DeepRoute: Herding Elephant and Mice Flows with Reinforcement Learning
Abstract
Wide area networks are built to have enough resilience and flexibility, such as offering many paths between multiple pairs of end-hosts. To prevent congestion, current practices involve numerous tweaking of routing tables to optimize path computation, such as flow diversion to alternate paths or load balancing. However, this process is slow, costly and require difficult online decision-making to learn appropriate settings, such as flow arrival rate, workload, and current network environment. Inspired by recent advances in AI to manage resources, we present DeepRoute, a model-less reinforcement learning approach that translates the path computation problem to a learning problem. Learning from the network environment, DeepRoute learns strategies to manage arriving elephant and mice flows to improve the average path utilization in the network. Comparing to other strategies such as prioritizing certain flows and random decisions, DeepRoute is shown to improve average network path utilization to 30% and potentially reduce possible congestion across the whole network. This paper presents results in simulation and also how DeepRoute can be demonstrated by a Mininet implementation.
Origin | Files produced by the author(s) |
---|