Online Learning for Two Novel Latent Topic Models - Information and Communication Technology
Conference Papers Year : 2014

Online Learning for Two Novel Latent Topic Models

Ali Shojaee Bakhtiari
  • Function : Author
  • PersonId : 993448
Nizar Bouguila
  • Function : Author
  • PersonId : 993449

Abstract

Latent topic models have proven to be an efficient tool for modeling multitopic count data. One of the most well-known models is the latent Dirichlet allocation (LDA). In this paper we propose two improvements for LDA using generalized Dirichlet and Beta-Liouville prior assumptions. Moreover, we apply an online learning approach for both introduced approaches. We choose a challenging application namely natural scene classification for comparison and evaluation purposes.
Fichier principal
Vignette du fichier
978-3-642-55032-4_28_Chapter.pdf (547.79 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01397223 , version 1 (15-11-2016)

Licence

Identifiers

Cite

Ali Shojaee Bakhtiari, Nizar Bouguila. Online Learning for Two Novel Latent Topic Models. 2nd Information and Communication Technology - EurAsia Conference (ICT-EurAsia), Apr 2014, Bali, Indonesia. pp.286-295, ⟨10.1007/978-3-642-55032-4_28⟩. ⟨hal-01397223⟩
143 View
121 Download

Altmetric

Share

More