

ically and proactively adapt themselves to such conditions,

we propose a machine learning-based approach for predicting

VNF deployment decisions in the context of Service Function

Chaining (SFC). In order to foster reproducibility, flexible con-

figuration, and extensibility, we propose a methodology that

encompasses the entire process from generating realistic SFC

request traces to training and evaluating prediction models. In

particular, this also includes extracting features that are used

for model training and labeling training data with information

that is based on optimal VNF placements.

Evaluations featuring dynamic request arrivals in realistic

network topologies that represent WAN and mobile edge com-

puting (MEC) scenarios are used to highlight the applicability

of the proposed approach. Furthermore, we provide insights

into the importance of individual features in order to assist

operators with choosing appropriate metrics for monitoring.

We also evaluate the impact of the prediction horizon on

the classification accuracy to analyze the performance trade-

offs that result from making long-term predictions. Finally,

we demonstrate the models’ capabilities in terms of general

applicability across different topologies. Our evaluations show

that even without leveraging topology-specific information,

models can make reliable predictions without being re-trained.

There are several directions for future work: on the one

hand, we plan to add new graph- and request-related features

in order to improve the performance when making predictions

for individual problem instances as well as for the context of

generalizing across different configurations regarding network

topology, network size, and traffic mix. On the other hand,

aspects of applicability, scalability, and generalizability can

be studied by integrating the proposed approach into an

actual NFV and SFC testbed which adds challenges w.r.t. the

communication with different network entities as well as the

timeliness and reliability of monitoring data. Finally, extending

the proposed methodology to address related challenges in

the area of softwarized networks, and placement problems

in particular, could lead to further improvements in terms of

network automation.

ACKNOWLEDGMENTS

This work was supported by the Institute of Information

& Communications Technology Planning & Evaluation (IITP)

grant funded by the Korean government (MSIT) (2018-0-

00749, Development of Virtual Network Management Tech-

nology based on Artificial Intelligence).

REFERENCES

[1] M. Jarschel, T. Zinner, T. Hoßfeld et al., “Interfaces, Attributes, and Use
Cases: A Compass for SDN,” IEEE Communications Magazine, 2014.

[2] B. Yi, X. Wang, K. Li et al., “A Comprehensive Survey of Network
Function Virtualization,” Computer Networks, 2018.



[3] P. Kalmbach, J. Zerwas, P. Babarczi et al., “Empowering Self-Driving
Networks,” in Afternoon Workshop on Self-Driving Networks, 2018.

[4] N. Feamster and J. Rexford, “Why (and How) Networks Should Run
Themselves,” in Applied Networking Research Workshop, 2018.

[5] S. Lange, H.-G. Kim, S.-Y. Jeong, H. Choi, J.-H. Yoo, and J. W.-
K. Hong, “Machine Learning-based Prediction of VNF Deployment
Decisions in Dynamic Networks,” in Asia-Pacific Network Operations

and Management Symposium (APNOMS), 2019.
[6] L. Linguaglossa, S. Lange, S. Pontarelli et al., “Survey of Performance

Acceleration Techniques for Network Function Virtualization,” Proceed-

ings of the IEEE, 2019.
[7] W. Kellerer, P. Kalmbach, A. Blenk et al., “Adaptable and Data-

Driven Softwarized Networks: Review, Opportunities, and Challenges,”
Proceedings of the IEEE, 2019.

[8] R. Boutaba, M. A. Salahuddin, N. Limam et al., “A Comprehensive Sur-
vey on Machine Learning for Networking: Evolution, Applications and
Research Opportunities,” Journal of Internet Services and Applications,
2018.

[9] M. Wang, Y. Cui, X. Wang et al., “Machine Learning for Networking:
Workflow, Advances and Opportunities,” IEEE Network, 2018.

[10] V. Sivaraman, S. Narayana, O. Rottenstreich et al., “Heavy-hitter De-
tection Entirely in the Data Plane,” in Symposium on SDN Research,
2017.

[11] J. Xie, F. R. Yu, T. Huang et al., “A Survey of Machine Learning
Techniques Applied to Software Defined Networking (SDN): Research
Issues and Challenges,” IEEE Communications Surveys & Tutorials,
2018.

[12] A. Blenk, P. Kalmbach, W. Kellerer et al., “o’zapft is: Tap Your Network
Algorithm’s Big Data!” in Workshop on Big Data Analytics and Machine

Learning for Data Communication Networks, 2017.
[13] A. Blenk, P. Kalmbach, P. Van Der Smagt et al., “Boost Online Virtual

Network Embedding: Using Neural Networks for Admission Control,”
in International Conference on Network and Service Management, 2016.

[14] R. Mijumbi, J.-L. Gorricho, J. Serrat et al., “Design and Evaluation
of Learning Algorithms for Dynamic Resource Management in Virtual
Networks,” in IEEE Network Operations and Management Symposium

(NOMS), 2014.
[15] R. Mijumbi, S. Hasija, S. Davy et al., “Topology-aware Prediction of

Virtual Network Function Resource Requirements,” IEEE Transactions

on Network and Service Management, 2017.
[16] H. Jmila, M. I. Khedher, and M. A. El Yacoubi, “Estimating VNF

Resource Requirements Using Machine Learning Techniques,” in In-

ternational Conference on Neural Information Processing, 2017.
[17] A. Mestres, A. Rodriguez-Natal, J. Carner et al., “Knowledge-defined

Networking,” ACM SIGCOMM Computer Communication Review, 2017.
[18] H.-G. Kim, D.-Y. Lee, S.-Y. Jeong et al., “A Machine Learning-based

Method for Virtual Network Function Resource Demand Prediction,” in
IEEE Conference on Network Softwarization (NetSoft), 2019.

[19] F. Moradi, R. Stadler, and A. Johnsson, “Performance Prediction in
Dynamic Clouds using Transfer Learning,” in IFIP/IEEE Symposium

on Integrated Network and Service Management (IM), 2019.
[20] J. G. Herrera and J. F. Botero, “Resource Allocation in NFV: A

Comprehensive Survey,” IEEE Transactions on Network and Service

Management, 2016.
[21] S. Lange, A. Grigorjew, T. Zinner et al., “A Multi-objective Heuristic

for the Optimization of Virtual Network Function Chain Placement,” in
International Teletraffic Congress, 2017.

[22] M. F. Bari, S. R. Chowdhury, R. Ahmed et al., “On Orchestrating
Virtual Network Functions,” in International Conference on Network

and Service Management, 2015.
[23] M. Nakanoya, Y. Sato, and H. Shimonishi, “Environment-Adaptive

Sizing and Placement of NFV Service Chains with Accelerated Rein-
forcement Learning,” in IFIP/IEEE Symposium on Integrated Network

and Service Management (IM), 2019.
[24] The H2O.ai team, H2O: Scalable Machine Learning, 2015. [Online].

Available: http://www.h2o.ai


