THREAT MODELLING FOR ASP.NET
Designing Secure Applications

Ridiger Grimm and Henrik Eichstadt
University of Technology, llmenau, Am Eichicht 1, D-98 693 Ilmenau

Abstract: This paper gives a security analysis of Microsoft's ASP.NET technology. The
main part of the paper is a list of threats which is structured according to an
architecture of Web services and attack points. We also give a reverse table of
threats against security requirements as well as a summary of security
guidelines for IT developers. This paper has been worked out in collaboration
with five University teams each of which is focussing on a different security
problem area. We use the same architecture for Web services and attack
points.

Key words: web services; asp.net; client-server; security; threats; web application; data
storage; threat countermeasures.

1. INTRODUCTION

A Web service is a network of coordinated applications in the backend
behind an http-governed Web server. The Web server is addressed by http-
clients across the Internet. ASP.NET is one example for the coordination
technology. However, the security analysis holds for Web services in
general, not only for ASP.NET.

ASP.NET provides a set of components for developers to implement
complex functionality in DLL. It is scalable, in that it provides state services
to manage session variables (cookies, session ids, temporary URLSs) across
multiple Web servers in a server farm. It is stable, in that it can detect
application failures and recover from them. It addresses both “managed
code” (conformant to ASP.NET), as well as “unmanaged code” (“native
code”) to include “legacy” applications. It is performant, because ASP.NET
pages are compiled whereas ASP pages are interpreted. When an ASP.NET
page is first requested, it is compiled and cached, or saved in memory, by the



146 Riidiger Grimm and Henrik Eichstédt

NET Common Language Runtime (CLR). This cached copy can then be re-
used for each subsequent request for the page. After the first request, the
code can run from a much faster, compiled version, see Butler, Caudill [1]
for details.

In this paper we will use an abstract Web services model which allows us
to identify different sources and targets of attacks. On the basis of our attack
analysis we will provide a structured view on security guidelines which help
developers to avoid the most obvious security holes. The security holes
derive mainly from the fact that any kind of Web service resides within the
open world of Web usage. They are not specific to ASP.NET. However,
ASP.NET is an obvious example of a Web services framework.

2. ARCHITECTURE PREREQUISITES

We will base our security analysis on a rather abstract structure of
ASP.NET technology which we will refer to as our Web services model. It
consists of these four building blocks, which could reside either on the same
or different hardware components:

1. a'pure' ASP.NET component (which serves as a 'gate' between the web
server and source code; external components can only be connected from
this ASP.NET-component);

2. an 'external' component built with C#, VB or any other language using
the Common Language Runtime (CLR); this is so-called ‘managed
code’;

3. an 'old', external component being integrated into the Web service —
possibly not integrated into the Common Language Runtime (CLR); this
is so-called ‘unmanaged code’;

4. database(s).

Our Web service structure is a refined version of the architecture model
in [2]. We have explicated the application server part by adding application
details and communication relations between the components. The structure
is shown in Fig. 1 below.

We will not analyse the internal functional structure of the four
components any deeper. In this sense we will consider the Web services on
the ASP.NET technology as a ‘black box’: it reacts on input data (both
stored and communicated), and it creates some output data (both stored and
communicated). Therefore it is inserting, updating, checking and/or deleting
data of any kind.

In this Web services model, several assumptions are made which are to
be respected by application security policies in the first place. First, our
focus is on ASP.NET technology, therefore we address only the Web



Threat Modelling For ASP.NET 147

service. Other services such as FTP, Sendmail, or Telnet are also security
relevant, but out of scope of this paper. Furthermore, we assume that the
Web Server is organised as follows.

1. A firewall protects the Web Server from the Internet which contains a
positive list of ports and protocols to be accepted.

2. The Web Server accepts and responds to ‘valid’ http(s)-requests only;

a) ‘valid’ are requests with correct http syntax, and the URLs of which
are within an explicitly accepted name space;

b) ‘validity’, however, does not refer to parameter content; on this level,
parameter content is not checked and will therefore be addressed by
our attack analysis below.

3. On an operating system level the Web service is configured according to
these minimal security requirements:

a) only a minimal set of components and applications is installed: e.g., if
not explicitly needed, no ssh / sendmail / telnet / ftp etc. service is
addressable through this Web Server; no client browser is available
within the Web service;

b) rights management within the Web service follows the least privileges
principle for the relationship ‘userid — application’;

c) a minimal set of users (potential attackers) has access to the internal
network: with respect to the relationship ‘persons — userid’.

3. ATTACK ENTRY POINTS

3.1 SOURCES AND TARGETS

In order to identify attack points, two aspects are to be addressed: sources
(“who attacks™), and targets (“what is attacked?”). Attackers may reside
inside or outside the server (“sources”). They may aim at assets of the server
or of the client (“targets”). Servers do not only organise their own assets, but
also assets of clients, for example account levels, private information, or an
achieved status of a purchase. An attack on the server can, therefore, also be
an attack on a resource inside the server which represents a client’s asset. It
is in the interest of the server to protect both its own assets (e.g. received
payment), as well as the assets of its client as far as it is responsible for
them. Otherwise, a server will lose reputation, or even be liable for losses of
its clients.



148 Riidiger Grimm and Henrik Eichstadt

3.2 ATTACK POINT SOURCES

Attacks can be pushed from outside as well as from inside the Web

service-network. In a refined view of the Web services model, presented
below in Fig. 1, the following six attack sources can be identified:

1.
2.

(9]

attack from an external aggressor via the standard http(s)-gate

Web service attacking the client (delivering malicious code, misuse of
personal data)

attack from an external aggressor circumventing the ASP.NET gate (=>
firewall and webserver are not secured properly)

attack from an internal aggressor via the internal network

security risks by connecting unmanaged code (native) applications

attack from an aggressor application nested inside the Web service
structure. This could be any kind of application as database, (web)server,
operating system program or any other application.

/‘ AR AR AR R R RO W eb % s e

-

Figure 1. Possible attack points on Web services

There are two general directions of attacks:

Server is being attacked: The target of attacks of a client against the
server may be (a) the assets of the server, e.g., the client retrieves an
electronic good without paying for it. Or the target may be (b) the assets
of another client through a manipulated server, i.e. by retrieving an
electronic good which another client has paid for and who is then



Threat Modelling For ASP.NET 149

prevented from receiving it (impersonation, or stealing of privilege).

Case (b) is an attack against the client via an attack against the server, i.e.

the attacked client will observe an attack of the server, while the server

itself was attacked in order to attack the other client.

e Client is being attacked: The target of attacks against the client that will
be considered here are always the assets of the client, e.g. his privacy, his
money, his knowledge, his privileges, etc.

The following kinds of attack are out of scope of this paper: Servers
which attack clients in order to attack other servers through the manipulated
client. This can be done either by using the clients’ credentials, or by using
client resources. The aim would be to enforce attacks (DDoS), or to blame
the service provider for an insecure service.

Why is it important to analyse attacks on the client by the server? At first
glance, the server is simply regarded as decent, and so there is no point in
considering this case. However, there are two reasons why a server (and
even more a decent server) is interested in protecting its clients against
attacks through the server:

1. Servers want to protect their reputation against suspicion. For example,
shops provide read-access to purchase status points, they provide read-
and write-access to personal data of their clients (each client only
accesses his data), they reveal their privacy policy, they offer privacy
mechanisms like P3P, they sign their parts of obligations (like payment
receipts), etc. Servers will also have to make clear to their clients that
insider attacks are minimized, e.g. by 4-eyes-principle access rules, or
other security-certified mechanisms.

2. Servers must be aware that unauthorised intruders (outside attackers)
compromise the system in order to attack other clients. From the point of
view of a server, this is an outside attack against the server, covered by
analysis in case 1 above. From the point of view of the client, however,
this is an attack of the server on his assets. Servers must make clear how
they minimize this danger.

4. ASSETS VS. ATTACK TARGETS

For a general security analysis of the ASP.NET technology, no concrete
assets can be identified, because the technology is not restricted to a specific
type of application. Instead, we consider general, abstract assets being in the
focus of attackers. In supplement to the Microsoft STRIDE-categories (see
[3]) of attack targets, we suggest to introduce the common IT security
requirements (see [4][5]) as abstract assets of all ASP.NET services:



150 Riidiger Grimm and Henrik Eichstadt

Availability

Confidentiality

Integrity

Authenticity

Accountability (non repudiation)

These requirements can be understood as abstract assets. The assets can

be mapped one-to-one on threats, in that threats are understood as negative
requirements.

4.1 IT SECURITY REQUIREMENTS VS. STRIDE
ATTACK TARGETS

The same requirements (assets) can be broken (enacted on) by multiple
attacks [7]. The abstract assets (i.e. the IT security requirements) can be
mapped on the STRIDE categories of attack targets via this matrix:

Table 1. common IT security criteria vs. Microsoft’s STRIDE concept

2 2
= 8 z ‘B
= = 2 <
2 3 £ 5 5
E E g E 3
< 3 E < <
Spoofing X X X X
Tampering X X X
Repudiation X
Information disclosure X
Denial of service X
Elevation of privileges X X X X X

S. LIST OF THREATS / ATTACKS

There are three ways to structure attacks:

Attack points oriented (as in Fig. 1 above)

2. Assets/Threats oriented (IT security requirements as abstract assets)
3. Attacks oriented (Microsoft’s STRIDE)

We have introduced attack points in Fig. 1 above in the section on attack
entry points. Assets/Threats were introduced by abstract IT security
requirements in the previous section on assets vs. attack targets. Attacks are
introduced by the STRIDE model. In Table 1 of that section we have
mapped assets (IT security criteria) on attacks of STRIDE type.

—



Threat Modelling For ASP.NET ~ 151

As the same threats can be enacted by multiple attacks, we have decided
to follow the attack points orientation, because there is least redundancy - the
following list of threats is thus ordered by attack points. In order to keep up
with the STRIDE structure, we offer a reverse table of attacks vs. our attack
numbers at the end of the attack list in this section.

The threats in this list are numbered according to the following scheme:
AST represents ‘ASP.NET Threat’, the first digit refers to the attack point,
the last two digits represent the numbering of the threats inside the attack
point. Appended to the threat title is the STRIDE-classification displayed by
the initial letter(s) of the applicable STRIDE-category(ies) in parenthesis.

There is one type of threat which can be realized at any point of the Web
service. This threat may be a side effect of the other threats listed below or
may be applied as preparation of any other threat.

ASTO001: Provoke errors to reveal system information (I)

Description: The attacker 'misuses’ the Web services to provoke the
generation of error messages. These messages can be used to gather detailed
system information for further attacks.

Countermeasures: Only general/generic error messages should be visible
to the client and should not disclose any specific information about the
internal system and the nature of the error. Detailed error messages are to be
written into a logfile.

5.1 Attack point 1: External Attacker

The most likely way to attack a Web service is to construct input data
contrary to the intention of form(field)s.

5.1.1 AST101: any input data is sent to the application (RI)

Description: The attacker fills in data into html-forms that is not intended
by the application. False information and executable code could be used to
manipulate the application.

Countermeasures: A server-side validation of input data is necessary.
Use .NET validation server controls for this task. Additionally, storage of
'false data’ can be avoided by checking the data against a 'valid' database. As
a minimum, SQL-Syntax should be denied.



152 Ridiger Grimm and Henrik Eichstadt
5.1.2 AST102: Manipulating form parameters (TRID)

Description: False input data is carefully crafted and sent to the server by
manipulating the http-request (either by building a URI with parameters
[GET-method] or manipulating the http-body [POST-method]).

Countermeasures: In addition to the AST101 countermeasures, the form
data could be checked to be sent by the POST-method (if action is set to be
POST). The session-identifier should be authenticated with additional data
(e.g. IP-address) and/or the application should re-ask for authentication
credentials in case of critical actions.

5.1.3 AST103: Uploading malicious program code (STRIDE)

Description: Some code file containing malicious code is uploaded using
an upload form. Subsequently the attacker gets to know the save folder on
the server and tries to execute his code or the uploaded file is processed by
the server and thus executed.

Countermeasures: The execution of uploaded files has to be denied
(either stand-alone execution on the server or HTML-inline execution).
Uploaded files should be validated not to be code, the target folder for
upload files should be secured - no (direct) access via http. Uploads could be
filtered by denying file types with possibly included code/allowing file types
from a positive list.

5.2 Attack point 2: Web service attacking client

Though no direct threat to the server, this threat is mentioned because it
represents a threat to the servers trustworthiness.

5.2.1 AST201: non-transparent data gathering (I)

Description: The Web service collects data from clients (required form
input) that is not or barely necessary for the applications purpose.

Countermeasures: Forms should be constructed in a way that only
minimal, necessary data is required. In addition, transparency tools can be
used (P3P: publish privacy policies, privacy audit label).

5.2.2 AST202: Web service delivers malicious code (STIE)
Description: The Web service creates and sends code that forces the

client to crash. As this could (but needs not) be code created by an attacker,
AST103 is a possible origin of this threat.



Threat Modelling For ASP.NET 153

Countermeasures: Carefully create Web service (HTML-/script-) output
and avoid additional/plugin media/technology where possible. Before
delivering any code, check if the client supports the needed technology and
offer alternative technology.

5.3 Attack point 3: ASP.NET-gate circumvented

As ASP.NET serves as ‘gateway’ to the web applications, threats could
be possible by contacting applications without ASP.NET intervening.

5.3.1 AST301: Reveal location of subordinate application (I)

Description: An attacker causes the server application to generate output
that exposes the location of subordinate applications, databases etc.

Countermeasures: Force the applications to receive input data through a
central, filtering application that is redirecting the data on the server-side.

5.3.2 AST302: Execute suberdinate application directly (STRIDE)

Description: An attacker executes a subordinate application that is
intended not to be executed from outside.

Countermeasures: This should not be possible due to the prerequisites.
Subordinate applications should be configured not to be executed from
outside the Web service. Establish trust management on the server by
defining a 'need-to-know' access rules matrix for internal applications
(read/write).

5.4 Attack point 4: Internal aggressor

The Web service files could be accessed by an internal attacker being
connected to the company network. As a consequence, the www-interface is
avoided by accessing the Web service structure from the internal network.

5.4.1 AST401: Accessing applications with internal authentication
data (STRIDE)

Description: An attacker from inside the network accesses/executes
components with 'insider' privileges. Manipulation of data/communication
could be possible with those access rights.

Countermeasures: Web service components should only be executed
with restricted privileges. Additionally, a sophisticated rights management
prevents execution by real users (run as special, 'virtual' user only). Using 4-



154 Riidiger Grimm and Henrik Eichstadt

eyes principle access rules for very sensitive actions and data secures those
areas.

5.4.2 AST402: Accessing stored data (TRIDE)

Description: An attacker from inside the network accesses data stores
(file system, data base) to get information. The data stored is accessed
directly through OS means, not via ASP.NET.

Countermeasures: Access to data stores should only be permitted to Web
service components.

5.4.3 AST403: Manipulating source code (TIE)

Description: An attacker from inside the network accesses the file system
and manipulates the source code files.

Countermeasures: Limit write access, Sign/create hash values for
component files and deny execution if authentication of component fails.
Additionally, the changes of source code can be logged (logfile, notification
mail etc.).

5.5 Attack point 5: Unmanaged Code

As ASP.NET allows the integration of a broad variety of applications,
also ‘old’ code can be used in ASP.NET-based Web services. It is then
necessary to exchange data between these (un)managed code components.

5.5.1 ASTS501: Inconsistent data (ID)

Description: When components running outside the CLR are used, data-
types have to be converted but can’t always be mapped 'perfectly’ between
these components. An attacker could use this to cause components to
malfunction (by generating a complex piece of data).

Countermeasures: Native code should be ported to .NET code (‘partial
port’ approach according to [6]) and/or the critical native code should be
rewritten. Exception handling to catch wrong data types should be
implemented.

5.6 Attack point 6: Aggressor application inside Web
service

If some application inside the Web service structure is used to attack the
Web service, this set of threats is conceivable.



Threat Modelling For ASP.NET 155
5.6.1 AST601: Revelation of data from inside (I)

Description: Web service data-store components / store controls can
easily be contacted by a 'hi-jacked’ component to retrieve stored data.

Countermeasures: Implement system integrity checks (viruses, Trojan
horses), establish a 'need-to-know' access rules matrix for internal
applications (read/write) and define a strong access control. Additionally
check if request originally comes from 'outside’ and is generated by a http-
request through the official, allowed routes. Sign components to prevent
manipulation of the hi-jacked components’ source code.

5.6.2 AST602: Manipulation of data from inside (STRIDE)

Description: Web service data-store components / store controls can be
contacted by a 'hi-jacked’ component to manipulate stored data.
Countermeasures: see AST601

5.6.3 AST603: Contacting Applications from inside (STRIDE)

Description: Web service applications can be contacted by a 'hi-jacked’
component (Trojan horse or stolen privileges). The component can request
the service of other applications without any outside-triggered need.

Countermeasures: see AST601. The ‘need-to-know’-rules matrix has to
be expanded to cover the execution of components.

5.6.4 AST604: Revelation of configuration information: (I)

Description: 1f client software (e.g. Browser, .NET Interface) is run on
the server, it is possible for an attacker to gather configuration information
(OS version, .NET runtime version etc.).

Countermeasures: Deny client software to be run on server.

5.6.5 AST60S: Buffer overflow (STRIDE)

Description: Buffer overflows are used to attack the server. Especially
Web service components are permanently cached in the CLR using one
memory area. This can be used to cause Buffer Overflows and get access to
the Web service.

Countermeasures: Cause caching to refresh periodically and implement
Buffer Overflow checks. Avoid using unmanaged code.



156 Riidiger Grimm and Henrik Eichstadt
6. REVERSE TABLE OF ATTACKS

Table 2. ASP.NET-Threats / STRIDE matrix

s T R I D E
ASTO001 X
AST101 X X X X
AST102 X X X X
AST103 X X X X X X
AST201 X
AST202 X X X
AST301 X
AST302 X X X X X X
AST401 X X X X X X
AST402 X X X X X
AST403 X X X
AST501 X X
ASTG601 X
ASTG602 X X X X X
AST603 X X X X X X
AST604 X
AST605 X X X X X X
7. DESIGN GUIDELINES

1. Validate input data on the server side
e Validating on the client side is nice for the user, but insecure for your
application because it can be bypassed
e Server-sided validation can’t be by-passed, check input data to be of
the correct range, expected length and uploaded files to be of the
correct data type or among correct/allowed file types. For this
validation, use the .Net validation controls.
2. Do not insert data again that was input and validated before, without new
validation (only insert and check deltas to previous state)
3. Establish a ‘need-to-know’ access rules matrix
e Which application may connect to another application/to a data storage
e Which application may request what kind of data
e Which application may modify data
4. Sign components and check correct signature (checksum, hash) within
the Web service structure
5. Make sure data can only be accessed via a Web service component
e Especially do not allow direct request of uploaded files
e Deny execution of uploaded files
6. Re-ask for credentials if a critical action (modification of user data) is
requested



Threat Modelling For ASP.NET 157

7. Use managed code wherever possible
e Convert ‘old’” applications
8. Minimize forms
e Collect only data that is needed by the application — the user will begin
to trust your application
9. Do not reveal internal (configuration / system) data to user
e Error codes delivered to the user have to be generic (‘an error
occurred’, if it is that bad)
e Log error codes in detail to a logfile on the server in a secure folder
10.Have a ‘pure’ server (see prerequisites section)
¢ No client applications installed
e Only needed services installed / active

8. ACKNOWLEDGEMENTS

The work reported in this paper was developed as part of the Designing
Secure Applications (DeSecA) project, funded by Microsoft. Partners within
this project were the Universita’ degli Studi di Milano, the Technical
University of Ilmenau, the University of Salford, and the COSIC and
DistriNet research groups of the Katholieke Universiteit Leuven.

9. REFERENCES

[1] J.Butler, T. Caudill - ASP.NET Database Programming - Weekend Crash Course (John
Wiley & Sons Inc, 2002)

[2] L. Desmet, B. Jacobs, F. Piessens, and W. Joosen. A generic architecture for web
applications to support threat analysis of infrastructural components, Eighth IFIP TC-6 TC-11
Conference on Communications and Multimedia Security (CMS 2004), September 2004, UK,
pp155-160

[3] MSDN Library - Improving web application security: Threats and Countermeasures
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnnetsec/html/ThreatCounter.asp, 2003

[4] Information Technology Security Evaluation Criteria (ITSEC):/ Provisional Harmonised
Criteria. Luxembourg: Office for Official Publications of the European Communities, 1991.
Bundesanzeiger V erlagsges., K&In 1992

[5] The Common Criteria for Information Technology Security Evaluation (CC) version 2.1,
Sep 2000. Part 1 - Intro & General Model; Part 2 - Functional Requirements; Part 3 -
Assurance Requirements. Standardised as ISO/IEC 15408 1999 (E), available from
http://csre.nist.gov/cc/

[6] Don Box - Migrating Native Code to the NET CLR
http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/01/05/com/toc.asp, 2001



158 Ridiger Grimm and Henrik Eichstadlt

[7] L. Desmet, B. Jacobs, F. Piessens, and W. Joosen. Threat modelling for web services
based web applications. Eighth IFIP TC-6 TC-11 Conference on Communications and
Multimedia Security (CMS 2004), September 2004, UK. pp 161-174



