Unsupervised Parameter Selection for Gesture Recognition with Vector Quantization and Hidden Markov Models - Human-Computer Interaction – INTERACT 2011
Conference Papers Year : 2011

Unsupervised Parameter Selection for Gesture Recognition with Vector Quantization and Hidden Markov Models

Abstract

This article presents an investigation of a heuristic approach for unsupervised parameter selection for gesture recognition system based on Vector Quantization (VQ) and Hidden Markov Model (HMM). The two stage algorithm which uses histograms of distance measurements is proposed and tested on a database of natural gestures recorded with motion capture glove. Presented method allows unsupervised estimation of parameters of a recognition system, given example gesture recordings, with savings in computation time and improved performance in comparison to exhaustive parameter search.
Fichier principal
Vignette du fichier
978-3-642-23768-3_14_Chapter.pdf (413.84 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01597029 , version 1 (28-09-2017)

Licence

Identifiers

Cite

Przemysław Głomb, Michał Romaszewski, Arkadiusz Sochan, Sebastian Opozda. Unsupervised Parameter Selection for Gesture Recognition with Vector Quantization and Hidden Markov Models. 13th International Conference on Human-Computer Interaction (INTERACT), Sep 2011, Lisbon, Portugal. pp.170-177, ⟨10.1007/978-3-642-23768-3_14⟩. ⟨hal-01597029⟩
86 View
97 Download

Altmetric

Share

More