Hybridization of Haar Wavelet Decomposition and Computational Intelligent Algorithms for the Estimation of Climate Change Behavior
Abstract
We propose a hybrid of haar wavelet decomposition, relevance vector machine, and adaptive linear neural network (HWD-RVMALNN) for the estimation of climate change behavior. The HWD-RVMALNN is able to improve estimation accuracy of climate change more than the approaches already discussed in the literature. Comparative simulation results show that the HWD-RVMALNN outperforms cyclical weight/bias rule, Levenberg-Marquardt, resilient back-propagation, support vector machine, and learning vector quantization neural networks in both estimation accuracy and computational efficiency. The model proposes in this study can provide future knowledge of climate change behavior. The future climate change behavior can be used by policy makers in formulating policies that can drastically reduce the negative impact of climate change, and be alert on possible consequences expected to occur in the future.
Origin | Files produced by the author(s) |
---|
Loading...