
Simple Power Analysis on Exponentiation
Revisited

Jean-Christophe Courrège1, Benoit Feix2, and Mylène Roussellet2

1 CEACI-THALES
18 Avenue Edouard BELIN

31401 Toulouse, France
Jean-Christophe.courrege@thalesgroup.fr

2 INSIDE CONTACTLESS
41 Parc Club du Golf

13856 Aix-en-Provence, Cedex 3, France
{bfeix, mroussellet}@insidefr.com

Abstract. Power Analysis has been studied since 1998 when P. Kocher
et al. presented the first attack. From the initial Simple Power Analy-
sis more complex techniques have been designed and studied during the
previous decade such as Differential and Correlation Power Analysis. In
this paper we revisit Simple Power Analysis which is at the heart of side
channel techniques. We aim at showing its true efficiency when stud-
ied rigorously. Based on existing Chosen Message attacks we explain in
this paper how particular message values can reveal the secret exponent
manipulated during a modular exponentiation with a single power con-
sumption curve. We detail the different ways to achieve this and then
show that some blinded exponentiations can still be threatened by Sim-
ple Power Analysis depending on the implementation. Finally we will
give advice on countermeasures to prevent such enhanced Simple Power
Analysis techniques.

Keywords: Public key cryptography, long integer arithmetic, modular
exponentiation, power analysis.

1 Introduction

The appearance of public key cryptography [DH76] and of the RSA cryptosystem
[RSA78] was the beginning of modern cryptography. The use of these schemes,
and especially RSA, has become very popular and more and more systems have
based their security on it. Thus, in order to implement these systems efficiently,
various modular multiplication algorithms have been designed to be embedded
in constrained hardware resources devices such as Trusted Platform Modules
(TPM) and smart cards.

Another consideration has become a key point for developers is the tamper
resistance topic. For years smart cards had been considered as tamper resistant
devices until Kocher et al. introduced in 1996 the Timing Attacks [Koc96] and

few years later the Power Analysis Attacks [KJJ99]. Their techniques, named
Simple Power Analysis (SPA) and Differential Power Analysis (DPA), threaten
any naive cryptographic algorithm implementation. As electronic devices are
composed of thousands of logical gates that switch differently depending on the
executed operations, the power consumption depends on the executed instruc-
tions and the manipulated data. Thus by analyzing the power consumption of
the device on an oscilloscope it is possible to observe its behavior and then to
deduce from this power curve the secret data manipulated.

From the initial SPA and DPA of Kocher et al. many studies were presented
to introduce new attack techniques on different popular cryptographic schemes
and to improve the power curve processing in order to recover secrets with
fewer curves than the classical DPA. Others presented some countermeasures to
these attacks. In this paper we focus on SPA and show it is more powerful than
what can be inferred from reading current side channel papers. To illustrate
our paper and assertions some practical results are presented on some secure
implementations.

The paper is organized as follows. First we recall in sections 2 and 3 the
fundamentals notations and techniques on which our work is based. Section 2
gives an overview of long integer arithmetic for public key embedded implemen-
tations. Section 3 describes the Side Channel Analysis techniques related to this
paper. We present in Section 4 some chosen message SPA techniques and explain
the reasons of observed power leakages. We also explain how these power leak-
ages can be exploited to mount enhanced SPA on non-chosen or blinded message
exponentiations. In Section 5 we analyze the efficiency of the classical counter-
measures and give some advice on their use for preventing enhanced SPA. We
conclude our research in Section 7.

2 Embedded Implementations of Exponentiation

We recall here the mathematical principles and the arithmetic algorithms that
are used to implement public key algorithms in embedded devices.

2.1 Long Integer Multiplication

In this paper we use the following notation: x = (xk−1 . . . x1x0)b corresponds to
integer x decomposition in base b, i.e. the x decomposition in t-bit words with
b = 2t and k = dlogb(x)e.

Algorithm 2.1 presents to the classical long integer multiplication algorithm
used to compute x × y.

2.2 Long Integer Modular Multiplication

Chip manufacturers usually embed arithmetic coprocessors to compute modular
multiplications x × y mod n for long integers x, y and n. In this paper we
choose to illustrate our analysis on the Barrett and the Montgomery [Mon85]

2

reductions. But other techniques exist such as the interleaved multiplication-
reduction with Knuth, Sedlack or Quisquater methods [Dhe98]. Our analysis
can also be adapted to these methods.

Algorithm 2.1 Long Integer Multiplication
Input: x = (xk−1xk−2 . . . x1x0)b, y = (yk−1yk−2 . . . y1y0)b
Output: LIM(x, y) = x× y

Step 1. for i from 0 to 2k − 1 do wi = 0

Step 2. for i from 0 to k − 1 do
c← 0
for j from 0 to k − 1 do

(uv)b ← wi+j + xj × yi + c
wi+j ← v and c← u

wi+k ← v

Step 3. Return(w)

Multiplication with Barrett Reduction. Here a modular multiplication
x × y mod n is the combination of a long integer multiplication LIM(x,y)
followed by a Barrett reduction by the modulus value n. We use the notation
BarrettRed(a,n) for this reduction, thus BarrettRed(LIM(a,m),n) corresponds to
the computation of a × m mod n. We do not detail the Barrett reduction
algorithm here, for more details the reader can refer to [MOV96] or [ACD+06].

Montgomery Modular Multiplication. Given a modulus n and two integers
x and y, of size v in base b, with gcd(n, b) = 1 and r = bdlogb(n)e, MontMul
algorithm computes:

MontMul(x, y, n) = x × y × r−1 mod n

Refer to papers [Mon85] and [KAK96] for details of MontMul implementation.

We denote by ModMul(x,y,n) the operation x × y mod n, it can be done
using Barrett or Montgomery processing.
Then the Square and Multiply algorithm used for an exponentiation becomes:

Algorithm 2.2 Exponentiation
Input: integers m and n with m < n, k-bit exponent d = (dk−1dk−2 . . . d1d0)2
Output: Exp(m,d,n)= md mod n

Step 1. a = 1

Step 2. Process ModMul precomputations

Step 3. for i from k − 1 to 0 do
a = ModMul(a,a,n)
if di = 1 then a = ModMul(a,m,n)

Step 4. Return(a)

3

2.3 The RSA cryptosystem

Let p and q be two secret prime integers and n = p×q be the public modulus used
in the RSA cryptosystem. Let e be the public exponent and d the corresponding
private exponent such that e · d = 1 mod φ(n) where φ(n) = (p − 1)(q − 1).
Signing with RSA a message m consists of computing the value s = md mod n.
Signature s is then verified by checking that se mod n is equal to m.

3 Simple Power Analysis

Power Analysis has been studied for years since it was introduced by Kocher,
Jaffe and Jun in [KJJ99]. Many attacks on the most frequently used cryptosys-
tems (DES, AES, RSA, ECC . . .) have been published and improvements on
power analysis techniques have been done during the last decade. For example
Correlation Power Analysis publication from Brier, Clavier and Olivier [BCO04]
requires far fewer curves for recovering the key than the original DPA. More re-
cently many studies have been published to improve the Side Channel method-
ology [GBTP08], [SGV08], [PR09].

The initial publication [KJJ99] on SPA showed how to recover the secret
exponent during a modular exponentiation from a single power consumption
curve. Impressive results are obtained when the squaring and the multiplying
operations have different recognizable and sizeable patterns. If so the bits of the
secret exponent can directly be read on the power curve of a classical Square
and Multiply algorithm. Indeed two consecutives squares on the curve imply the
exponent bit is 0 while when a squaring is followed by a multiplication the
exponent bit is 1.

This SPA corresponds to the power leakage related to differences in the
executed code. The leakage is caused by the fact that the executed code is
different for a squaring than for a multiplication. An efficient countermeasure
against this SPA is the Side-Channel Atomicity introduced by Chevalier-Mames,
Ciet and Joye [CCJ04]. In their implementation the code executed during the
whole exponentiation loop is the same for a squaring and a multiplication step.
Consequently, it is no more possible to distinguish which operation is performed.
Their method improves resistance to classical SPA without adding supplementary
multiplications contrary to the Square and Multiply Always algorithm.

Yen et al. introduced in [YLMH05] a new type of SPA attack based on the use
of particular message values. It defeats previous countermeasures considered as
resistant against SPA. In their paper Yen et al. use as an input message m = n−1
for modular exponentiation. The only two values involved during the exponen-
tiation md mod n are 1 and n − 1. The Hamming weights of these data are so
different by simply observing the power trace, it is very easy to determine the
moments when 1 is involved in a multiplication. Only three different operation
cases can be processed during the exponentiation: 1×1, 1×n−1 or n−1×n−1
with three different and recognizable signal patterns. It is then simple to deduce

4

the sequence of squarings and multiplications and to recover the secret exponent.

Other attacks named Doubling and Collision attacks have been presented in
[FV03] and [YLMH05] but they need at least two executions of an exponentiation
with the same exponent to mount the attack. However in this paper we choose
to only consider attacks recovering the secret from a single power consumption
curve and thus counterfeiting the exponent blinding countermeasure.Therefore
we do not consider Doubling and Collision attacks here.

4 Enhanced Simple Power Analysis on Exponentiation

In Yen et al. attack and the other techniques introduced in this paper, SPA does
not aim at distinguishing differences in code execution but rather to detect when
specific data are manipulated through their specific power signature. Indeed
power signatures during an operation (x × y) or (x × y mod n) will depend on
values x and y. If x and/or y have very particular Hamming weights then it
will lead to a very characteristic power trace for the multiplication. We present
here many values which can generate a recognizable pattern and thus lead to
the exponent being recovered from a single power trace.

We illustrate our analysis on the ModMul operation using the Barrett
reduction and especially during the computation of LIM(x,y). The same analysis
can be done in other kind of modular multiplication methods, for instance in the
modular Montgomery multiplication method MontMul(x,y).

4.1 Origin of Power Leakage

The power leakage appears during the operation xi × yj of the long integer
multiplication LIM(x,y). Any operation xi×yj has a power consumption related
to the number of bit flips of the bit lines manipulated. When one of the operands
is null or has very few bits set, for instance is equal to 0, or 2i with i in 0 . . . t−1,
the t-bit multiplication has a lower power consumption than the average one.
We can then distinguish in a long integer multiplication when such a value is
manipulated.

If the value of the multiplicand m contains one (or more) of the t-bit word(s)
set to 0 or 2i with i in 0 . . . t − 1, during an atomic exponentiation loop we can
recognize each time this value m is manipulated, i.e. each time the exponent bit
is 1.

The condition for this SPA to succeed is that one (or more) of the t-bit
word(s) of x or y is set to 0 (or in some cases it could be also to 2i with i in
0 . . . t − 1). We consider here that the leakage appears only for zero values.

We can then quantify the power consumed by the device for computing xi×yj .
We denote by C(xi, yj) this power consumption . As illustrated in Table 1 we
can distinguish three categories depending on whether xi and yj values are 0 or
not.

5

xi yj C(xi, yj)

xi 6= 0 yj 6= 0 CHigh

xi 6= 0 yj = 0 CMedium

xi = 0 yj = 0 CLow

Table 1. Power Signal quantity for xi × yj

When xi = 0 and yj = 0 the device only manipulates zero bits. Thus the
amount of power consumed by the multiplication is Low, we denote it as CLow.
A multiplication with non zero values (xi 6= 0 and yj 6= 0) yields a higher power
consumption: we consider this as High and denote it as CHigh. Finally when
xi 6= 0 and yj = 0 the amount of power consumed by a multiplication is consid-
ered as Medium: we denote it as CMedium.

In the operation LIM(x,y) we can graphically estimate the power curve by
CLIM(x,y) =

∑k−1
i=0

∑k−1
j=0 C(xi, yj) · T (k, i, j) with C(xi, yj) being the power

consumption of the device for computing xi × yj and T a function which
represents the number of cycles executed for a set (k, i, j). This corresponds
to the schematic power curve of Figure 1.
A graphical estimation of power consumption expected depending on whether
we have CHigh, CMedium or CLow is given in Figure 2.

Fig. 1. CLIM(x,y): power curve representa-
tion of operation LIM(x,y) with k = 4

Fig. 2. Three cases of estimated
power curves for C(xi, yj)

When an operation xi × yj leads to C(xi, yj) being CLow or CMedium we can
identify this operation in the curve. This explains why the SPA introduced by Yen
et al. allows the secret exponent recovering with a single curve for a well chosen
message. Indeed when comparing the three possible operations occurring in an
exponentiation with the input chosen message m = n − 1 we obtain for k = 3
the Table 2. In this table we observe that CLIM(x,y) has different recognizable
patterns for each long integer multiplication.

6

x× y x in base b y in base b CLIM(x,y)

(n− 1)× (n− 1) a = (a2, a1, a0)b a = (a2, a1, a0)b CH |CH |CH |CH |CH |CH |CH |CH |CH

1× (n− 1) a = (0, 0, 1)b m = (m2, m1, m0)b CH |CM |CM |CH |CM |CM |CH |CM |CM

1× 1 a = (0, 0, 1)b a = (0, 0, 1)b CH |CM |CM |CM |CL|CL|CM |CL|CL

Table 2. The three possible power traces for LIM(x,y) in Yen et al.’s attack for k = 3

More Chosen Messages. From this analysis we can enumerate other chosen
messages leading to successful SPA on atomic exponentiations such as messages
with one or many t-bit word equal to 0 or 2i with i in 0 . . . t − 1. Messages
with a globally low Hamming weight can also lead to a medium or low power
consumption and allow to recover the secret exponent in a single power curve.

4.2 Experiments and Practical Results

We experimented this attack on many different multipliers processors to confirm
our theoretical analysis. In this section we present some results we obtained on
two different devices.

First Device. We implemented a Montgomery Modular exponentiation on a
32 × 32-bit multiplier, in this case we have t equal to 32. We chose as input
messages for exponentiations the following values with k = 4: m1 = (α, α, 0, 0),
m2 = (α, 0, 0, 0) where α is 32-bit random value.

Fig. 3. Part of exponentiation power curves with messages m1 and m2 and k = 4,
zoom on LIM(m1,a) (black) and LIM(m2,a) (grey)

7

Figure 3 represents a part of the measured exponentiation curves of these
two messages. The black curve corresponds to the exponentiation with message
m1 and grey curve with m2. The multiplication is clearly identifiable by a lower
power consumption compared to the squaring. Message m2 takes one more 32-bit
word equal to 0 than m1. This results in Figure 3 in a low power consumption
longer for grey curve than for black curve during the multiplication.

In this case we also observed that CMedium is close to CHigh but the two can
be distinguished.

Second Device. We designed an 8 × 64-bit hardware multiplier with the
associated long integer exponentiation. In the multiplication x × y the operand
x is manipulated by 64-bit words when the operand y is taken by 8-bit words.
The message is placed in the second operand y for the multiplications during
the exponentiation.

We chose several messages containing one or more zero 8-bit words and ex-
ecuted the corresponding long integer exponentiations. We then simulated the
power consumption of the synthesized multiplier we have designed. By analyzing
these power curves we can observe that a zero byte yj in operand y produces a
lower power consumption curve in the cycles where yj is manipulated. We are
then able to recover the whole secret exponent in an exponentiation when a zero
byte is present in the message value.

We have explained here the potential power leakages related to multiplication
and exponentiation computations and confirmed our analysis with some practical
results. In the next paragraph we study the probability of leakage depending on
the multiplier and modulus bit lengths.

4.3 Leakage Probability

In this paragraph letters p and q design probabilities.

Probability of leakage during a multiplication. Let xi be a t-bit word,
and p be the probability for xi to be null, then we have P (xi = 0) = 1

2t = p and
P (xi 6= 0) = 1 − p.
If Y is the event {None of the t-bit word is null in a k-word integer} with
P (Y) = (1 − p)k, then we have Y which corresponds to the event {at least
one of the t-bit words is null in a k-word integer} with probability:

q = P (Y) = 1 − P (Y) = 1 − (1 − p)k = 1 − (1 − 1
2t

)k

During a long integer modular multiplication x × y the leakage appears only if
at least one of the k t-bit words of x or/and y is null. The probability for this
leakage to appear corresponds to 1 − (1 − p)2k.

8

Probability of leakage during an exponentiation. During an exponentia-
tion we focus on the probability of having a leakage in a t-bit multiplication x×y
when only y takes part in the leakage and not x (or the opposite). Indeed during
an exponentiation md mod n the message m is used during each multiplication
at step 3 of Algorithm 2.2, when di = 1. Thus if the value m contains a t-bit
word mi leading to leakage in the operations mi × aj and/or mi × a then each
multiplication by mi and thus by m could be identified and the secret exponent
d can be recovered from a single power curve.
In this case the probability of having one or many of the t-bit words of m leading
to a signing pattern is:

q = 1 − (1 − p)k = 1 − (1 − 1
2t

)k

This is also the probability of having an SPA leaking curve for a single execution
of the exponentiation.

Fig. 4. Probability of having a message with a signing pattern depending of multiplier
size (t) and modulus size (1024, 1536, 2048)

In the case of an 8-bit multiplier Figure 4 shows that the probability of hav-
ing a message with a signing pattern is about 0.394 for a 1024-bit modulus, 0.528
for a 1536-bit modulus and 0.633 for a 2048-bit modulus. When the multiplier
is greater than 16 bits this probability decreases for all modulus sizes.
It also obvious that bigger the key length is and smaller the multiplier size (t) is,
the higher the probability of recovering the secret exponent d in a single curve is.

Using Poisson law as an approximation of binomial law we have the property
that with 1/q exponentiation power curves the probability for recovering the
secret exponent is (1 − 1

exp(1)). Thus the probability Pleak of recovering the
secret exponent using one of the h/q acquired curves is approximated by
Pleak = P (h/q) = 1 − (1

exp(1))
h.

9

Fig. 5. Probability Pleak for an 8-bit
multiplier depending on the number
of curves acquired and modulus size
(1024, 1536, 2048)

Fig. 6. Probability Pleak for a 16-bit
multiplier depending on the number
of curves acquired and modulus size
(1024, 1536, 2048)

Figures 5 and 6 show how many curves would be needed to have, with a
probability close to 1, a message leading to a signing pattern which can be used
for our SPA attack. With an 8-bit multiplier (Figure 5), a very few messages
(5 to 10) are necessary to obtain an exploitable leakage with high probability.
For a 16-bit multiplier (Figure 6) between 3000 and 5000 curves are needed for
a success probability close to 1. But for a multiplier size greater than 16 the
number of curves needed for recovering the secret exponent makes the attack
not practical; example is given for t = 32 in Appendix A.
The bigger the multiplier, the greater the number of collected curves needed.
Examples are given in Table 3.

Modulus Multiplier size
size 8 16 32

1024 12 4720 ≈ 229

1536 9 3150 ≈ 229

2048 8 2360 ≈ 228

Table 3. Number of messages needed to have Pleak ≥ 0.99

4.4 Enhanced Simple Power Analysis on Blinded Exponentiations

In this section we consider that the exponentiation is secured using message and
exponent blinding.

Exponent Blinding. This common countermeasure consists in randomizing
the secret exponent d by d? = d+r1 ·n mod φ(n) with r1 being a random value.
However here the exponent blinding has no effect on our analysis since a single
curve is used to recover the private exponent and recovering d? is equivalent to
recovering d.

10

Randomized Chosen Message. Now we consider that the message is ran-
domized additively by the classical countermeasure: m? = m+ r1 ·n mod r2 ·n,
with r1 and r2 being two l-bit random values. In this case we have m? equal
to m + u · n with u being a l-bit value equal to r1 mod r2. In this case an at-
tack could consist of choosing a message m? being 1 or 2i, guessing a random
value uguess, computing message m from guessed randomized message m?, i.e.
m = m? − uguess · n, and executing at least 2l exponentiations with input mes-
sage m. One of the 2l exponentiation power curves should present leakages and
should allow the secret exponent to be recovered with SPA.

However if r1 and r2 are effectively chosen in a pure random way we observe
that this attack could be done faster. Indeed if we analyze the distribution
of values u = r1 mod r2 we observe that values do not appear with same
probability and that the more frequent are the smallest ones. The most frequent
one being u = 0. It is illustrated in Figure 7 for l = 8. While less pronouced
the same phenomenon can also be observed for bigger l values. The best attack
method in this case would consist of choosing uguess = 0 (or 1 or 2) and executing
the exponentiation many times until a leaking power curve is obtained.

Fig. 7. Distribution of u for l = 8

Unknown Message. When analyzing the leakage probabilities of Section 4.3
it appears that the number of curves needed to recover the secret exponent for
a fixed multiplier size only depends on the modulus length, even if the message
is unknown to the attacker. For instance for a 1024-bit modulus and a 16-
bit multiplier by collecting 5000 power consumption curves of exponentiations
done with unknown different messages the probability of recovering the secret
exponent is close to 1.

Synthesis. As the additive randomization of the message does not significantly
increase message length, the amount of messages needed does not increase either.
Thus if the attacker can choose input messages of the blinded exponentiation,

11

he will choose the attack which requires less effort comparing number of chosen
message acquisitions needed (when guessing the random) with the number of
curves to collect to have PLeak = 1.

5 Countermeasures and Recommendations

5.1 Balancing the Power Consumption

The attack presented in this paper is based on the fact that manipulating zero t-
bit values results in low power consumption cycles. Thus a method to prevent this
attack would consist in using balanced power consumption technology such as
dual rail technique. In this case the manipulation of a value with a low Hamming
weight (for instance 0) will no longer have a different power consumption than
the one due to the manipulation of other values.

5.2 Random Choice for Blinding

As we showed previously the values r1 mod r2 are not uniformly distributed
when r1 and r2 are random. A better solution consists of choosing a fixed value
for r2 and a random value for r1. From our analysis the best choice for r2 is to
take the biggest l-bit prime number. In that case r2 will never divide r1, thus u
cannot be null and u values are uniformly distributed as it is showed in Figure
8.

Another consideration is that the random length choice is also directly related
to the multiplier size. In section 4.4 we have seen that while the number of
possible random values u is smaller than the number of messages to test given by
the leakage probability analysis, it is easier to test all random values u. Regarding
this statistical properties we showed that when the multiplier is small (8 or 16
bits) the quantity of curves needed for a successful Simple Power Analysis is
reasonable.

Thus by combining a multiplier with a size of at least equal to 32 bits, with
big random number r1 (longer than 32 or 64 bits) and the biggest prime integer
r2, the feasibility of the attack explained in this paper is significantly reduced.

6 Remarks on RSA CRT and ECC

We presented our analysis on exponentiation computations. It corresponds di-
rectly to straightforward implementations of RSA signature and decryption al-
gorithms as they simply consist of an exponentiation with the secret exponent.
In case of RSA CRT the analysis is a little bit different since the input message
is reduced modulo p and q before the exponentiations. Even if data manipulated
into the multiplications are twice shorter than the modulus n, similar analy-
sis can be conducted on reduced messages. However the countermeasure which
consists in fixing the random value r2, must not be used in RSA CRT implemen-
tations as it would not be protected against the correlation analysis on the CRT
recombination presented in [AFV07].

12

Fig. 8. Distribution of u for l = 8 and r2 = 251

ECC are also concerned. The analysis depends on the kind of coordinates and
algorithm chosen for the scalar multiplication, anyway implementations using
small multipliers and/or small random numbers for coordinates randomization
[Cor99] have to be avoided.

7 Conclusion

In this paper we have explained the origin of the power leakages during
multiplications and presented other ways to mount Simple Power Analysis
attacks. Indeed by observing differences in data power signatures instead of
differences in code execution, using some well chosen messages allows the whole
secret exponent of RSA cryptosystem to be recovered from a single curve.
Moreover we have shown that some improvements in SPA attacks lead to
the recovery of the secret exponent on secured exponentiations using blinding
countermeasures and with non chosen messages. We analyzed the blinding
countermeasures and gave advice to developers to protect their implementations
against this enhanced SPA. Judicious choice and large random numbers in
blinding countermeasures combined with large size multipliers, especially greater
than 32 bits, are recommended for SPA resistance.

Acknowledgments

The authors would like to thank Christophe Clavier for the fruitful discussions we
had and the improvements he suggested to us. Thanks also to Sean Commercial
for his valuable comments and advice on this manuscrit.

References

[ACD+06] R-M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and
F. Verkauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptogra-
phy, 2006.

13

[AFV07] F. Amiel, B. Feix, and K. Villegas. Power Analysis for Secret Recovering
and Reverse Engineering of Public Key Algorithms. In Selected Areas in
Cryptography, volume 4876 of Lecture Notes in Computer Science, pages
110–125. Springer, 2007.

[BCO04] E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a
Leakage Model. In M. Joye and J-J. Quisquater, editors, Cryptographic
Hardware and Embedded Systems - CHES 2004, volume 3156 of Lecture
Notes in Computer Science, pages 16–29. Springer, 2004.

[CCJ04] B. Chevallier-Mames, M. Ciet, and M. Joye. Low-cost Solutions for
Preventing Simple Side-Channel Analysis: side-channel atomicity. IEEE
Transactions on Computers, 53(6):760–768, 2004.

[Cor99] J-S Coron. Resistance against differential power analysis for elliptic curve
cryptosystems. In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware
and Embedded Systems - CHES 1999, volume 1717 of Lecture Notes in
Computer Science, pages 292–302. Springer, 1999.

[DH76] W. Diffie and M. E. Hellman. New Directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[Dhe98] J-F. Dhem. Design of an efficient public-key cryptographic library for RISC-
based smart cards. PhD thesis, Université catholique de Louvain, Louvain,
1998.

[FV03] P-A. Fouque and F. Valette. The Doubling Attack - why upwards is
better than downwards. In C. D. Walter, Ç. K. Koç, and C. Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2003, volume 2779
of Lecture Notes in Computer Science, pages 269–280. Springer, 2003.

[GBTP08] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual Information
Analysis. In E. Oswald and P. Rohatgi, editors, Cryptographic Hardware
and Embedded Systems CHES 2008, volume 5154 of Lecture Notes in
Computer Science, pages 426–442. Springer, 2008.

[KAK96] Ç. K. Koç, T. Acar, and B-S. Kaliski. Analysing and comparing Mont-
gomery multiplication algorithms. IEEE Micro, 16(3):26–33, 1996.

[KJJ99] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. J.
Wiener, editor, Advances in Cryptology - CRYPTO ’99, volume 1666 of
Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

[Koc96] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pages
104–113. Springer, 1996.

[Mon85] P.L. Montgomery. Modular multiplication without trial division. Mathe-
matics of Computation, 44(170), pages 519–521, April 1985.

[MOV96] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1996.

[PR09] E. Prouff and M. Rivain. Theoretical and practical aspects of mutual
information based side channel analysis. In M. Abdalla, D. Pointcheval,
P-A. Fouque, and D. Vergnaud, editors, Applied Cryptography and Network
Security, ACNS 2009, volume 5536 of Lecture Notes in Computer Science,
pages 499–518, 2009.

[RSA78] R. L. Rivest, A Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM 21,
pages 120–126, 1978.

14

[SGV08] F-X. Standaert, B. Gierlichs, and I. Verbauwhede. Partition vs. comparison
side-channel distinguishers: An empirical evaluation of statistical tests for
univariate side-channel attacks against two unprotected cmos devices. In
Pil Joong Lee and Jung Hee Cheon, editors, Information Security and
Cryptology ICISC 2008, volume 5461 of Lecture Notes in Computer
Science, pages 253–267. Springer, 2008.

[YLMH05] S-M. Yen, W-C. Lien, S. Moon, and J. Ha. Power Analysis by Exploiting
Chosen Message and Internal Collisions - Vulnerability of Checking Mecha-
nism for RSA-decryption. In E. Dawson and S. Vaudenay, editors, Mycrypt
2005, volume 3715 of Lecture Notes in Computer Science, pages 183–1956.
Springer, February 2005.

A Leakage Probability for t up to 32

The following figures give the probability of leakage for a 32-bit multiplier and
the leakage probability increasement regarding the number of exponentiation
executions.

Fig. 9. Probability of having a message with a signing pattern for 32-bit multiplier
depending on modulus size (1024, 1536, 2048)

Fig. 10. Probability Pleak for a 32-bit multiplier depending on the number of curves
acquired and modulus size (1024, 1536, 2048)

15

