A Worst Case Performance Model for TDM Virtual Circuit in NoCs
Abstract
In Network-on-Chip (NoC), Time-Division-Mutiplexing (TDM) Virtual Circuit (VC) is well recognized as being capable to provide guaranteed services in both latency and bandwidth. We propose a method of modeling TDM based VC by using Network Calculus. We derive a tight upper bound of end-to-end delay and buffer requirement for indivdual VC. The performance analysis using Latency-Rate server is also presented in comparsion with our Performance model for TDM Virtual Circuit in NoCs (Pemvin). We conducted experiments on comparing Pemvin to the Latency-Rate server model. Our experiment results show the improvement of Pemvin on tightening the upper bound of end-to-end delay and buffer requirement.
Domains
Digital Libraries [cs.DL]Origin | Files produced by the author(s) |
---|
Loading...