A Theory of Integrating Tamper Evidence with Stabilization
Abstract
We propose the notion of tamper-evident stabilization –that combines stabilization with the concept of tamper evidence– for computing systems. On the first glance, these notions are contradictory; stabilization requires that eventually the system functionality is fully restored whereas tamper evidence requires that the system functionality is permanently degraded in the event of tampering. Tamper-evident stabilization captures the intuition that the system will tolerate perturbation upto a limit. In the event that it is perturbed beyond that limit, it will exhibit permanent evidence of tampering, where it may provide reduced (possibly none) functionality. We compare tamper-evident stabilization with (conventional) stabilization and with active stabilization and propose an approach to verify tamper-evident stabilizing programs in polynomial time. We demonstrate tamper-evident stabilization with two examples and argue how approaches for designing stabilization can be used to design tamper-evident stabilization. We also study issues of composition in tamper-evident stabilization. Finally, we point out how tamper-evident stabilization can effectively be used to provide tradeoff between fault-prevention and fault tolerance.
Domains
Computer Science [cs]Origin | Files produced by the author(s) |
---|
Loading...