Conference Papers Year : 2016

Data Anonymization as a Vector Quantization Problem: Control Over Privacy for Health Data

Abstract

This paper tackles the topic of data anonymization from a vector quantization point of view. The admitted goal in this work is to provide means of performing data anonymization to avoid single individual or group re-identification from a data set, while maintaining as much as possible (and in a very specific sense) data integrity and structure. The structure of the data is first captured by clustering (with a vector quantization approach), and we propose to use the properties of this vector quantization to anonymize the data. Under some assumptions over possible computations to be performed on the data, we give a framework for identifying and “pushing back outliers in the crowd”, in this clustering sense, as well as anonymizing cluster members while preserving cluster-level statistics and structure as defined by the assumptions (density, pairwise distances, cluster shape and members...).
Fichier principal
Vignette du fichier
430962_1_En_13_Chapter.pdf (87.03 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01635008 , version 1 (14-11-2017)

Licence

Identifiers

Cite

Yoan Miche, Ian Oliver, Silke Holtmanns, Aapo Kalliola, Anton Akusok, et al.. Data Anonymization as a Vector Quantization Problem: Control Over Privacy for Health Data. International Conference on Availability, Reliability, and Security (CD-ARES), Aug 2016, Salzburg, Austria. pp.193-203, ⟨10.1007/978-3-319-45507-5_13⟩. ⟨hal-01635008⟩
156 View
183 Download

Altmetric

Share

More