MOBILE TRUST NEGOTIATION

Authentication and Authorization in Dynamic
Mobile Networks

Timothy W. van der Horst, Tore Sundelin, Kent E. Seamons, and

Charles D. Knutson
Brigham Young University, Provo, Utah*

Abstract We examine several architectures for extending the nascent technology
of automated trust negotiation to bring nonidentity-based authentica-
tion and authorization to mobile devices. We examine how the location
of trust agents and secure repositories affects such a system. We also
present an implementation of one of these models. This protocol lever-
ages software proxies, autonomous trust agents, and secure repositories
to allow portable devices from different security domains (i.e., with no
pre-existing relationship) to establish trust and perform secure trans-
actions. This proposed system is called surrogate trust negotiation as
the sensitive and resource-intense tasks of authentication are performed
vicariously for the mobile device by a surrogate trust agent.

Keywords: Trust negotiation, authentication, authorization, access control, mobile
computing, proxy, software agent, credential repository

1. Introduction

Interpersonal transactions are often contingent upon relevant attrib-
utes of the involved parties (e.g., nationality, age, job title, financial re-
sources, etc.). These transactions can be quite intricate and involved. In
the digital world, such interactions have historically been viewed as static
identity-based schemes, handled out-of-band using alternative means, or
simply avoided. One proposed solution for this problem of real-time,
attribute-based digital interactions is called automated trust negotiation
[WSJ00, BS00, WYS*02] (see Section 2).

*This research was supported by funding from DARPA through AFRL contract number
F33615-01-C-0336 and SSC-SD grant number N66001-01-1-8908, the National Science Foun-
dation under grant no. CCR-0325951 and prime cooperative agreement no. 11S-0331707, and
The Regents of the University of California.

98 Timothy W. van der Horst et al.

Trust negotiation appears well-suited for a mobile environment be-
cause mobile devices usually operate outside their trusted domain and
thus have a greater need to determine whether a stranger can be trusted.
This application becomes particularly compelling in light of the prolifer-
ation of such devices, their associated usage models, and their intuitive
contextualization as digital representatives of their respective users.

The development of such a system presents significant obstacles. Mo-
bile devices, due to their size, ease of transportation, and high value, are
both ideal targets for theft and prone to physical accidents which can
lead to their demise. In addition, they can be easily lost. Trust negotia-
tion relies upon elements of public key cryptography and policy compli-
ance checking that are often excessively burdensome on mobile devices.
Also, because mobile network topologies are often unpredictable, such a
system must handle interactions between devices of mixed capabilities
in varied infrastructure configurations. Limited resources, battery limi-
tations, processing power, and connectivity also plague mobile devices.

We use the foundation of trust negotiation to examine an advanced
authentication system compatible with the limited capabilities of many
mobile computing devices, and present one solution to this problem. The
goal of our system is to enable mobile devices to safely and efficiently
perform sensitive transactions on behalf of their owners in circumstances
in which this was previously not possible.

2. Trust Negotiation

Mobile trust negotiation is designed to support automated trust nego-
tiation between strangers that meet in the physical world and desire to
perform sensitive transactions between their mobile devices (PDA, cell
phone, etc.). For example, suppose two military groups from separate
nations meet on the battlefield while conducting joint operations. The
commanders desire to authenticate and authorize each other in order to
reliably share fresh information on enemy positions and tactics. Dur-
ing a natural disaster, emergency response personnel from local, state,
and government agencies converge to the scene and desire to share in-
formation with authorized personnel. A consumer can complete an e-
commerce transaction while in an airport and be assured that he is
communicating with a trustworthy business.

Trust negotiation solves the problems associated with classical au-
thentication and authorization schemes by allowing individuals outside a
local security domain to safely access sensitive data and services [WSJ00,
BS00, WYS*02]. It enables two parties to perform secure transactions
by first establishing trust through a bilateral, iterative process of request-

Mobile Trust Negotiation 99

ing and disclosing digital credentials and policies. Digital credentials are
the electronic analogues of paper credentials, and may be used to verify
such attributes as identifying information, licensing certifications, and
association memberships. These credentials are digitally signed by an
issuer and assert the veracity of certain attributes of the owner. The
properties of public key cryptography guarantee that these credentials
are both unforgeable and verifiable.

Along with credentials, trust negotiation relies on access control poli-
cies, which protect sensitive resources such as services, data, credentials,
and even other policies from unauthorized access. By specifying the nec-
essary credentials that a party must possess in order to access a specific
resource, policies provide a means by which any user may be granted
or refused access to a resource in real-time. Associating policies with
particular resources allows trust negotiation to thrive in a dynamic en-
vironment in which users and resources are constantly changing. As both
parties in a given transaction may have sensitive resources protected by
applicable policies, trust negotiation often occurs with respective parties
progressively fulfilling the other parties’ policies while iteratively making
policy-based credential requests of their own.

Trust negotiation has two main requirements in order to operate.
First, a trust agent is needed to perform a negotiation on the user’s
behalf. Second, a secure repository is needed to store the sensitive infor-
mation that is needed by the trust agent during the negotiation. This
information includes, but is not limited to, credentials, private keys, and
policies.

Trust agents are intelligent, autonomous software modules that can be
used to establish trust on behalf of their owner with another trust agent.
An agent makes use of access control polices to protect and manage its
owner’s credentials, policies, and keys during a negotiation. There are
various configurations for a trust agent in a mobile environment. When
the trust agent resides on the device, it is called a local agent. When it
does not reside on the device, it is called a remote agent. TrustBuilder
[WYS*02] is an existing implementation of a trust negotiation agent.

3. Secure Repositories
A secure repository is necessary to store the sensitive data used for
trust negotiation. Repositories can be local or remote.

3.1 Local Repositories

A local repository, as its name indicates, is stored locally on the user’s
device. Many existing schemes, such as an encrypted file system or a

100 Timothy W. van der Horst et al.

set of encrypted files, can be used to store sensitive data locally. The
encrypted storage can be protected by a password or biometric pos-
sessed by the user. There are several application specific methods, e.g.,
Window’s EFS, as well as several widely deployed standards, such as
PKCS#12, that could be used to achieve this result.

Another type of local repository stores the sensitive data in an en-
crypted form on a secure module that could be attached to the mobile
device. An example of this is Sony’s Memory Stick. Through the use
of MagicGate [Ara00], a Memory Stick can store its contents in an en-
crypted form and only release them to someone that can successfully
authenticate.

Another secure module that could be used with a mobile device is
a smart card. Smart cards have several advantages over other local
repositories. Access to the card is protected by a password or biometric.
The private keys never have to exist outside of the card since all necessary
processing can be done within the card. However, the space available on
these cards is very limited. There is normally about 32KB of space for
both an application and its data. It makes sense, therefore, that only
the private keys should be stored on the smart card. Any other data
could be stored in an encrypted form on the mobile device.

In order to compromise the user’s sensitive information the mobile
device, the smart card, and either the password or biometric used to
access the card would all have to be compromised. This dilutes the risk
of carrying sensitive information in a mobile environment. The physical
attributes of the smart card lend itself to the protections of physical
credentials while maintaining their digital protection properties as well.

A local repository provides several advantages. First, it requires no
communication with remote devices. The user can also choose whether
all or a subset of credentials should reside on the device. The user’s
sensitive information is always with him and available for use. Many
existing, widely-tested systems are currently available.

Local repositories also have several disadvantages. One problem is
synchronization. If a user has several mobile devices, he has to replicate
his sensitive information on every device. This could be considered less
secure, because there are more copies of the sensitive information and
thus a greater possibility that one of the copies of the data would be
compromised. When a credential expires, is revoked, or for any reason
needs to be updated or removed, the changes would have to be replicated
on every device that is possessed by the user. This could be a costly and
time-consuming process. Also, since the repository is local, one must
always be in possession of the repository when access to the sensitive
information is desired.

Mobile Trust Negotiation 101

3.2 Remote Repositories

A remote repository provides a central location for a user to store and
manage his credentials. The remote repository could be administered
by the user on a machine of his choosing or he could delegate that
responsibility to a trusted third party to host it on his behalf.

Remote repositories can be divided into two different categories. Sandu
et al. [SBGO02] define these categories as virtual soft tokens and virtual
smart cards. Virtual soft tokens are a network-based storage solution
of sensitive credentials. Credentials are located on an online server and
are stored in an encrypted form such that only the user may decrypt
them. Since the server cannot decrypt the credentials, the user is in
control of their disclosure. When the user desires to use his credentials,
he can authenticate to the server and retrieve his encrypted credentials;
he can then decrypt and use them. Ideally the credentials should be
cleared from the device when the transaction that required them has
completed. This would prevent undue exposure of the sensitive creden-
tials and keys. An example of a virtual soft token is the MyProxy system
[NTWO1]. Another example is the proposed standard: Securely Avail-
able Credentials (SACRED) [AF01][GJNO04][Far03]. This standard has
the added benefit of application and device-independence.

In the virtual smart card paradigm, the remote repository acts like a
smart card. There are, however, several subtle differences between these
two solutions. In contrast to the physical card, the private key is never
completely known to the virtual card. This is accomplished through the
3-key RSA algorithm. In this algorithm the private key is split into two-
parts, the user and the virtual smart card each hold a part of the key.
Through a shared signature scheme, the two parties can create a valid
digital signature that neither side by itself could create. Virtual smart
cards also have the benefit of instant revocation. Removal of the server-
side component neutralizes a compromised user-side key. Unfortunately,
not all RSA keys can be converted into the 3-key format and thus it is
not plausible to move many existing certificates to this system.

NSD Security’s Practical PKI [BYBS03] is an example of a virtual
smart card. It uses Microsoft’s Cryptographic API or PKCS #11 to
make the credentials available to any application.

Remote repositories offer many advantages. Credentials are always
up-to-date and are accessible from any location, even if the user does
not have his mobile device with him. They have the added bonus of
being application and device independent. Also, there is no sensitive
information stored on the mobile device, so if the device is ever lost the

102 Timothy W. van der Horst et al.

credentials are not lost with it. Since the online repository is unable to
decrypt the credentials stored there, the user controls their disclosure.

There are several disadvantages which plague remote repositories.
They must be available at transaction time and thus create a depen-
dence on a third party in order to complete the transaction. If the
online repository is not accessible from where the mobile device is lo-
cated, or is merely not accessible, it is useless. An online repository
creates an additional communication overhead: each time a transaction
requires credentials, the mobile device must interact with it.

3.3 Hybrid Repositories

Both local and remote repositories have their benefits and drawbacks.
The local repositories have very little communication overhead, and do
not require access to an online server at the time of the transaction.
They also, however, require that the user bring the repository with them,
and the propagation of updates in this model can become complicated.
Remote repositories, on the other hand, always have up-to-date creden-
tials and allow the user to access those credentials from any device of
his choosing. Since the mobile device contains no sensitive credentials,
when the device is lost, nothing but the device is lost. However, the
communication overheard, accessibility, and availability issues can limit
the effectiveness of online repositories.

A combination of these two systems could lead to the elimination of
many of the drawbacks that are inherent in these two repositories. We
propose that a virtual soft token be used with a physical smart card to
accomplish this agglomeration.

The smart card would first authenticate the user, and then be used to
authenticate to the online repository. A local repository of all or some
of the sensitive credentials in the repository could then be created. For
added security the local cache could be created such that only the smart
card would be able to access the decrypted contents. The smart card
could have the private keys preloaded, or it could receive the private
keys directly in an encrypted form from the repository. A smart card
could do the decryption of the sensitive credentials that are stored on
the mobile device, or it could give the decryption key to the application
that requires the credential. Both should be made available as an option.

A user should also be able to choose to go fully remote, fully local
(a full copy still resides in the remote repository), or a mix of the two.
This configurability would provide great flexibility to the user, which is
essential due to the wide variety of situations that exist in the mobile

Mobile Trust Negotiation 103

environment. In any case, a user would require something he knows (his
password) and something he has (his smart card).

There are several disadvantages that still exist in this model. Depend-
ing on the configuration, there could still be a communication overhead
and availability /accessibility issues. There is also the cost of the addi-
tional hardware required, e.g., the smart card and smart card reader.
The cost of this hardware, though, is rapidly decreasing. The additional
hardware can be lost or stolen. Hopefully, since a smart card looks like
a credit card, users will be able to treat it with similar regard and thus
keep it safe, e.g., not leaving it attached to the mobile device.

4. Surrogate Trust Negotiation

We have created a surrogate trust negotiation prototype system that
makes use of the ideas presented above. We adapted the trust negoti-
ation agent, TrustBuilder, to negotiate trust on behalf of the user even
if the user cannot directly communicate with it. This type of agent was
chosen so that we could encompass the greatest range of mobile devices
based on the resource requirements of a remote agent.

Although the hybrid repository discussed above shows promise for use
in this environment, the creation of such a repository is left as future
work. In the system presented below the trust agent maintains a local
repository with the user’s credentials. Even though the repository is
local to the trust agent, it can be seen as a remote repository to the
mobile device. This creates centralized storage that adds security and
convenience to the system by avoiding the dangers of storing sensitive
credentials on mobile devices and by allowing credential updates to be
immediately accessible to all the user’s devices. A user’s mobile devices
share a pre-existing relationship that enabled remote invocation of the
trust agent. This relationship can be terminated by either side if the
mobile device is compromised (see Section 4.2).

The mobile devices directly involved in the transaction are called pri-
mary devices. The requester of a transaction is referred to as the client,
while the other device is the server. These designations, client and
server, are not static as it is reasonable to assume that both will rou-
tinely switch roles as one requests a transaction from the other and vice
versa. In surrogate trust negotiation, a prozy is any device that serves
as an infrastructural intermediary between a primary device and its as-
sociated trust agent.

Figure 1 illustrates three general topologies that effectively categorize
our usage models: bilateral, unilateral, and intermittent access to a wired
infrastructure. Bilateral describes scenarios in which both primary de-

104 Timothy W. van der Horst et al.

Bilateral

Unilateral

@4———-———-»—»@ , N : Intermittent

Figure 1. Topology Taxonomy.

vices have reliable, economical, and adequate bandwidth to the Internet.
The next, unilateral, describes any situation in which only one device
has a consistent connection with sufficient bandwidth. The final cate-
gorization, intermittent, depicts situations in which neither device has
consistent access to a wired infrastructure. For clarity and brevity we
will explore our system in terms of a unilateral topology only, though
this system would work equally as well in the bilateral topology. In
the unilateral topology one device will serve as a proxy to forward the
negotiation request of the other device to its trust agent.

4.1 Networking Messages

Our surrogate trust system is designed for platform independence and
operability with numerous networking protocols. This section presents
a high-level discussion of the elements necessary to perform trust nego-
tiation and establish secure communications for the transaction.

For simplicity, we will discuss the networking messages as occurring
in three distinct phases: transaction request, authorization, and transac-
tion. In the authorization phase, it is logical to further divide this phase
into three sub-phases: trust negotiation setup, trust negotiation, and
trust negotiation response. These phases and their composite messages
appear in Figure 2.

An exchange begins with the transaction request phase, in which the
client requests a transaction from the server. This is represented by the
Transaction Request message, 1.1, in Figure 2. The trust negotiation
setup phase begins when the server replies to the client and indicates
that the requested transaction is protected and that trust negotiation
must be used for authentication (shown as the Trust Negotiation Request
message, 2.1). If the client is incapable of performing the trust negoti-
ation protocol or chooses not to participate, this is communicated and
the connection is broken. Otherwise, both devices then decide together

Mobile Trust Negotiation 105

1.1 Transaction Request
R Trust.Negotiation Requestw SRS
. [e———————2.2 Infrastructure Negotiation* Server
C:'Ce)m 2.3 Trust_Negotiation_Tickete, ca ()
fa e e ~4.3 Transaction_Ticket, ¢ Proxy
[e——— 5.1 Session Initialization* ———————>
5.2 {Transaction}g *

Ig I
o7
1 Transaction Request————————» "§ ;‘
L. = 5
2 Authorization: Trust Negotiation Setup - > = %
--3 Authorization: Trust Negotiation > ‘% 2 ,
———4 Authorization: Trust Negotiation Response——» S 8
5 Transaction————» Z 2
'
g £
Ea
2.5 Trust_Negotiation_Ticket., CA—/’\ 2 T
/ \\;————3.1 Trust Negotiation —————————»~ A
P / Client \ ‘
| S 4.1 Transaction_TicketCA_c-((SA) /}

(Agent
\ (CA) \\ Proxy
N g)) . N /
\/‘ = An exchange of multiple messages instead of a single message. N /
{payload} y = A message payload that is formatted for the end-to-end connection from host x to host y.
Trust_Negotiation_Ticket.. ., =CA_ID | {Transaction_ID}. (.,

Trust_Negotiation_Tickets ¢, = {Trust_Negotiation_Ticket, ., |Trust_Negotiation_Role|Trans_ID}s‘ A

Session_Parameters = Sesssion_ID | Client_Write_Session_Key | Client_Authentication_Session_Key
| Server_Write_Session_Key | Server_Authentication_Session_Key

Transaction_Ticket.., . = {Trust_Negotiation_Result | Session_Paramters}, .

Transaction_Ticketg, ¢ = {Transaction_Ticket,., .. | Trust_Negotiation_Result | Session_Paramters}q, ¢

Figure 2. Network Messages.

which has the best access to the Internet in order to serve as a proxy
(shown as Infrastructure Negotiation, 2.2).

Following infrastructure negotiation, both client and server create a
Trust_Negotiation_Ticket (2.3,2.4) that is sent to their respective trust
agent. The ticket reliably notifies the trust agent that its associated
primary device desires to participate in trust negotiation for a specific
transaction. When the server acts as the proxy, the client sends a ticket
to the server bundled with the location of the client’s security agent. On
the other hand, when the client serves as the proxy, the server creates a
similar ticket but also includes an identifier for the requested transaction
and its associated policy. The nature of trust negotiation tickets will be
further discussed in Section 4.2.

Following the receipt of the appropriate trust negotiation ticket, the
device that has been elected to function as the proxy connects to the

106 Timothy W. van der Horst et al.

server’s trust agent and sends a message containing tickets from each
primary device, 2.4. The server’s agent examines the ticket from its
respective primary host and verifies its request to negotiate trust. Fol-
lowing this confirmation, the server’s agent connects to the client’s agent
and sends the appropriate trust negotiation ticket, 2.5. The client’s agent
will then likewise verify the validity of its ticket.

After both security agents have verified their associated primary de-
vices’ intentions, the trust negotiation portion of the authentication
phase begins. Since the server is the device that is protecting the trans-
action, its security agent is responsible for initiating trust negotiation
between the agents. As was briefly mentioned in Section 2, the server’s
security agent begins the process by disclosing policies and/or creden-
tials to the client’s agent, which then responds likewise. This bilateral
exchange, 3.1, continues until the server’s agent deems that the pol-
icy (included in the Trust_Negotiation_Ticket) governing the transaction
has been satisfied or that the negotiation has failed. Factors that could
contribute to a failure include the lack of necessary credentials, expired
credentials, or the number of iterations exceeding a threshold.

Upon completion of a successful trust negotiation, the client and
server trust agents establish the cryptographic key material (see Sec-
tion 4.2) necessary to create a secure link for performing a transaction
between the primary devices. This key exchange is denoted by the Ses-
sion_Parameters, 3.2, message in Figure 2. Following this, the trust
negotiation response portion of the authorization phase begins and this
key material is sent back through the proxy to the respective primary
devices in the form of Transaction_Tickets (4.1, 4.2, 4.3). If trust ne-
gotiation was successful, the primary devices decrypt these tickets and
use the session parameters that they contain to initialize the secure link,
which is depicted by the Sessionlnitialization exchange, 5.1. When chan-
nel initialization is complete, the server and client can securely perform
the sensitive transaction, 5.2.

4.2 Security Provisions

There are three security goals necessary for our proposed system: in-
tegrity, authenticity, and confidentiality. The reasons for these goals are
threefold. First, all are required to reliably initiate trust negotiation.
Second, they ensure the safe delivery of key material to the primary de-
vices following trust negotiation. Finally, they allow for a secure trans-
action between the primary devices following delivery of key material.

Another vulnerability to consider is that of a compromised mobile de-
vice. An ameliorating factor on the extent of potential damage is that

Mobile Trust Negotiation 107

the trust agent, the credentials, and keys reside on a physically secure
server. These keys never leave this machine, and thus, even if one mobile
device is compromised, these private keys as well as imprinted relation-
ships with other devices remain secure. Furthermore, termination from
the security agent’s side of an end-to-end link is trivial if a user suspects
a device has been compromised and re-initialization likewise in the case
that the device is later recovered.

Cryptographic Tickets. Since the mobile devices may not be in
direct communication with their trust agents, they must use another
method to send reliable and confidential messages to their trust agents
through a non-trusted third-party. This can be achieved using a cryp-
tographic ticket, an encrypted container that holds data. These tickets
are securely communicated between a mobile device and its associated
trust agent because they are encrypted according to the pre-established
relationship that was formed between these entities.

Our system uses two types of tickets. The Trust_Negotiation_Ticket is
an instruction created by the primary devices to its trust agent to initi-
ate or accept the request to initiate trust with another entity. Transac-
tion_Tickets contain the result of the negotiation and, if successful, the
Session_Parameter message which contains the keys necessary to form
a secure channel between the primary devices.

Secure End-to-End Protocol. The key material that was gener-
ated by the trust agents on behalf of their primary devices is used to
create two different kinds of keys: an authentication key, and a write
key. Each side uses a unique key to encrypt messages and a different
unique key to encrypt a message verification. This creates a total of four
keys. Using these keys, a secure session is then initialized between the
primary devices as specified by the selected transmission protocol. This
exchange is depicted by the Sessionlnitialization messages in Figure 2.

Following session initialization, all transmitted messages will be for-
matted according to the security provisions of the selected transmission
protocol. For example, IPSec’s Encapsulating Security Payload (ESP)
[Ken02] protocol is capable of providing all of our target characteristics
(i.e., connectionless sessions, integrity, authenticity, and confidentiality).
However, an actual implementation of the system can use any established
protocol which fulfills our definition of an end-to-end link. In general,
end-to-end messages will be formatted by wrapping the payload data
with the necessary header information and then encrypting and authen-
ticating the result. In Figure 2, messages formatted according to the
end-to-end protocol are denoted by the syntax {payload}sender,recipient-

108 Timothy W. van der Horst et al.

Thus, using the procedure described above, the security characteris-
tics of the implemented connectionless protocol, in this case ESP, can be
leveraged to secure the communication channels. However, as the chan-
nel between trust agents is assumed to be secure by virtue of the utilized
trust negotiation protocol (e.g., [HIMT02]), only the channels between
the primary devices and between a primary device and its associated
trust agent need adhere to our definition of an end-to-end link.

4.3 Implementation

We have implemented a surrogate trust negotiation prototype system
[Sun03]. The hardware core of the prototype system was comprised
of two WiFi-enabled iPAQ handhelds running Microsoft’s Pocket PC
operating system, which served as the primary devices. The physical
and link layer of the primary channel was 802.11b. On top of this,
basic TCP/IP sockets were used for communication between the primary
devices. Both the server trust agent and client trust agent were run on
Pentium 4 machines running Windows XP. The SOAP RPC protocol
was used as a means of communication between negotiating trust agents
as well as between primary devices and their respective trust agents.

5. Conclusions and Future Work

We have examined the role of secure repositories and trust agents in
an architecture for enabling secure transactions between portable devices
that have no pre-existing relationship. We have shown how the decision
of the type of repository affects the safety of a user’s sensitive information
while in a mobile environment. Also, the choice of repository determines
what types of mobile devices can benefit from this architecture.

We have outlined surrogate trust negotiation, a flexible model that ef-
fectively leverages the combined capabilities of network proxies, software
agents, and secure repositories. This system also makes trust negotia-
tion accessible to the greatest number of mobile devices since it shifts the
resource-intensive task of authentication to a remote agent. The use of a
local repository on this remote trust agent allowed us to obtain many of
the desirable properties of a remote repository. Surrogate trust negotia-
tion lays the foundation for the maturation of effective, new technology
in the rapidly evolving research space of secure mobile transactions.

The system, however, is only suitable for the bilateral and unilat-
eral topologies. We are currently working on a system that will satisfy
the requirements for intermittently connected devices. The foremost
problem in this topology is the inability to access a remote trust agent.
Consequently, the resource-intensive task of authentication must be ac-

Mobile Trust Negotiation 109

complished on the mobile device by a completely local trust agent. We
are also working on a system that would provide the user with the flexi-
bility to choose how and where the trust agent and repository will exist.
This would involve creating a hybrid repository and trust agent capable
of mixed degrees of locality and remoteness.

References

[AFO1]

[Ara00]
[BSO0]

[BYBS03]

[Far03)]

[GINO4]

[HIM*02]

[Ken02]

[NTWO1]

[SBG02]

[Sun03]

[WSJ00]

[WYST02]

A. Arsenault and S. Farrell. Securely Available Credentials — Require-
ments. IETF Informational RFC 8157, August 2001.

S. Araki. The Memory Stick. IEEE Micro, July-August 2000.

Piero Bonatti and Pierangela Samarati. Regulating service access and
information release on the web. In Proceedings of the 7th ACM Confer-
ence on Computer and Communications Security (CCS-7), pages 134—
143, Athens, Greece, November 2000. ACM Press.

J. Basney, W. Yurcik, R. Bonilla, and A. Slagell. The Credential Wal-
let: A Classification of Credential Repositories Highlighting MyProxy.
Communication, Information and Internet Policy, September 2003.

S. Farrell. Securely Available Credentials Protocol. [ETF Internet
Draft, draft-ietfcat-sacred-protocol-bss-09, November 2003.

D. Gustafson, M. Just, and M. Nystrom. Securely Available Credentials
(SACRED) — Credential Server Framework. IETF Informational RFC
8760, April 2004.

A. Hess, J. Jacobson, H. Mills, R. Wamsley, K. Seamons, and B. Smith.
Advanced Client/Server Authentication in TLS. Network and Dis-
tributed System Security Symposium Conference Proceedings, February
2002.

S. Kent. IP Encapsulating Security Payload (ESP). IETF Standards
Track RFC 2406, July 2002.

J. Novotny, S. Tueke, and V. Welch. An Online Credential Reposi-
tory for the Grid: MyProxy. IEEE Symposium on High Performance
Distributed Computing, August 2001.

R. Sandhu, M. Bellare, and R. Ganesan. Password-Enabled PKI: Virtual
Smart Cards versus Virtual Soft Tokens. PKI Research Workshop, April
2002.

Tore Sundelin. Surrogate Trust Negotiation. M.S. Thesis, Computer
Science Department, Brigham Young University, July 2003.

W. H. Winsborough, K. E. Seamons, and V. E. Jones. Automated
Trust Negotiation. DARPA Information Survivability Conference and
Ezposition, January 2000.

M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson, R. Jarvis,
B. Smith, and L. Yu. Negotiating Trust on the Web. IEEE Internet
Computing, November-December 2002.

