Conference Papers Year : 2020

Explain Graph Neural Networks to Understand Weighted Graph Features in Node Classification

Xiaoxiao Li
  • Function : Author
  • PersonId : 1115815
João Saúde
  • Function : Author
  • PersonId : 1115816

Abstract

Real data collected from different applications that have additional topological structures and connection information are amenable to be represented as a weighted graph. Considering the node labeling problem, Graph Neural Networks (GNNs) is a powerful tool, which can mimic experts’ decision on node labeling. GNNs combine node features, connection patterns, and graph structure by using a neural network to embed node information and pass it through edges in the graph. We want to identify the patterns in the input data used by the GNN model to make a decision and examine if the model works as we desire. However, due to the complex data representation and non-linear transformations, explaining decisions made by GNNs is challenging. In this work, we propose new graph features’ explanation methods to identify the informative components and important node features. Besides, we propose a pipeline to identify the critical factors used for node classification. We use four datasets (two synthetic and two real) to validate our methods. Our results demonstrate that our explanation approach can mimic data patterns used for node classification by human interpretation and disentangle different features in the graphs. Furthermore, our explanation methods can be used for understanding data, debugging GNN models, and examine model decisions.
Fichier principal
Vignette du fichier
497121_1_En_4_Chapter.pdf (2.05 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03414729 , version 1 (04-11-2021)

Licence

Identifiers

Cite

Xiaoxiao Li, João Saúde. Explain Graph Neural Networks to Understand Weighted Graph Features in Node Classification. 4th International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE), Aug 2020, Dublin, Ireland. pp.57-76, ⟨10.1007/978-3-030-57321-8_4⟩. ⟨hal-03414729⟩
65 View
357 Download

Altmetric

Share

More