A Pareto Ant Colony Algorithm Applied to the Class Integration and Test Order Problem - Testing Software and Systems Access content directly
Conference Papers Year : 2010

A Pareto Ant Colony Algorithm Applied to the Class Integration and Test Order Problem

Abstract

In the context of Object-Oriented software, many works have investigated the Class Integration and Test Order (CITO) problem, proposing solutions to determine test orders for the integration test of the program classes. The existing approaches based on graphs can generate solutions that are sub-optimal, and do not consider the different factors and measures that can affect the stubbing process. To overcome this limitation, solutions based on Genetic Algorithms (GA) have presented promising results. However, the determination of a cost function, which is able to generate the best solutions, is not always a trivial task, mainly for complex systems with a great number of measures. Therefore, we introduce, in this paper, a multi-objective optimization approach to better represent the CITO problem. The approach generates a set of good solutions that achieve a balanced compromise between the different measures (objectives). It was implemented by a Pareto Ant Colony (P-ACO) algorithm, which is described in detail. The algorithm was used in a set of real programs and the obtained results are compared to the GA results. The results allow discussing the difference between single and multi-objective approaches especially for complex systems with a greater number of dependencies among the classes.
Fichier principal
Vignette du fichier
64350016.pdf (151.63 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01055245 , version 1 (12-08-2014)

Licence

Attribution

Identifiers

Cite

Rafael Veiga Cabral, Aurora Pozo, Silvia Regina Vergilio. A Pareto Ant Colony Algorithm Applied to the Class Integration and Test Order Problem. 22nd IFIP WG 6.1 International Conference on Testing Software and Systems (ICTSS), Nov 2010, Natal, Brazil. pp.16-29, ⟨10.1007/978-3-642-16573-3_3⟩. ⟨hal-01055245⟩
143 View
252 Download

Altmetric

Share

Gmail Facebook X LinkedIn More