Conference Papers Year : 2014

Image Clustering Using Multi-visual Features

Bilih Priyogi
  • Function : Author
  • PersonId : 993422
Nungki Selviandro
  • Function : Author
  • PersonId : 993423
Zainal A. Hasibuan
  • Function : Author
  • PersonId : 993424
Mubarik Ahmad
  • Function : Author
  • PersonId : 993425

Abstract

This paper presents a research on clustering an image collection using multi-visual features. The proposed method extracted a set of visual features from each image and performed multi-dimensional K-Means clustering on the whole collection. Furthermore, this work experiments on different number of visual features combination for clustering. 2, 3, 5 and 7 pair of visual features chosen from a total of 8 visual features used, to measure the impact of using more visual features towards clustering performance. The result show that the accuracy of multi-visual features clustering is promising, but using too many visual features might set a drawback.
Fichier principal
Vignette du fichier
978-3-642-55032-4_18_Chapter.pdf (323.65 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01397191 , version 1 (15-11-2016)

Licence

Identifiers

Cite

Bilih Priyogi, Nungki Selviandro, Zainal A. Hasibuan, Mubarik Ahmad. Image Clustering Using Multi-visual Features. 2nd Information and Communication Technology - EurAsia Conference (ICT-EurAsia), Apr 2014, Bali, Indonesia. pp.179-189, ⟨10.1007/978-3-642-55032-4_18⟩. ⟨hal-01397191⟩
173 View
169 Download

Altmetric

Share

More