Nondeterminism Growth and State Complexity - Descriptional Complexity of Formal Systems
Conference Papers Year : 2019

Nondeterminism Growth and State Complexity

Chris Keeler
  • Function : Author
  • PersonId : 1024582
Kai Salomaa
  • Function : Author
  • PersonId : 1022715

Abstract

Tree width (respectively, string path width) measures the maximal number of partial (respectively, complete) computations of a nondeterministic finite automaton (NFA) on an input of given length. We study the growth rate of the tree width and string path width measures. As the main result we show that the degree of the polynomial bounding the tree width of an NFA differs by at most one from the degree of the polynomial bounding the string path width. Also we show that for $$m \ge 4$$ there exists an m-state NFA with finite string path width such that any equivalent finite tree width NFA needs $$2^{m-2} + 1$$ states.
Fichier principal
Vignette du fichier
480958_1_En_16_Chapter.pdf (309.65 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02387283 , version 1 (29-11-2019)

Licence

Identifiers

Cite

Chris Keeler, Kai Salomaa. Nondeterminism Growth and State Complexity. 21th International Conference on Descriptional Complexity of Formal Systems (DCFS), Jul 2019, Košice, Slovakia. pp.210-222, ⟨10.1007/978-3-030-23247-4_16⟩. ⟨hal-02387283⟩
116 View
63 Download

Altmetric

Share

More