Conference Papers Year : 2016

On Finite Monoids of Cellular Automata

Alonso Castillo-Ramirez
  • Function : Author
  • PersonId : 998314
Maximilien Gadouleau
  • Function : Author
  • PersonId : 982315

Abstract

For any group G and set A, a cellular automaton over G and A is a transformation τ : A G A G defined via a finite neighbourhood S G (called a memory set of τ ) and a local function μ : A S A . In this paper, we assume that G and A are both finite and study various algebraic properties of the finite monoid C A ( G , A ) consisting of all cellular automata over G and A. Let I C A ( G ; A ) G and A. In the first part, using information on the conjugacy classes of subgroups of G, we give a detailed description of the structure of I C A ( G ; A ) in terms of direct and wreath products. In the second part, we study generating sets of C A ( G ; A ) . In particular, we prove that C A ( G , A ) cannot be generated by cellular automata with small memory set, and, when G is finite abelian, we determine the minimal size of a set V C A ( G ; A ) such that C A ( G ; A ) = I C A ( G ; A ) V .
Fichier principal
Vignette du fichier
395687_1_En_8_Chapter.pdf (319.23 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01435036 , version 1 (13-01-2017)

Licence

Identifiers

Cite

Alonso Castillo-Ramirez, Maximilien Gadouleau. On Finite Monoids of Cellular Automata. 22th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2016, Zurich, Switzerland. pp.90-104, ⟨10.1007/978-3-319-39300-1_8⟩. ⟨hal-01435036⟩
128 View
64 Download

Altmetric

Share

More